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Abstract

We present a periodic chemostat with allelopathic growth inhibition. The operating

parameters including the nutrient uptake function, washout rate and nutrient concentration

are allowed to be periodic functions of time, with commensurate periods. We show

that competitive exclusion always holds in a periodic chemostat with allelopathic growth

inhibition. We find that the species with the smallest break-even concentration survives

the competition for a single growth-limiting nutrient independent of the initial conditions.

Using Matlab software, we carry out numerical simulations to confirm the theoretical

findings.

Key words: Periodic Chemostat; Allelopathic Growth Inhibition; Exploitative Competition;

Competitive Exclusion.

1 Introduction

A fundamental problem in population biology concerns the long-term survival of all competing

species for a single growth-limiting nutrient. From the biological perspective, this long-term

survival is well known as permanent coexistence which guarantees non-extinction of species as

well as all species do not grow indefinitely, however allows an arbitrary asymptotic behaviour

[21]. Many applications of permanent coexistence are focussed on models with autonomous

systems of differential equations. These models predict that when the number (r) of lim-

ited resources are competed by species, then only r competing species may avoid extinction

[1]. The competition for a single, limited resource is known as exploitative competition [22].

Though, it is common in nature that a few available resources are limited and the size of

species depending on limited resources is large.

A favorable area where experimental predictions can be made from these mathematical

models is in a laboratory apparatus known as a chemostat. The chemostat models a very sim-

ple lake [13] and is important in ecological studies because the mathematics can be traced and

the relevant experiments are possible [22]. It is an important piece of device for studying in-

teraction between species competing for a nutrient largely because most parameters that affect

1



the interaction are under the control of the experimenter, see for instance [4, 5, 14, 17, 19, 22].

Mathematical models of exploitative competition in a well-stirred chemostat operated un-

der constant input and dilution rates, with competition for a single essential, non-reproducing,

growth-limiting nutrient predict competitive exclusion, that is only one competitor population

avoids extinction, see for instance [3, 5, 7, 8, 17, 18]. That is, in temporally homogeneous

(constant operating parameters) and spatially homogeneous (well-stirred chemostat) environ-

ment, the model predicts competitive exclusion. If the homogeneity conditions are relaxed and

the parameters allowed to be periodic, the models predict that coexistence of the competing

species can occur, see for instance [4, 19, 22]. Relaxation of these conditions is plausible be-

cause real environments are far from being homogeneous, either in space or time. In addition

to the day/night variability, there are seasonal effects as well as random effects caused by the

variable weather patterns [22].

There have been some studies looking at some aspects of periodicity in chemostat models.

Butler, Hsu and Waltman [4] found that in a model of the chemostat with periodic washout

rate, under suitable circumstances, there is coexistence of the competing population. Cushing

[6] looked at periodic two predator one prey interactions and the time sharing of a resource

niche and found that there is a possibility of stable coexistence of the predator prey mod-

els with diffusion with the result that permanence is expected to hold [21]. In all of these

studies, where periodicity is introduced in the chemostat model, none has addressed any form

of allelopathic inhibition. Also, there have been some studies involving various aspects of

inhibition to the growth of competing species. Hsu and Waltman [11] looked at a model of

the effect of anti-competitor toxins on plasmid-bearing, plasmid-free competition, and also

addressed competition in the chemostat when one competitor produces a toxin [9]. Hsu et al

[10] studied competition in the presence of a lethal external inhibitor, Braselton and Waltman

[2] developed a competition model with dynamically allocated inhibitor production, while

Jianhua et al [20] addressed the effect of inhibitor on the plasmid-bearing and plasmid-free

model in the unstirred chemostat. These mathematical models of allelopathic inhibition in the

chemostat were operated under constant input and dilution rates.

In this study, we present a model of two species competition with allelopathic growth in-

hibition in a periodically operated chemostat. We shall assume that the chemostat is spatially

homogeneous, but allow the parameters in the model including nutrient input concentration,

dilution rate as well as the species specific removal rates are periodic with their periods being

commensurate. The species specific nutrient uptake is assumed to be a monotone increasing

function of the nutrient concentration, but allowed to be periodic as function of time with its

period being commensurate with that of other parameters. We shall use a Holling Type II

function for the nutrient uptake, that is, the function follows Michaelis-Menten kinetics. We

shall introduce a parameter that represents the fraction of the growth-rate devoted to toxin

production. A function that account for the allelopathic inhibitory effects on the growth of

non-toxic competitor is also introduced.

