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Abstract
This paper proposes a new more complete, rigorous and seamless GBRS (Green Building Rating System) than the currently used systems, known as CEDES (Comprehensive Environmental Design and Evaluation System). The system has the following characteristics: 1) it is complete, i.e. there are no missing categories or indicators as in many existing GBRS; 2. None of its categories or indicators can be considered superfluous; 3. The relative weight of each indicator is justified and legitimized and is determined by the rest of the indicators and by a complete life cycle assessment (LCA) of all aspects of the construction process. 4) CEDES serves both to evaluate buildings and as a guide to building design with the maximum ecological and sustainable level. This paper describes CEBES’ conceptual structure and its operational dynamics for both evaluating and guiding the design process.
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1. Introduction
The current GBRS vary widely in their structure and operation, which makes it difficult to carry out a comparative study with the objective of their improvement [1, 2] and indicates that their designers interpret the concept of sustainability very differently [3]. It is neither acceptable nor desirable that for the same concept has so many different quantification methods and this calls into question the usefulness of many of the GBRS designed so far.
All the GBRS have different indicators, with different relative importance [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. In some cases the indicators are ambiguous, which allows personal interpretations [3, 17, 18, 19]. All the GBRS use different nomenclatures for apparently similar concepts, which means that many of them overlap [15]. As if that were not enough, many systems have indicators that have nothing to do with ecology and sustainability, so that no-one knows exactly what the different existing GBRS are actually measuring.
Initially, the GBRS had purely ecological indicators, which were complemented with economic indicators to evaluate a building’s level of sustainability However over time, “social”, “political” and “cultural” indicators were added, which could hardly be associated with the concept of sustainability [20, 21]. 
As a result of the great disparity between the different GBRS, the same building can obtain substantially different ratings, depending on the GBRS used. And this clearly demonstrates that all of them are deficient.
The fact that the different GBRS are so different from each other also means that there is no agreed definition of the concept of “sustainability” and this causes multiple interpretations and speculations, indicating a faulty design process [3, 22, 23].
However, several works have concluded that using certain GBRS does not provide any environmental improvement [24, 25, 26, 27, 28]. For example, 44 articles on LEED were reviewed in a recent publication [29] and 10 of them estimated that buildings designed with LEED have certain energy savings, but only in its highly certifications (“gold” and “platinum”), since its lowly certification (“certificate”) offered no advantages. On the other hand, 8 articles concluded that the energy consumption of LEED certificated buildings is no lower than the consumption of a conventional building. These studies concluded that LEED certification is hardly beneficial for the environment and the certification process is not worth the time or money spent on it
Other works are even more critical of LEED and conclude that the energy consumed by LEED-certified buildings is not on average significantly less than that consumed by conventional buildings [30, 31]. LEED buildings use significantly more energy than was estimated in the initial design simulations [32]. As if that were not enough, they show that LEED-certified buildings use relatively more electricity than other buildings, so that there are no energy savings [26, 27, 28, 30, 31, 32, 33].  
Many professionals believe not only that LEED is useless but also that it does considerable harm to the construction sector and to professionals. In fact, several professionals and promoters have taken legal actions against it [34]. 
Many critical studies doubt the validity of the current GBRS systems due to the fact that they do not consider architectural design in their scoring system. A good architectural design can ensure the internal comfort of a building without the need to incorporate energy-consuming devices (heating, air conditioning and ventilation), saving between 40 and 70% of the energy required by a conventional building [17, 24, 35, 36, 37, 38, 39, 40, 41]. 
Several researchers have harshly criticized all the existing GBRS and suggested that all should be combined and completed in a common basic structure, although this concept would require a general agreement on “sustainability” [42, 43]. Many works also conclude that the current GBRS are not much use, since as compared to conventional buildings there is no substantial energy saving nor is there an optimal use of resources. They thus indicate that it is not worth the time and money to invest in the GBRS, since they do not guarantee a sustainable building and only provide a certificate that does not guarantee anything [26, 27, 28]. However, other researchers have suggested that comparative studies are useless and what should be done is to compare GBRS-designed buildings with conventional buildings [15].
The great number of criticisms and deficiencies found in the current GBRS thus call into question their validity to evaluate a building’s level of sustainability [17, 25, 27, 28, 30, 31, 32, 33, 34, 35, 40] and imply that their use could be perceived as a tool to legitimize certain political and economic interests.
It is therefore necessary to reflect deeply on the issue. The concept of "sustainability" should be agreed on and more appropriate, robust, complete, legitimate and seamless universally applicable GBRS must be designed from scratch. These systems should serve above all to guide a correct design process to obtain buildings of the maximum ecological and sustainable level. In this case the evaluation would simply consist of a free administrative check, as should have been done from the beginning.