This paper is organized as follows. In section 2, we present the model incorporating

both periodicity and allelopathic growth inhibition. In Section 3, we show the positivity and
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boundedness of the solution. In Section 4, we establish the competition-independent extinction

of the single species. In Section 5, we describe an outcome in which both species become

extinct. In Section 6, we demonstrate that there will be a self-extinction of the toxin producing

species. In Section 7, we determine the break-even concentration of the nutrient. Section 8
deals with the conditions for competitive exclusion while numerical simulations are found in

Section 9. Finally, we conclude with a brief discussion in Section 10.

2 The Model

The model incorporating both periodicity and allelopathic growth inhibition takes the following

form:

Ṡ(t) = (S0(t)− S(t))D0(t)− x1(t)g1(t, S(t))h(p) − x2g2(t, S(t)),

ẋ1(t) = x1(t){g1(t, S(t))h(p)−D1(t)},

ẋ2(t) = x2(t){(1− k)g2(t, S(t))−D2(t)}, (1)

ṗ(t) = kg2(t, S(t))x2(t) −D2(t)p(t),

with S(0) ≥ 0, x1(0) ≥ 0, x2(0) ≥ 0, p(0) ≥ 0, for 0 ≤ t <∞,

where,

S(t) is the nutrient concentration at time t,

x1(t) is the density of the species affected by the toxin at time t,

x2(t) is the density of the species producing the toxin at time t,

p(t) is the concentration of the toxin at time t,

S0(t) is the input nutrient concentration at time t,

D0(t) is the nutrient dilution rate,

Di(t) is the specific removal rate or the washout rate of the ith species,

gi(t, S(t)) is the specific per capita nutrient uptake function of the ith species,

h(p) represents the degree of inhibition of the toxin to the growth-rate of species x1,

k represents the fraction of the growth-rate of species x2 allocated to toxin production,

D2(t)p(t) represents the washout rate of the toxin.

Here, it is assumed that S0(t), D0(t), Di(t) are all continuous, ω-periodic, positive func-

tions and that each gi(t, S) : R
2
+ → R+ is continuous, ω-periodic in t and satisfies:-

(i) gi(t, S) is locally Lipschitz in S,

(ii) gi(t, 0) = 0 for t ≥ 0 and for any t ≥ 0, g(t, S) is strictly increasing for S ∈ R+.

The relationship between g1(t, S(t)) and g2(t, S(t)) and S(t) is of the following form:-
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Figure 1: Relationship between the uptake functions of the species.

We assume that the inhibiting function of toxin h(p) satisfies the following conditions:-

(i)

h(0) = 1, h(p) ≥ 0;

(ii)

h′(p) < 0, p > 0. (2)

Equation (2)(i) helps to delineate the meaning of h(p) with h(0) = 1 being no inhibition at all

to the growth-rate of the species x1 while h(p) = 0 being a total inhibition to the growth-rate of
species x1. A decrease in the value of the inhibition function h(p) implies high concentration

of toxin in the environment. In Equation (2)(ii), h′(p) < 0 makes a physical sense because

we expect that high concentration of toxin in the environment to cause a greater inhibition to

growth-rate of species x1. If the toxin p is not present in the environment, then we do not

expect any inhibition to the growth-rate of species x1 as h(0) = 1 implies. A reasonable

function describing h(p) as suggested in [12] is given by

h(p) = e−γp, (3)

where γ > 0 is a measure of the inhibiting effect of toxin, while p := p(t) is the concentration
of toxin at time t. Clearly h(p) in Equation (3) verifies all the conditions in Equation (2).

Some resources are needed to account for the metabolic burden and this must come at

some cost to the organism's reproductive abilities. When k = 0, we have a system asymptotic

to the standard periodic chemostat, while when k = 1, we have all uptake devoted to toxin
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production and none to growth and thus extinction of species x2. These two extremes help

to delineate the meaning of k. Thus, we assume the parameter k ∈ (0, 1) is a constant that

represents the fraction of the growth-rate of species x2 allocated to toxin production.

We see that in the special case if there is no production of the toxin; that is, k = 0, and
p(t) = 0 for all t ≥ 0, then the system in Equation (1) reduces to

Ṡ = (S0(t) − S)D0(t)− x1g1(t, S)− x2g2(t, S),

ẋ1 = x1{g1(t, S)−D1(t)}, (4)

ẋ2 = x2{g2(t, S)−D2(t)},

which is a standard periodic chemostat model without allelopathic growth inhibition. A more

detailed discussion of the standard periodic chemostat model can be found in [15, 16, 19, 22].

In addition, when S0(t) = S0, gi(t, S) = gi(S), D0(t) = Di(t) = D, i = 1, 2, the system in

Equation (1) can be written as

Ṡ = (S0 − S)D − x1g1(S)h(p) − x2g2(S),

ẋ1 = x1{g1(S)h(p) −D},

ẋ2 = x2{(1 − k)g2(S) −D}, (5)

ṗ = kg2(S)x2 −Dp,

which is the chemostat model with allelopathic growth inhibition without periodicity. A more

detailed discussion of the chemostat model with allelopathic growth inhibition can be found

in [12].

3 Positivity and Boundedness of the solution

Since a general prerequisite of any chemostat-like model is positivity and boundedness of its

solution, we first show that for a given non-negative initial condition, the solution of Equation

(1) remains positive and bounded for all t ≥ 0. This information is given in Proposition 1.

Proposition 1. For every positive initial condition (S(0), x1(0), x2(0), p(0)) ∈ R
4
+, the solu-

tion (S(t), x1(t), x2(t), p(t)) of Equation (1) is positive and bounded for all t ≥ 0.

Proof. We begin by showing that S(t) is positive. Suppose for a while that S(t) is not

positive for all t ≥ 0. By the continuity of S(t) and the fact that S(0) > 0, then S(t) < 0
implies that there exists a point t0 with S(t0) = 0 and S(t) > 0 for all 0 ≤ t ≤ t0. For

0 ≤ t ≤ t0, we see from the first equation in Equation (1) that,

Ṡ(t) > −

[
S(t)D0(t) + x1(t)g1(t, S(t))h(p) + x2(t)g2(t, S(t))

]
.

Substituting

gi(t, S(t)) =
µiS(t)

ai + S(t)
, i = 1, 2,
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and integrating from 0 to t0, then it follows that

S(t0) > S(0) exp

[∫ t0

0

(
−D0(ξ) −

µ1x1(ξ)

a1 + S(ξ)
h(p) −

µ2x2(ξ)

a2 + S(ξ)

)
dξ

]
> 0.

(6)

This leads to a contradiction and hence it implies that S(t) > 0 for all t ≥ 0.
From the second and third equations in Equation (1), we see that

x1(t) = x1(0) exp

[ ∫ t

0

(g1(ξ, S(ξ))h(p) −D1(ξ))dξ

]
,

x2(t) = x2(0) exp

[ ∫ t

0

((1 − k)g2(ξ, S(ξ)) −D2(ξ))dξ

]
. (7)

Since xi(0) ≥ 0, then Equation (7) implies that xi(t) ≥ 0 for all t ≥ 0, i = 1, 2.
For the fourth equation of Equation (1), we have;

ṗ(t) = kg2(t, S(t))x2(t) −D2(t)p(t)

> −D2(t)p(t), (8)

which on integration we obtain

p(t) > p(0) exp

[
−

∫ t

0

D2(ξ)dξ

]
> 0. (9)

Since p(0) ≥ 0, then it implies that p(t) ≥ 0 for all t ≥ 0. This completes the proof that the

solution (S(t), x1(t), x2(t), p(t)) of Equation (1) is positive for all t ≥ 0.
Next, we show that the solution of Equation (1) is bounded. By adding all equations in

Equation (1), one gets

S0(t)D0(t) −D(t)V (t) ≤ V̇ (t) ≤ S0(t)D0(t)−D(t)V (t), ∀t ≥ 0, (10)

where

V (t) := S(t) + x1(t) + x2(t) + p(t);

D(t) := Dmin(t) = min

{
D0(t), D1(t), D2(t)

}
;

and

D(t) := Dmax(t) = max

{
D0(t), D1(t), D2(t)

}
.

Upon integrating the inequalities in (10), we obtain,

V (t) ≤
1

D(t)

{
S0(t)D0(t)−

d

dt

(
S0(t)D0(t)

D(t)

)
−

d2

dt2

(
S0(t)D0(t)

D(t)

)
− ....

}
+ ε1(t) (11)

V (t) ≥
1

D(t)

{
S0(t)D0(t) −

d

dt

(
S0(t)D0(t)

D(t)

)
−
d2

dt2

(
S0(t)D0(t)

D(t)

)
− ....

}
+ ε2(t), (12)
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where

ε1(t) :=

{
V (0) −

1

D(0)

{
S0(0)D0(0) −

Ṡ0(0)D0(0)

D(0)
− ...