2. State of the Art
Many researchers have questioned both the design and usefulness of the current GBRS and several proposals have been made to improve them and to create new and more suitable criteria.
One of their worst shortcomings  is that they do not give importance to building design (and in general to the thermodynamic behavior of the building) but do give excessive importance to their devices. For this reason, several proposals have been made to restructure the current GBRS, including design aspects, to integrate them into the architectural design process in a more appropriate way [12, 44, 45, 46, 47]. On the other hand, other studies have gone further and have proposed new GBRS [43, 48, 49, 50, 51, 52, 53, 54, 55]. Some works even use very complex techniques to determine the indicators, such as fuzzy logic [56], or artificial intelligence algorithms [57]. 
Some studies conclude that a global consensus must be achieved, and a simple framework and a rating mechanism must be proposed to reduce the heterogeneity within the market [43].
From our point of view, some of the previous proposals to improve the current GBRS are not sufficiently demanding. In some cases, small changes are suggested that do not substantially improve the GBRS, while in others big changes transform them in a complex way, making it more effective and easier to design new GBRS from scratch.
From our point of view, the GBRS proposals continue to have serious shortcomings, since they do not consider important aspects of the life cycle of all aspects of the construction of buildings, and above all, they continue without giving the importance to architectural design that it deserves. It must be taken into account that there are houses and buildings with a special design that offer adequate internal thermal comfort without significant extra costs, without requiring heating, air conditioning and ventilation devices [24, 35, 36, 38, 39], which deserves to be given adequate importance. Finally, we believe that GBRS should above all actually be design tools, i.e. strategies to guide the building design process and ensure that the buildings have the highest possible sustainable level at the lowest possible price, in which case the evaluation would simply be a free administrative check.
For this reason, and after 20 years of experience, a new GBRS known as CEDES (Comprehensive Environmental Design and Evaluation System) was developed. 
In 2003 the first version of CEDES was implemented [17, 35, 38, 40]  and also served as a guide for the design process of sustainable buildings. This initial system has been used by several Spanish architects’ offices and in several Latin American countries. This system has also been also used to train more than 500 architects and engineers in the Advanced Master’s Degree in Sustainable Architecture [58], run by the National Association for Sustainable Architecture (ANAS) based in Spain and in Latin America [59]. 
After 20 years of experience, in 2023 a more complete, effective and robust one has been developed based on the initial version of CEDES. 

3. Construction process life cycle
All the GBRS must have a structural core based on the life cycle assessment (LCA) of the construction process, which has been analyzed in many studies [60, 61, 62, 63, 64, 65] and is even standardized as to several international regulations [66]. Several GBRS have been designed worldwide based on the original version.
To design the most effective, appropriate and complete GBRS, an existing structure of the LCA of all materials, components and processes used in building construction has been improved. All the possible aspects of construction have been taken into account and all the details have been specified. Particular emphasis has been placed on all processes capable of maximizing the durability of both the building and its components, and all their possibilities of reuse, so that a complete structure of the life cycle of building construction has been created (Figure 1).
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Figure 1. Improved and detailed Life Cycle Assessment (LCA) of the construction process.

Based on this improved LCA structure, it is possible to determine how to optimize the use of materials, reduce energy consumption at each stage, reduce waste and emissions, make use of natural energy, as well as minimize the impact on human health.
The improved and detailed Life Cycle is shown in Fig. 1, proceeding clockwise, and is analyzed below. It begins with the possibility of using less elaborate natural materials (1), but since they are hardly usable in our current society, elaborate and optimized materials must be used (2). For manufacturing, it is essential that both the components (a) and the construction itself (b) have the greatest possible durability, in order to minimize the environmental impact per unit of time. To achieve this, maximum use must be made of recover-repair-reuse strategies, and ultimately recycle (c). Finally, when recycling is no longer possible, the waste must be dismantled and properly treated (d), to finally return to the ecosystem and be biodegraded (e). And again, a new life cycle begins:
1. Natural construction. Without a doubt, the ideal ecological construction is based on the use of materials that are obtained directly from both the ecosystem (tree trunks, branches, grass, straw, leaves, skins, etc.) and from the physical system (stones, sand, clay, etc.) and have not been highly processed. In this natural construction hardly any energy is needed to use natural resources and hardly any waste or emissions are generated. Buildings made with less elaborated natural elements can have a long life and flexibility, since their components can be reused several times, and they are also easily biodegradable once their useful life has ended. In general, this type of natural construction has almost no environmental impact, but very low durability. This type of natural construction cannot satisfy the demands of a complex and overpopulated society, in which a lot is demanded of buildings, especially those that must house a large number of people (safety, robustness, durability, functionality, etc.).
2. Optimized construction. The alternative to natural construction is optimized construction based on manufactured components which has a much greater environmental impact. Manufacturing optimized components requires a significant amount of energy and resources and generates emissions and waste. For this reason, and to minimize the environmental impact per unit of time, the main strategy that must be followed is to maximize the materials’ durability, reducing energy consumption, maintenance and the generation of emissions and waste to the maximum.
To maximize the durability of a building (with the least maintenance and lowest energy consumption possible), 5 main structured strategies must be followed at different stages of its useful life.
a. Component manufacturing. The first stage to achieve optimized constructions is based on component manufacturing, which allows the production of an enormous variety of components and the use of a greater amount of materials, but requires a great deal of of energy, produces a great amount of emissions and waste, increases the economic cost, and can impact animals’ well-being. Three strategies must be used to minimize the environmental impact of this stage,. 
- Design. Components must be designed in such a way that they can be easily assembled and disassembled for easy repair and reuse. The number of components should not be very large, and they should be able to be used in several different types of constructions. 
- Site. The site where components are manufactured must be perfectly chosen in order to minimize their environmental impact. 
- Durability. Durable materials must be used that have a simple treatment to facilitate biodegradation in the last stage of their useful life.
b. Object Manufacturing. A wide variety of buildings (or objects) can be manufactured in the second stage, using the previously manufactured components with the lowest possible environmental impact, for which three different strategies can be followed. 
- Design. The quantity and variety of components necessary in a building must be reduced to the minimum.
- Optimization. The design of buildings must guarantee that they consume the least possible amount of energy, require the least possible maintenance and generate the lowest possible emissions and waste. 
- Durability. Buildings must be designed with a flexible architectural structure so that they have the greatest possible durability and can be easily reconfigured, adapting to the conditions of each stage of their useful life.
c. Maximum extended useful life. In the third stage, and once the construction of a building (or object) has been completed, its useful life can be extended to the maximum using several consecutive strategies. 
- Firstly, all its components can be repaired and reused when they have deteriorated. To do this, building components must have been designed in the previous stage so that they can be extracted, repaired and reused with the greatest possible ease and the least possible amount of energy and resources. 
- Secondly, the extremely deteriorated components of buildings can be used repeatedly in increasingly less demanding buildings (migration), thereby maximizing the durability of both the components and the buildings (or objects). 
- There will come a time when the components will be so deteriorated that they can no longer be used in any type of building, so they must be recycled. It must be taken into account that the recycling process involves the use of a large amount of energy and resources and generates waste and emissions, so components should only be recycled when their reuse possibilities have been exhausted. Newly recycled components must be designed so that they can be used in the widest possible variety of buildings.
d. Useless object. In the fourth stage, there will come a time when some components can no longer be recycled again, since some of their properties (mechanical, physical or chemical) will have decreased considerably These must be biodegraded so that their basic components can be returned to Nature, for which they must be disassembled and treated appropriately to facilitate their biodegradation, using the least possible amount of energy and generating the least possible amount of emissions and waste. 
e. Waste biodegradation. Useless components will continue to biodegrade naturally and after a certain time they can be extracted again, repeating a new cycle as described in (Fig. 1). 
The improved and detailed LCA structure allows the basic structure of a new GBRS to be designed to evaluate and design ecological buildings. However, given that human beings are integrated into a complex global economic system, to adequately design a GBRS that allows buildings to be evaluated and designed with the highest possible sustainable level, appropriate economic and social criteria must be added, as in the design of the CEDES.

4. Conceptual base of CEDES design
CEDES was designed to integrate perfectly into the overall strategy to achieve sustainable development, in particular to design buildings with the highest possible sustainable level. This general strategy consists of 5 stages and is based on the strategy identified in the United Nations Conference on Environment and Development of Rio de Janeiro in 1992 [67] (Fig. 2).
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Figure 2. Conceptual base for the design of the CEDES system.

Stage 1
In the first stage the desired environmental construction objectives must be defined. These objectives must include all the possible parameters identified in the improved and detailed LCA of the construction process, and must also include all the economic and social parameters necessary to guarantee the well-being and balance of anynvironment. These objectives must be specified precisely, weighted and adequately detailed, since otherwise it would not be possible to know whether they have been achieved or not, executing all possible actions throughout the process.
In our case the defined objectives are as follows:
1. Use natural resources and optimize the use of manufactured resources
2. Reduce energy consumption as much as possible
3. Make the most of solar energy and other natural energy sources
4. Minimize emissions and waste generated as much as possible
5. Maximize health and well-being
6. Maximize the durability of buildings
7. Minimize the need for maintenance as much as possible
8. Reduce the economic cost to the maximum

Obviously, it is desirable for the set of objectives is complete and seamless to ensure that buildings have the highest possible sustainable level.
The general objectives identified must also be divided into more defined sub-objectives and in turn these must be divided into new sub-objectives until unitary, well-defined, simple and non-overlapping objectives are achieved. These simple unitary sub-objectives will be associated with indicators in order to evaluate whether or not they have been achieved and to what extent.

Stage 2
A complete set of indicators must be identified to evaluate the sustainable level of each aspect of the building construction process. These aspects can be associated with each of the sub-objectives identified in the previous section. In this way, it is possible to know how far one is from achieving the initial objectives. In the same way, each indicator can be associated with a set of further actions (Stage 4) necessary to raise the desired sustainable level of each aspect of the building.
Establishing indicators in multidimensional entities is a very complex task. For one-dimensional entities, one indicator is sufficient (for example, the indicator “kilogram” is appropriate and sufficient to identify the weight of an object). On the other hand, for multidimensional entities it is necessary to use several indicators (for example, to measure the quality of a pencil, several measurement indicators can be established, such as “weight”, “diameter”, “robustness”, “ length”, the “blackness of the lead”, the “material”). ", etc, each with a different unit of measurement and a different specific weight. In fact, assigning the appropriate weight to each indicator is the biggest problem when evaluating multidimensional entities.
The number of indicators must be identified in such a way that none are missing, and the relative importance of each of them must be established. Each indicator must be determined in such a way that it does not partially overlap with any of the others, while the indicators must be chosen so that they are able to evaluate as simply as possible. The evaluation by each indicator must be carried out without doubt and in a simple and robust way to make it available to anyone, without a need for specialized knowledge. The evaluation of a certain aspect should not be confused with the actions (associated with the indicators) that must be carried out to improve its sustainable level.

Stage 3
The building must be evaluated in several aspects by the indicators identified in the previous stage. To do this, a very simple evaluation system must be identified, and the specific weight of each indicator must be determined. Determining the specific weight of each indicator is the most complex task in the design of any GBRS, the biggest problem of all the existing GBRS.
Let us imagine that we want to evaluate the quality of a pencil, which is the most important indicator? Its weight, diameter, length? Each indicator can be broken up into several sub-indicators. In this case, the weight of a pencil depends on the weight of the lead, the weight of its protection, the weight of the paint. But, which of these three sub-indicators is the most important?
As it is a complex issue, comparative studies must be carried out to determine the specific weight of each indicator and each sub-indicator. For example, to determine the specific weight of each indicator to evaluate the quality of a pencil, comparative studies should be carried out on durability, user satisfaction, robustness, etc.
As the evaluation of the ecological and sustainable level of a building is a much more complex task, establishing the most appropriate indicators and their relative specific weight is much more complex. To do this, information must be collected from a large number of comparative studies of the different aspects of the construction process throughout its entire life cycle. To determine the common specific weight of heterogeneous indicators, Multi-Criteria Decision Making (MCDM) techniques can be used [68, 69, 70, 71], of which SAW and COPRAS (scoring methods), TOPSIS and VIKOR (distance based methods), and MIVES (utility/value methods) stand out [72, 73].

Stage 4
Based on the results of the evaluation, action policies must be identified, executing a set of specific actions with the aim of improving the level of sustainability of a building.
A varied set of actions, of variable effectiveness and economic cost, can be associated with each indicator.
The actions can be very simple or they can be very complex, and they can be very direct or very innovative, but in any case they must be directly associated with a certain indicator, or group of indicators.
The different actions must therefore be implemented sequentially, from the most effective and economical to the least effective and most expensive. It is very important to determine this sequential process of choosing actions ineffective and expensive actions are often carried out, leaving aside other more economical and less effective actions (Fig. 4).