}}
exp

[
−

∫ t

0

D(ξ)dξ

]
(13)

and

ε2(t) :=

{

V (0) −
1

D(0)

{

S0(0)D0(0) −
Ṡ0(0)D0(0)

D(0)
− ...

}}

exp

[
−

∫ t

0

D(ξ)dξ

]
. (14)

Clearly, we see that as t → ∞, εi(t) → 0 exponentially for i ∈ {1, 2}. This leads to the

following well-defined numbers α = lim inf
t→∞

V (t) and β = lim sup
t→∞

V (t). Therefore, we obtain

Q(t) ≤ α ≤ β ≤ P (t), (15)

where

P (t) :=

{
S0(t)D0(t)

D(t)
−

1

D(t)

d

dt

(
S0(t)D0(t)

(D(t)

)
− ...

}
, (16)

and

Q(t) :=

{
S0(t)D0(t)

D(t)
−

1

D(t)

d

dt

(
S0(t)D0(t)

(D(t))

)
− ...

}
. (17)

This shows that V (t) is bounded and all positive solutions of the System (1) are also bounded,

completing the proof.

4 Competition-independent extinction of single species

We show that competition-independent extinction occurs for any population xi with gi(t, S(t)) <
Di(t) for all t ≥ 0.

Lemma 1 simply means that if the death rate is higher than the growth rate, then the

species will go to extinction as a result of high death rate rather than by cause of competition

for the nutrient.

Lemma 1. (1) If g1(t, S(t)) < D1(t), then it follows limt→∞ x1(t) = 0 for all t ≥ 0.

(2) If g2(t, S(t)) < D2(t), then it follows limt→∞ x2(t) = limt→∞ p(t) = 0 for all t ≥ 0.

Proof (1). For 0 < S(t) < S0(t), from the second equation in System (1) and noting that

h(p) = e−γp < 1 for γ, p > 0, we have

ẋ1(t) = x1(t){g1(t, S(t))h(p)−D1(t)} ≤ x1(t){g1(t, S(t))−D1(t)},

which, upon integration from 0 to t yields,

x1(t) ≤ x1(0) exp

[∫ t

0

(g1(ξ, S(ξ)) −D1(ξ))dξ

]
.
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Assuming that g1(t, S(t)) is locally Lipschitz and is strictly increasing for S ∈ R+, g1(t, 0) =
0, for t ≥ 0, then from g1(t, S(t)) < D1(t), it follows that

x1(t) ≤ x1(0) exp

[
−

∫ t

0

(D1(ξ) − g1(ξ, S(ξ)))dξ

]
,

which gives:-

lim
t→∞

x1(t) ≤ lim
t→∞

x1(0) exp

[
−

∫ t

0

(D1(ξ) − g1(ξ, S(ξ)))dξ

]
= 0.

Proof (2). For 0 < S(t) < S0(t), from the last two equations in System (1), we have

d

dt
(x2(t) + p(t)) = x2(t)g2(t, S(t))− (x2(t) + p(t))D2(t)

≤ x2(t)g2(t, S(t)) + p(t)g2(t, S(t))− (x2(t) + p(t))D2(t)

= (x2(t) + p(t))[g2(t, S(t))−D2(t)],

which, upon integration from 0 to t yields,

x2(t) + p(t) ≤ (x2(0) + p(0)) exp

[ ∫ t

0

(g2(ξ, S(ξ)) −D2(ξ))dξ

]
.

Assuming that g2(t, S(t)) is locally Lipschitz and is strictly increasing for S ∈ R+, g2(t, 0) =
0, for t ≥ 0, then from g2(t, S(t)) < D2(t) and by the continuity of x2(t) and p(t) on

0 ≤ t <∞, it follows that limt→∞[x2(t)+p(t)] = 0, which in turn implies that limt→∞ x2(t) =
limt→∞ p(t) = 0. This completes the proof of Lemma 1.

5 Inadequacy of environment for a species

We describe an outcome in which all populations are eliminated from the chemostat due to

the inadequacy of the nutrient supply.

Proposition 2 simply confirms the biological intuition that if the amount of nutrient in

the system falls below a level required by the species for survival, then there will be an

asymptotic extinction. This extinction is not as a result of competition, but due to the fact that

the chemostat-like aquatic ecosystem is an inadequate environment for any of the populations

to survive.

Proposition 2. For all positive initial conditions of Equation (1), if

(i) g1(t, S(t)) < D1(t); and

(ii) g2(t, S(t)) < D2(t),

for all t ≥ 0, then it follows limt→∞(S(t), x1(t), x2(t), p(t)) = (S0(t), 0, 0, 0).