Stage 5
The results thus obtained must be evaluated periodically, and based on this, the actions can be modified or new ones carried out. This evaluation must be carried out in a short period of time, comparing the sustainable level achieved with respect to the economic cost invested, as well as the collateral problems generated. Some actions can be really expensive and ineffective, while others can be very effective and economical. Therefore, actions must be classified according to their environmental effectiveness and their cost to be able to choose the most appropriate ones (the most economical and most effective). The environmental effectiveness is deduced from the weight of the indicators associated with the environmental actions to be carried out.

3. CEDES 
 The new GBRS guarantees that planned buildings have the highest sustainable level at the lowest possible price so that the process can be reduced to a simple administrative check.
Most GBRS are based on a 4-level top-down hierarchical structure that includes: categories (CAS), problems (ISS), criteria (CRS) and indicators (IDS) [1] (Fig. 1).
Some GBRS have only two of the four levels, others have three, and others have four (although some systems have different names). However, the two most important levels and common to all systems are the categories and the indicators. 
To design CEDES a taxonomic structure was implemented that consists only of categories and indicators based on the exhaustive identification of the objectives and sub-objectives necessary to achieve high-level sustainable buildings. For this, the 8 objectives shown in the previous section were restructured and divided into several sub-objectives, creating 4 levels of abstraction. A general taxonomic framework was created to structure the necessary indicators and capable of evaluating the degree of compliance with the previously identified objectives.
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Figure 3. Overview of the scoring process common to several GBRS
(Andújar 2020) [1].

It was taken into account that there was no aspect left out of the evaluation, including all the improved LCA stages of all aspects of the construction process. Also taken into account was that the number of indicators is complete, none are over or missing, that they do not overlap and are easy to evaluate. They were structured hierarchically in 4 levels of abstraction in order to give them their most appropriate specific weight. These indicators can be evaluated simply, scoring with values of between 0 and 5.
In this way, a triple evaluation can be carried out: a general evaluation of the building can be made, an evaluation can be made for each of the 8 categories, or an evaluation can be made by specific sub-categories, depending on the aspect of interest.
The taxonomic system created can be used as a guide to the design process of sustainable buildings from the first sketch until the final design. For this, the possible actions associated with the different indicators have been classified according to their economic value. In this way, a new taxonomy can be created that orders the different actions from the most economically and environmentally effective, to the most expensive and least effective (inverted pyramids model) [35, 36, 37, 38, 39, 40] (Fig. 3).
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Figure 4. “Inverted pyramid model” relates the economic cost with environmental effectiveness of the possible actions to improve the sustainable level of buildings. It should be noted that the most effective actions are the cheapest, and the least effective are the most expensive and also the most promoted.

4. Description of the taxonomic structure of categories and indicators
Based on the strategy shown in the previous section, a complete taxonomic structure for CEDES has been defined. This structure has been the result of a progressive refinement process, attempting to encompass the complete LCA of all possible aspects of the construction process. The 8 CEDES categories (first level) have been divided into subcategories. When some of these subcategories cannot be divided, they become indicators (second level), and if they can be divided, they are divided into sub-subcategories. When some of these sub-subcategories cannot be divided, they become indicators (third level), and if they can be divided, they are divided into indicators (fourth level) (Tables 1, 2, 3, 4, 5, 6, 7 and 8). 

	1. Optimization of resources

	1.1. Use of natural resources

		1.1.1. Water

			1.1.1.1. Rain water

			1.1.1.2. Groundwater

		1.1.2. Vegetation

			1.1.2.1. Wild vegetation

			1.1.2.2. Unprocessed wood

			1.1.2.3. Vegetable waste

		1.1.3. Soil

			1.1.3.1. Not elaborated stones

			1.1.3.2. Soil

		1.1.4. Choice of site

			1.1.4.1. Use of not arable land

			1.1.4.2. Accessibility

			1.1.4.3. Positive impact on the site

	1.2. Resource optimization

		1.2.1. Amount of resources needed

			1.2.1.1. Resources needed in construction

			1.2.1.2. Resources needed throughout the lifecycle of the building

			1.2.1.3. Resources needed for building maintenance

			1.2.1.4. Abundance of resources used for component manufacturing	

		1.2.2. Durability level of components and materials 

		1.2.3. Waste utilization level

		1.2.4. Reusability of components

			1.2.4.1. Use of previously used components

			1.2.4.2. Component reparability level

			1.2.4.3. Component reusability level	

			1.2.4.4. Disassembly level. Reconfigurability and expandability

		1.2.5. Component recycling

			1.2.5.1. Use of recycled components

			1.2.5.2. Use of recycled grey water

			1.2.5.3. Component recycling level

		1.2.6. Level of exploitation of resources

			1.2.6.1. Refined design

			1.2.6.2. Industrialization level

		1.2.7. Functional durability of components

		1.2.8. Functional adaptation of components 



Table 1. Sub-categories and indicators of “optimization of resources” category


	2. Reduction in energy consumption

	2.1. Energy consumption in obtaining materials

	2.2. Energy consumption in the transportation of materials

	2.3. Energy consumption in the transportation of labor  

	2.4. Energy consumption in building construction process

	2.5. Energy consumption by building throughout its lifecycle	

		2.5.1. Energy consumption in building accessibility 	

			2.5.1.1. Accessibility to the area	

			2.5.1.2. Accessibility to the rooms of the building

		2.5.2. Energy consumption by building devices

			2.5.2.1. Heating

			2.5.2.2. Air-conditioning

			2.5.2.3. Human technological adequacy 

			2.5.2.4. Ventilation systems

			2.5.2.5. Lighting

			2.5.2.6. Home appliances

			2.5.2.7. Telecommunication systems

		2.5.3. Energy consumption in building maintenance

		2.5.3.1. Cleaning

			2.5.3.2. Repairs

			2.5.3.3. Improvements

	2.6. Bioclimatic architectural design

		2.6.1. Location

		2.6.1. Correct N-S orientation

		2.6.2. Appropriate architectural typology

		2.6.3. Efficacy of sun protections

		2.6.4. Architectural heating systems

		2.6.5. Architectural cooling systems

		2.6.6. Proper thermal inertia of building

		2.6.7. Proper building insulation

		2.6.8. Natural ventilation

		2.6.9. Thermal bridges

	2.7. Energy consumption in the process of demolishing/disassembling the building



Table 2. Sub-categories and indicators of “reduction in energy consumption” category