Proof. Lemma 1 implies that when gi(t, S(t)) < Di(t) then limt→∞ xi(t) = 0, for i ∈
{1, 2}. From Inequality (11) and since xi → 0 as t→ ∞, it follows that limt→∞ S(t) = S0(t).
Thus, we have limt→∞(S(t), x1(t), x2(t), p(t)) = (S0(t), 0, 0, 0).
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6 Asymptotic behaviour of the species producing a toxin

We demonstrate that if a species devotes to toxin production, it will get extinct. Let's consider

Equation (1). We define z := p − k
1−k

x2 which essentially reflects the amount of toxin in

terms of the amount of the toxin producing species.

Lemma 2 is a conservation law that changes the System (1) from a four dimensional to

three dimensional.

Lemma 2. Let z := p− k
1−k

x2. Then the omega limit set of any solution of the initial value

problem in Equation (1) lies in the plane z = 0.

Proof. If z := p− k
1−k

x2, then it follows from Equation (1) that

ż = kg2(t, S)x2 −D2(t)p− kg2(t, S)x2 +
k

1 − k
x2D2(t)

= −(p−
k

1 − k
x2)D2(t)

= −zD2(t),

which, upon integration from 0 to t yields,

z(t) = z(0) exp

[ ∫ t

0

−D2(ξ)dξ

]
.

Since D2(t) is a positive and continuous function, z(t) → 0 exponentially as t → ∞. This

completes the proof of Lemma 2.

Lemma 2 simply implies that if there is no fraction of the nutrient consumption devoted

to toxin production, then the toxin will be absent in the chemostat. In addition, if the fraction

of the nutrient consumption devoted to toxin production is equal to one, then there will be a

self-extinction of the toxin producing species. This is seen by noting that

x2(t) =
(1 − k)

k
p(t)

which tends to zero as k → 1.
In what follows, we define relative values of the break-even concentration of the nutrient

that will determine the outcome of the competition.

7 Break-even concentration

We obtain the break-even concentration for population xi on nutrient S by setting

ẋi = 0, i = 1, 2, (18)

and solving for S. We first simplify the model in Equation (1) by a reduction of system of

equations. Let

z := p−
k

1 − k
x2.
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Substituting h(p) = e−γp in Equation (1) yields the system

ż = −zD2(t),

Ṡ = (S0(t) − S)D0(t)− x1g1(t, S)e−γ(z+ k
1−k

x2) − x2g2(t, S),

ẋ1 = x1{g1(t, S)e−γ(z+ k
1−k

x2) −D1(t)}, (19)

ẋ2 = x2{(1 − k)g2(t, S) −D2(t)}.

Hence in view of the Lemma 2, trajectories which form the positive omega limit set of any

solution of Equation (19) are the solutions of

Ṡ = (S0(t)− S)D0(t) − x1g1(t, S)e−
γk

1−k
x2 − x2g2(t, S),

ẋ1 = x1{g1(t, S)e−
γk
1−k

x2 −D1(t)}, (20)

ẋ2 = x2{(1 − k)g2(t, S)−D2(t)}.

We turn now to determine the important parameters that will describe the global asymptotic

behaviour of the System (20). Assuming that the species-specific death rates are relatively

small and insignificant as compared to the washout rate of the chemostat, we can allow

D0(t) = D1(t) = D2(t) = D(t) for simplicity and the only interesting cases will therefore be

gi(t, S(t)) > D(t), i = 1, 2,

for all t ≥ 0. Let
〈
D

〉
denote the mean value of a positive continuous function D(t), i.e.

〈
D

〉
=

1

t

∫ t

0

D(s)ds.

If we let

gi(S) :=
µiS

ai + S
, i = 1, 2,

then the minimum amount of the nutrient necessary to ensure nonnegative growth of the

populations can be defined by λ1, λ2, λ
+
2 as the unique positive solutions of the following

system of equations:

µ1λ1

a1 + λ1

=
〈
D

〉
,

µ2λ2

a2 + λ2
=

〈
D

〉
,

µ2λ
+
2

a2 + λ+
2

=

〈
D

〉

1 − k
. (21)

The parameter values λ1, λ2 and λ
+
2 represent the break-even concentration of the nutrient and

play an important role in determining competitive ability of the populations. From Equation
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(21), we see that λ2, λ
+
2 involve only the parameters for the x2-population. Since if the x2-

population washes out of the chemostat, no toxin is produced, then there will be no minimum

value of the toxin. Also, we note from Equation (21) that

λ2 =
a2

〈
D

〉

µ2 −
〈
D

〉 ,

λ+
2 =

a2

〈
D

〉

(1 − k)µ2 −
〈
D

〉 , (22)

from which for 0 < k < 1, it then easily follows that (1 − k)µ2 < µ2. Thus, λ2 and λ+
2 are

related as follows:-

λ2 < λ+
2 . (23)

This Inequality (23) indicates that species x2 will require more energy for its growth when a

fraction of the nutrient consumption is devoted to toxin production than if no fraction of the

nutrient consumption is devoted to toxin production.