	3. Use of natural energy sources

	3.1. Solar energy

		3.1.1. Thermal solar energy

		3.1.2. Photovoltaic solar energy

	3.2. Geothermal energy

		3.2.1. Geothermal energy without heat pump

		3.2.2. Geothermal energy with heat pump

	3.3. Renewable energies for the natural ecosystem

		3.3.1. Wind power

		3.3.2. River and sea energy

		3.3.3. Energy from underground sources



Table 3. Sub-categories and indicators of “use of natural energy sources” category


	4. Reduction of waste and emissions

	4.1. Waste and emissions generated in obtaining construction materials

	4.1.1. Waste

		4.1.2. Emissions

	4.2. Waste generated in the manufacturing of components

		4.2.1. Waste

		4.2.2. Emissions

	4.3. Waste generated in the transportation of components and materials

		4.3.1. Waste

		4.3.2. Emissions

	4.4. Waste and emissions generated in construction process

		4.4.1. Waste

		4.4.2. Emissions

	4.5. Waste and emissions generated in building maintenance

		4.5.1. Waste

		4.5.2. Emissions

	4.6. Waste and emissions generated in building demolition

		4.6.1. Waste

		4.6.2. Emissions



Table 4. Sub-categories and indicators of “reduction of waste and emissions” category


	5. Increased health and quality of life of building occupants

	5.1. Harmful emissions to natural ecosystem

	5.2. Harmful emissions to human health

	5.3. Number of illnesses of building occupants

	5.4. Degree of well-being of building occupants



Table 5. Sub-categories and indicators of “increased health and quality of life” category


	6. Economic cost

	6.1. Direct economic cost in building construction

	6.2. Indirect economic cost

	6.3. Economic cost in maintenance

		6.3.1. Materials

		6.3.2. Labor

		6.3.3. Technological equipment

		6.3.4. Cleaning

	6.4. Cost of emissions and waste management

	6.5. Cost of treating diseases and illnesses

	6.6. Economic revaluation of the building

	6.7. Economic revaluation of the environment

	6.8. Construction speed



Table 6. Sub-categories and indicators of “economic cost” category


	7. Social adequacy

	7.1. Local level of economic development

	7.2. Local technological level

	7.3. Local quality preferences

	7.4. Local design preferences

	7.5. Local preferences for construction systems

	7.6. Local type of family unit



Table 7. Sub-categories and indicators of “social adequacy” category


	8. Complementary sustainable aspects 

	8.1. Adaptability to change and flexibility of the building

	8.2. Social aesthetic appeal of building

	8.3. Ecological regeneration of environment




Table 8. Sub-categories and indicators of “complementary sustainable aspects” category

5. Internal structure and scoring system of CEDES 
The CEDES scoring system is extraordinarily simple. Each indicator can have an integer score, from 0 to 5.
Score 0: no score
Score 1: very bad
Score 2: bad
Score 3: normal / acceptable
Score 4: good
Score 5: very good

Therefore, a building will be evaluated using all the indicators, giving each one a score from 0 to 5.
The score of each indicator must be multiplied by a coefficient that measures its specific weight with respect to the specific weight of the others. Finally, all the scores must be added together, obtaining a general score between 0 and 5. If desired, it can be multiplied by two to obtain a score from 0 to 10.
Scoring all indicators gives the overall sustainability level of a building. However, it is also possible to score only the indicators in a certain category, and thus obtain the sustainability level of a building in a specific category (for example, “reduction in energy consumption”). It is also possible to score only a subcategory (for example, “energy consumed by the building throughout its useful life”).
Determining the relative specific weights of the categories and indicators is the most complex task of all when designing a GBRS. There is a risk of granting a specific weight that is too high or too low, whether involuntarily or voluntarily, and therefore the resulting evaluation would be erroneous.
Significant errors can be generated inadvertently, since quantifying the specific weight of the different indicators of a multidimensional system is always a huge problem, and a huge disparity of criteria are applicable. But none will be perfect.
On the other hand, voluntarily, due to social interests, a specific weight could be given that is too high to those indicators whose associated actions are desired to be executed, and a specific weight that is too low to those indicators whose associated actions are not desired to be executed. That is, the voluntary and premeditated increase or reduction of the specific weight of each indicator can turn a given GBRS into a tool capable of justifying and legitimizing certain political and economic interests (even if they have little environmental effectiveness), to the detriment of other actions with greater environmental efficiency, and presumably more economical.
Let's take an example. Let us imagine that a high specific weight is given to the indicators responsible for assessing the technological equipment of a building (heating, air conditioning, ventilation, photovoltaic energy generators, geothermal heat pumps, aerothermal energy, etc.), and instead, gives a disproportionately low specific weight to the indicators responsible for assessing its bioclimatic and thermodynamic design. In this case, the resulting GBRS will value those buildings that contain machines (energy consumers) much more than the well designed buildings that have few machines and are capable of providing the same thermal comfort to their occupants. The paradox is that if a correct bioclimatic and thermodynamic design of a given building is carried out, many fewer heating, air conditioning and ventilation machines would be necessary¸ and the building would also be more economical and would consume much less energy. As a result, the idea that the machines are more effective than a correct design would spread in society, since it has been legitimized by the previously designed GBRS. In a complementary way, certain users, even if they are aware of the poor design of these GBRS, would learn to take advantage of them, as a “green-washing” tool, investing in technological equipment (justifying their ecological goodness by the result of the GBRS used) attracting uninformed customers, also obtaining tax advantages or even subsidies from the political and administrative establishments fueled by the profits of the companies that manufacture those overrated machines. Few users will want to invest in a correct bioclimatic and thermodynamic design of their building since the GBRS would give it a low value and it would not have the indicated advantages.
A rigorous process was followed to design the CEDES system, free from any type of bias with the aim of assigning the appropriate weights to both the categories and the indicators. However, this is the most complex issue in the design of a GBRS, so the relative assessment of categories and indicators must be continually reviewed according to comparative studies.

6. Determining the weights of CEDES categories and indicators
6.1. Categories. Once the 8 categories have been identified, a specific weight must be given to each with respect to the others. This is a big problem, since it is very difficult to compare different categories with each other and establish their relative value. What is more valuable from an environmental point of view, optimizing resources or reducing energy consumption? Of course, both categories are indirectly related to each other, but there are no common units of measurement, nor a meeting point in which to compare both. How can they compare then? Because of the economic value? Because of the difficulty? For environmental improvement? The different existing GBRS have absolute secrecy in this regard, and everything is ambiguous and redirections to external entities, expert committees, altruistic contributors, etc., which are not specified or described. 
In the case of CEDES, the specific weight of each category was achieved by evaluating the indicators of the rest of the categories.
An example could be given that illustrates this strategy. Let's say for example that 12 judges meet and each one has a vote with a different value. How would the specific weight of each judge be determined? The best way is for each judge to be evaluated by the rest of the judges.
In CEDES, the same strategy was followed, and the specific weight of each category was obtained by evaluating each category using all the indicators of the remaining categories (Table 9).

	1. Optimization of resources
	18 %
	0.18

	2. Reduction of energy consumption
	34 %
	0.34

	3. Use of natural energy sources
	13 %
	0.13

	4. Reduction of waste and emissions
	12 %
	0.12

	5. Increase in the quality of life of the occupants
	8 %
	0.08

	6. Reduction in economic cost
	10 %
	0.1

	7. Social adequacy
	3 %
	0.03

	8. Others
	2%
	0.02



Table 9. Relative weight of each category in CEDES

Further research should be carried out in this regard, since a substantial change in the percentage of each category can generate a substantial variation in the total score.
However, an independent assessment can also be carried out, evaluating a specific building according to each category.
6.2. Subcategories. Each category is broken down into sub-categories, and these in turn into new sub-categories that are also decomposed into indicators, forming 4 levels of abstraction, creating a staggered hierarchy of indicators.
To give a relative value to the different sub-categories of the 8 initial categories, a complete analysis of the life cycle of each of the possible activities and stages in the construction of a building is carried out. For this purpose, an enormous number of comparative studies were collected on the sub-categories of each of the categories, especially on energy consumption, resource consumption, waste generation and the use of renewable energy sources [41, 60, 61, 62, 63, 69, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]. A simplification of the AHP method was then used by 10 experts (analytical hierarchy process) [87].
Thus, in the “resource optimization” category, a general sweep was carried out and all the aspects and stages in which a maximum optimization of resources can be made were identified. The first stage is to use natural resources. However, since few natural resources can be used in the construction of buildings, they must be produced incrementally. At the same time, to optimize the manufactured resources, their durability must be enhanced (to minimize their environmental impact per unit of time), the capacity of reuse materials, the disassembly capacity of the components, the waste utilization capacity, the repair capacity, the reusability capacity, the recycling capacity, the disassembly capacity, and the optimized and industrialized design to take full advantage of the optimization of resources. Therefore, what was done was to subdivide the “resource optimization” category into other sub-categories in such a way that they are complete (the entire spectrum of possibilities is covered) and do not overlap. To establish the specific weight of each sub-category, a multitude of comparative studies were taken into account between the different sub-categories of each category. 
Let us analyze, for example, the category, “reduction of energy consumption”, in which 7 sub-categories were identified, trying to represent all the stages of the life cycle of all possible aspects of the construction process: “energy consumption in obtaining of materials”, “energy consumption in the transportation of materials”, “energy consumption in the transportation of labor”, “energy consumption in the building construction process”, “energy consumption by the building throughout its useful life”, “bioclimatic architectural design”, “energy consumption in the process of demolition or disassembly of the building” (Table 10).
The specific weight of each sub-category can now be determined with comparative studies, since they can all be measured in energy units. In this regard, a multitude of comparative studies on the energy consumption of each category have been carefully analyzed by a group of 10 ANAS experts, with more than 30 years of experience and finally rounding out by orders of magnitude (Tables 1, 2, 3, 4, 5, 6, 7 and 8). 
To refine the relative value of the different sub-categories further comparative studies should be carried out on energy consumption in each of them in various types of buildings. Big-Data algorithms will undoubtedly be useful in this regard in the near future when sufficient data are available, since by analyzing large databases, adequate coefficients can be achieved for each sub-category.
As a result, the coefficients assigned to each sub-category in CEDES are:

	Energy consumed in obtaining materials
	0.037

	Energy consumed in the transportation of materials
	0.022

	Energy consumed in transporting labor
	0.019

	Energy consumed in the building construction process
	0.115

	Energy consumed by the building
	0.325

	Bioclimatic / thermodynamic architectural design 
	0.458

	Energy consumed in the process of demolishing/disassembling the building
	0.024



Table 10. Weight of sub-categoryies included in ”reduction of energy consumption” category