8 Competitive Exclusion

We obtain conditions for the single species to go to extinction as a result of the competition

for the same growth-limiting nutrient.

To understand the global dynamics of the single species growth model in the periodic

chemostat, we consider the following two dimensional system:

Ṡ(t) = (S0(t)− S(t))D0(t) − x(t)g(t, S(t)),

ẋ(t) = x(t){g(t, S(t))−D1(t)}, (24)

x(0) = x0 ≥ 0, S(0) = S0 ≥ 0.

Here, x(t) represents the density of the species at time t, S(t) denotes the growth-limiting

essential nutrient concentration in the water external to the plant cells at time t, g(t, S(t))
represents the specific per capita nutrient uptake function of the species, S0(t) is the periodic
inflow concentration of the essential nutrient at time t, D0(t) is the nutrient dilution rate or the
rate at which the nutrient enters the aquatic system, and D1(t) represents the specific removal

rate of the species. We assume that S0(t), D0(t), D1(t) are continuous, ω-periodic, positive

functions and that g(t, S) : R
2
+ → R+ is continuous, ω-periodic in t and satisfies:-

(i) g(t, S) is locally Lipschitz in S,

(ii) g(t, 0) = 0 for t ≥ 0 and for any t ≥ 0, g(t, S) is strictly increasing for S ∈ R+.

Let D(t) : R+ → R+ be a continuous, ω-periodic and positive function. Then, the linear

periodic equation

V̇ (t) = S0(t)D0(t) − V (t)D(t), V (0) ≥ 0, (25)
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admits a unique positive global attractive ω-periodic solution V∗(t), which can be given as

V ∗(t) = e−
R t
0

D(τ )dτ

[∫ ω

0
e

R τ

0
D(θ)dθS0(τ )D0(τ )dτ

e
R ω

0
D(τ )dτ − 1

+

∫ t

0

e
R τ
0

D(θ)dθS0(τ )D0(τ )dτ

]
.

Let D(t) = min{D0(t), D1(t)} and D(t) = max{D0(t), D1(t)}. Then, D(t) and D(t) :
R+ → R+ are continuous, ω-periodic and positive functions. Let V∗

1 (t) and V ∗
2 (t) be unique

positive ω-periodic solutions of Equation (25) with D(t) replaced with D(t) and D(t) respec-
tively. By comparison theorem and global attractivity of V∗i (t), 1 ≤ i ≤ 2, it easily follows

that V ∗
2 (t) ≤ V ∗

1 (t), ∀t ≥ 0.
Lemma 3 will be useful in the proof of Proposition 3 to show that the remaining species

x and its nutrient S have limiting periodic behaviour.

Lemma 3. Let D0(t) = D1(t), t ∈ [0, ω]. If

∫ ω

0

(g(t, V ∗
1 (t))−D1(t))dt > 0,

then Equation (24) has a unique positive global attractive ω-periodic solution (S ∗(t), x∗(t)).

Proof. In Equation (24), take g(t, S(t)) = P (t, S(t)). It then follows from the similar

arguments as those in [19, Theorem 2.2] that limt→∞(S(t), x(t)) = (S∗(t), x∗(t)).
Proposition 3 simply means that if one species is a better competitor for every level of the

nutrient, then the other species will become extinct.

Proposition 3. (a) Let 0 < λ1 < λ+
2 < S0(t). If g1(t, S(t)) > g2(t, S(t)) for 0 < S(t) <

S0(t), then for S(0) > 0, x1(0) > 0, x2(0) > 0, it follows x2(t) → 0, S(t) → S∗
1(t),

x1(t) → x∗1(t) as t → ∞, where S∗
1(t) and x∗1(t) are respectively the ω-periodic

solutions of the equations

Ṡ(t) = (S0(t)− S(t))D(t) − x1(t)g1(t, S(t)),

ẋ1(t) = x1(t){g1(t, S(t))−D(t)}.

(b) Let 0 < λ+
2 < λ1 < S0(t). If g2(t, S(t)) > g1(t, S(t)) for 0 < S(t) < S0(t), then for

S(0) > 0, x1(0) > 0, x2(0) > 0, it follows x1(t) → 0, S(t) → S∗
2(t), x2(t) → x∗2(t)

as t → ∞, where S∗
2(t) and x∗2(t) are respectively the ω-periodic solutions of the

inequalities

Ṡ(t) ≤ (S0(t) − S(t))D(t)− x2(t)g2(t, S(t)),

ẋ2(t) ≤ x2(t){g2(t, S(t))−D(t)}.

Proof (a). For 0 < S(t) < S0(t), from the second and third equations in the System (20)

and noting that 0 < k < 1 and e−
γk
1−k

x2(t) < 1 for γ, k, x2(t) > 0, we have

ẋ1(t) = x1(t){g1(t, S(t))e−
γk
1−k

x2(t) −D(t)} ≤ x1(t){g1(t, S(t))−D(t)},

ẋ2(t) = x2(t){(1 − k)g2(t, S(t))−D(t)} ≤ x2(t){g2(t, S(t))−D(t)},

(26)
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from which it follows that

ẋ2(t)

x2(t)
−
ẋ1(t)

x1(t)
≤ [g2(t, S(t))− g1(t, S(t))]. (27)

Since g1(t, S(t)) > g2(t, S(t)) for 0 < S(t) < S0(t), then by substituting

gi(t, S(t)) =
µiS(t)

ai + S(t)
, i ∈ {1, 2},

and letting

δ1 := max
0<S(t)<S0(t)

[
µ2

a2 + S(t)
−

µ1

a1 + S(t)

]
< 0,

we obtain that

ẋ2(t)

x2(t)
−
ẋ1(t)

x1(t)
≤ S(t)

[
µ2

a2 + S(t)
−

µ1

a1 + S(t)

]

≤

(
inf

0≤t<∞
S(t)

)
(δ1). (28)

Now, supposing that

inf
0≤t<∞

S(t) = δ2 > 0,

then we can let δ = δ1δ2 so that

ẋ2(t)

x2(t)
−
ẋ1(t)

x1(t)
≤ δ < 0, (29)

which, upon integration from 0 to t and taking exponentials on both sides yields

x2(t) ≤ ψ0x1(t)e
δt,

for some ψ0 > 0 depending upon the initial conditions. Since x1(t) is positive and bounded

and δ is negative, limt→∞ x2(t) = 0. By substituting x2 = 0 into System (20), we have

Ṡ(t) = (S0(t)− S(t))D(t) − x1(t)g1(t, S(t)),

ẋ1(t) = x1(t){g1(t, S(t))−D(t)}. (30)

Hence, it follows from Lemma 3 that limt→∞ S(t) = S∗
1(t), and limt→∞ x1(t) = x∗1(t).

Proof (b). Since g2(t, S(t)) > g1(t, S(t)) for 0 < S(t) < S0(t), similar arguments as in

the proof of (a) establishes that limt→∞ x1(t) = 0. By substituting x1 = 0 into System (20),

we get

Ṡ(t) = (S0(t)− S(t))D(t) − x2(t)g2(t, S(t)),

ẋ2(t) = x2(t){(1− k)g2(t, S(t))−D(t)}, (31)

13



from which by the positivity of solutions, and using the fact that k ∈ (0, 1), we have

dS(t)

dt
≤ (S0(t)− S(t))D(t) − x2(t)g2(t, S(t)),

dx2(t)

dt
≤ x2(t){g2(t, S(t))−D(t)}. (32)

Now, if we let (Ŝ(t), x̂2(t)) be the unique solution of the following auxiliary problem

dŜ(t)

dt
= (S0(t) − Ŝ(t))D(t) − x̂2(t)g2(t, Ŝ(t)),

dx̂2(t)

dt
= x̂2(t){g2(t, Ŝ(t)) −D(t)}, (33)

x̂(0) = x(0) ≥ 0, Ŝ(0) = S(0) ≥ 0.

By applying comparison theorem, we have from Equation (32) and Equation (33) that

(S(t), x2(t)) ≤ (Ŝ(t), x̂2(t)), ∀t ≥ 0. (34)

It then follows from Lemma 3 that

lim
t→∞

(S(t), x2(t)) ≤ lim
t→∞

(Ŝ(t), x̂2(t)) = (S∗
2(t), x

∗
2(t)).

This completes the proof of the proposition.

Proposition 3 above shows that one competitor always wins the competition and coexistence

is not possible. This differs with the result of the periodic chemostat without inhibition as

demonstrated for instance in [19].