6.3. Sub-Subcategories. Each subcategory can be divided, in turn, into several sub-subcategories (second level). For example, the sub-category “energy consumption throughout the useful life of the building” is made up of three other sub-subcategories: “energy consumption in building accessibility”, “energy consumption by building devices”, and “energy consumption in building maintenance”.
In turn, the subcategory "energy consumption by building devices" is divided into seven indicators: "energy consumption in heating", "energy consumption in air conditioning", "human technological adequacy", “energy consumption in ventilation systems”, “energy consumption in lighting”, “energy consumption in home appliances” and “energy consumption in telecommunication systems”. The specific weight of each sub-subcategory at each level is calculated by considering the comparative analyzes carried out on the energy consumption of various types of buildings.
It is important to be exhaustive in the definition of subcategories and sub-subcategories, without forgetting any one since, otherwise, the resulting GBRS would provide erroneous results. Especially harmful would be the deliberate elimination of certain categories, or simply undervaluing them.
- Let's take an example. Let us imagine that a certain company has invested $300,000 in changing the air conditioning system of a building in order to save energy. Let's also imagine that you have purchased the most effective system that provides the greatest savings on the market. In this case, the corresponding indicator (“air conditioning” would provide a value of 5 (the highest rating), but this score must be multiplied by the total specific weight of “air conditioning” within the category “reduction of energy consumption” (Table 12). This weight is the result of multiplying its specific weight within the sub-category “energy consumption by technological equipment of building” (0.325), by its relative specific weight within the sub-category “energy consumption by building throughout its lifecycle" (0.9), and by the relative specific weight of this within the category "reduction in energy consumption" (0.35). The total specific weight of "air conditioning" would, therefore, be 0.102375 (0.35 * 0.9 * 0.325) (Table 12). In other words, an investment of 300,000 dollars would have a score (within the category “reduction of energy consumption”) of 0.511875 (5 * 0.102375) out of 5.
Let's imagine that, on the other hand, another company had invested $100,000, choosing good architects, and purchasing some additional construction materials (sun protections, cooling galleries, ducts, ec.) and ingenious and more advanced construction solutions. In this case, the set of “bioclimatic architectural design” indicators would provide a score of 5. This score must be multiplied by its total specific weight within the category “reduction of energy consumption”, which is 0.458 (Table 2). 
In other words, an investment of $100,000 would have a score (within the category “reduction of energy consumption”) of 2.29 (5 * 0.458) out of 5. These data coincide, in order of magnitude, with the experience of having designed and analyzed about 200 projects, including about 2,000 houses [35, 36, 37, 38, 39, 40].
Therefore, investing in good design has an economic cost three times lower than investing only in the replacement of air conditioning equipment, but you can obtain an energy improvement 4.47 times higher (2.29 / 0.511875 = 4.47).
Evidently, if a different set of categories and indicators had been designed, and a different specific relative weight had been given to each indicator, the results would have been completely different, even contrary. In this way, the resulting GBRS would stop evaluating conveniently and would become a tool to legitimize certain political interests. 
6.4. Indicators. The CEDES hierarchical structure makes it easier to determine the relative importance of each indicator in relation to the total set, making it easier to assign an appropriate weight. As seen, categories are divided into subcategories. When subcategories cannot be divided, they become indicators, and when they can be divided, they are divided into sub-subcategories. In turn, when sub-subcategories cannot be divided, they become indicators, and when they can be divided, they are divided into indicators.
The result is a set of categories and indicators structured in 4 levels of abstraction and with a perfectly balanced weight (Tables 11, 12, 13, 14, 15, 16, 17, 18). The last column on the right shows the weight of each indicator in relation to the total set of indicators.

	      Name of the Category, Subcategory 1, Subcategory 2 and Indicator
	Percentage
	Category
weight
	Subcat1
weight
	Subcat2
weight
	Indicator
weight

	1. 1. Optimization of resources                                                18%   
	
	0.18
	
	
	

	1. 1.1. Use of natural resources 
	0.1
	
	0.018
	
	

		1.1.1. Water 
	0.4 * 0.1
	
	
	0.0072
	

			1.1.1.1. Rain water
	0.6 * 0.4 * 0.1
	
	
	
	0.00432

			1.1.1.2. Groundwater
	0.4 * 0.4 * 0.1
	
	
	
	0.00288

		1.1.2. Vegetation
	0.25 * 0.1
	
	
	0.0045
	

			1.1.2.1. Wild vegetation
	0.3 * 0.25 * 0.1
	
	
	
	0.00135

			1.1.2.2. Unprocessed wood
	0.4 * 0.25 * 0.1
	
	
	
	0.0018

			1.1.2.3. Vegetable waste
	0.3 * 0.25 * 0.1
	
	
	
	0.00135

		1.1.3. Soil
	0.25 * 0.1
	
	
	0.0045
	

			1.1.3.1. Not elaborated stones
	0.5 * 0.25 * 0.1
	
	
	
	0.00225

			1.1.3.2. Soil
	0.5 * 0.25 * 0.1
	
	
	
	0.00225

		1.1.4. Choice of site
	0.1 * 0.1
	
	
	0.0018
	

			1.1.4.1. Use of not arable land
	0.3 * 0.1 * 0.1
	
	
	
	0.00054

			1.1.4.2. Accessibility
	0.3 * 0.1 * 0.1
	
	
	
	0.00054

			1.1.4.3. Positive impact on the place
	0.4 * 0.1 * 0.1
	
	
	
	0.00072

	1. 1.2. Resource optimization
	0.9
	
	0.162
	
	

		1.2.1. Amount of resources needed
	0.08 * 0.9
	
	
	0.01296
	

			1.2.1.1. Resources needed in construction
	0.3 * 0.08 * 0.9
	
	
	
	0.00388

			1.2.1.2. Resources needed throughout the lifecycle of building
	0.2 * 0.08 * 0.9 
	
	
	
	0.00259

			1.2.1.3. Resources needed for building maintenance
	0.1 * 0.08 * 0.9 
	
	
	