9 Numerical results

We illustrate the global behaviour of the reduced system (20) by some graphical results. The

numerical results are obtained by using the adaptive MatLab solver ode45 applied to the

reduced system (20) considering a nutrient uptake function of the Michaelis-Menten form

gi(t, S(t)) =
µiS(t)

ai + S(t)
, i = 1, 2,

and a nutrient supply of the type

S0(t) = S̃0 + η + 2η
(T1 − T2)

Tp

+
∞∑

n=1

4η

nπ
cos

(nπ
Tp

(T1 + T2)
)

sin
(nπ
Tp

(T1 − T2)
)

cos
2πnt

Tp

,

with parameters which are described in Tables 1 and 2. The parameter values are hypothetical

and do not necessarily have a biological meaning.
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Table 1: Parameter values used in the plots of Figures 3 and 4
Parameter Value used in Figure 3 Value used in Figure 4

S̃0 1 1

η 3 2

T1 2 1

T2 4 3

Tp 6 4

n 11 9

D0(t) 1 1

D1(t) 0.8425 0.9725

D2(t) 0.9865 1.2885

S(0) 1 1

x1(0) 2 2

x2(0) 2 2

µ1 1 1

µ2 1 1

a1 1 1

a2 1 1

λ1 0.2 5

λ+
2 0.5 6

k 0.5 0.5

γ 1 1

We present numerical simulations of the reduced system (20) that reflect the condition

gi(t, S(t)) < Di(t), for i ∈ {1, 2},

where the level of nutrient available in the chemostat is either sufficient for both species to

survive or it is insufficient resulting to extinction which is independent of any population

interactions. The parameter values in Table 1 satisfy that

g1(t, λ1) < D1(t), g2(t, λ
+
2 ) < D2(t), with max(S0(t)) < λ1, λ

+
2 < min(S0(t)).

Figure 3 shows that despite the growth rates of the species x1 and x2 require lower levels

of the nutrient S than the input nutrient supply S0(t), both species become extinct because of

the high death rates.
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Figure 3: Simulation for g1(t, λ1) < D1(t) and g2(t, λ
+
2 ) < D2(t), where λ1, λ

+
2 < min(S0(t)).

Figure 4 represents the extinction of both species because the growth rates of the species

x1 and x2 require higher levels of the nutrient S than the input nutrient supply S0(t).

Figure 4: Simulation for g1(t, λ1) < D1(t) and g2(t, λ
+
2 ) < D2(t), where λ1, λ

+
2 > max(S0(t)).

We present numerical simulations of the reduced system (20) where competition is the

agent of elimination. The following parameter values satisfy the requirements that

g1(t, λ1) > g2(t, λ
+
2 ), where 0 < λ1 < λ+

2 < min(S0(t)),
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and

g2(t, λ
+
2 ) > g1(t, λ1), where 0 < λ+

2 < λ1 < min(S0(t)).

Table 2: Parameter values used in the plots of Figures 5 and 6

Parameter Value used in Figure 5 Value used in Figure 6

S̃0 3 2

η 2 2

T1 1 1

T2 3 3

Tp 4 4

n 9 9

D0(t) 1 1

D1(t) 0.4525 0.8895

D2(t) 0.2005 0.5025

S(0) 3 2

x1(0) 3 1

x2(0) 2 1

µ1 6 1

µ2 8.5 1

a1 1.4 0.01

a2 0.7 0.02

λ1 0.14 3/53

λ+
2 0.07 3/49

k 0.5 0.5

γ 1 0.15

Figure 5 shows that species x2 wins the competition while Figure 6 shows that species

x1 emerges the winner. In these two cases, despite the growth rates of the species x1 and x2

require lower levels of the nutrient S than the input nutrient supply S0(t), the species with

the least requirements of the nutrient wins the competition.
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Figure 5: Simulation for g2(t, λ
+
2 ) > g1(t, λ1), where 0 < λ+

2 < λ1 < min(S0(t)).

Figure 6: Simulation for g1(t, λ1) > g2(t, λ
+
2 ), where 0 < λ1 < λ+

2 < min(S0(t)).
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10 Conclusion

By using both analytical and numerical results, we have shown that competitive exclusion

always holds in a two species periodic chemostat-like model with allelopathic growth inhibi-

tion. We have found that the species with the smallest break-even concentration survives the

competition for a single growth-limiting nutrient independent of the initial conditions.

This study can be improved by incorporating discrete time delays to account for the lag in

the conversion of nutrient consumed to viable biomass.
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