	0.00129

			1.2.1.4. Abundance of resources for component manufacturing 
	0.4 * 0.08 * 0.9
	
	
	
	0.00518

		1.2.2. Durability level of components and materials 
	0.18 * 0.9
	
	
	0.02916
	0.02916

		1.2.3. Waste utilization level
	0.01 * 0.9
	
	
	0.01620
	0.01620

		1.2.4. Reusability of components
	0.34 * 0.9
	
	
	0.05508
	

			1.2.4.1. Use of previously used components
	0.1 * 0.34 * 0.9 
	
	
	
	0.00550

			1.2.4.2. Component reparability level
	0.2 * 0.34 * 0.9
	
	
	
	0.01101

			1.2.4.3. Component reusability level	
	0.2 * 0.34 * 0.9
	
	
	
	0.01101

			1.2.4.4. Disassembly level. Reconfigurability and expandability
	0.5 * 0.34 * 0.9
	
	
	
	0.02754

		1.2.5. Component recycling
	0.04 * 0.9
	
	
	0.00648
	

			1.2.5.1. Use of recycled components
	0.25 * 0.04 * 0.9
	
	
	
	0.00162

			1.2.5.2. Use of recycled grey water
	0.25 * 0.04 * 0.9
	
	
	
	0.00162

			1.2.5.3. Component recycling level
	0.5 * 0.04 * 0.9
	
	
	
	0.00324

		1.2.6. Level of exploitation of resources
	0.25
	
	
	0.045
	

			1.2.6.1. Refined design
	0.6 * 0.25
	
	
	
	0.02700

			1.2.6.2. Industrialization level
	0.4 * 0.25
	
	
	
	0.01800

		1.2.7. Functional durability of components
	0.06
	
	
	0.01080
	0.01080

		1.2.8. Functional adaptation of components
	0.04
	
	
	0.00720
	0.00720



Table 11. Weight of sub-categories and indicators, within the “optimization of resources” category


	      Name of the Category, Subcategory 1, Subcategory 2 and Indicator
	Percentage
	Category
weight
	Subcat1
weight
	Subcat2
weight
	Indicator
weight

	1. 2. Reduction in energy consumption                                       34%                                                                                          
	
	0.34
	
	
	

	1. 2.1. Energy consumption in obtaining materials 
	0.043
	
	0.01462
	
	0.01462

	2.2.2. Energy consumption in transportation of materials/components
	0.022
	
	0.00748
	
	0.00748

	2.2.3. Energy consumption in transportation of labor
	0.013
	
	0.00442
	
	0.00442

	2.2.4. Energy consumption in building construction process
	0.115
	
	0.03910
	
	0.03910

	2.2.5. Energy consumption by building throughout its lifecycle
	0.325
	
	0.1105
	
	

		2.5.1. Energy consumption in building accessibility
	0.05 * 0.325
	
	
	0.00552
	

			2.5.1.1. Accessibility to the area
	0.5 * 0.05 * 0.325
	
	
	
	0.00276

			2.5.1.2. Accessibility to the rooms of the building
	0.5 * 0.05 * 0.325
	
	
	
	0.00276

		2.5.2. Energy consumption by building devices
	0.9 * 0.325
	
	
	0.09945
	

			2.5.2.1. Heating
	0.35 * 0.9 * 0.325
	
	
	
	0.03480

			2.5.2.2. Air-conditioning
	0.35 * 0.9 * 0.325
	
	
	
	0.03480

			2.5.2.3. Human technological adequacy
	0.05 * 0.9 * 0.325
	
	
	
	0.00497

			2.5.2.4. Ventilation systems
	0.05 * 0.9 * 0.325
	
	
	
	0.00497

			2.5.2.5. Lighting
	0.05 * 0.9 * 0.325
	
	
	
	0.00497

			2.5.2.6. Home appliances
	0.1 * 0.9 * 0.325
	
	
	
	0.00994

			2.5.2.7. Telecommunication systems
	0.05 * 0.9 * 0.325
	
	
	
	0.00497

		2.5.3. Energy consumption in building maintenance
	0.05 * 0.325
	
	
	0.00552
	

			2.5.3.1. Cleaning
	0.3 * 0.05 * 0.325
	
	
	
	0.00165

			2.5.3.2. Repairs
	0.4 * 0.05 * 0.325
	
	
	
	0.00221

			2.5.3.3. Improvements
	0.3 * 0.05 * 0.325
	
	
	
	0.00165

	1. 2.6. Bioclimatic architectural design
	0.458
	
	0.15572
	
	

		2.6.1. Location
	0.025 * 0.458
	
	
	
	0.00389

		2.6.2. Correct N-S orientation
	0.1 * 0.458
	
	
	
	0.01557

		2.6.3. Appropriate architectural typology 
	0.3 * 0.458
	
	
	
	0.04671

		2.6.4. Efficacy of sun protections
	0.1 * 0.458
	
	
	
	0.01557

		2.6.5. Architectural heating systems
	0.1 * 0.458
	
	
	
	0.01557

		2.6.6. Architectural cooling systems
	0.1 * 0.458
	
	
	
	0.01557

		2.6.7. Proper thermal inertia of building
	0.1 * 0.458
	
	
	
	0.01557

		2.6.8. Proper building insulation
	0.1 * 0.458
	
	
	
	0.01557

		2.6.9. Natural ventilation
	0.025 * 0.458
	
	
	
	0.00389

		2.6.10. Thermal bridges
	0.05 * 0.458
	
	
	
	0.00778

	1. 2.7. Energy consumption in demolishing/disassembling
	0.024
	
	0.00816
	
	0.00816



Table 12. Weight of sub-categories and indicators, within the “reduction in energy consumption” category


	      Name of the Category, Subcategory 1, Subcategory 2 and Indicator
	Percentage
	Category
weight
	Subcat1
weight
	Subcat2
weight
	Indicator
weight

	1. 3. Use of natural energy sources                                            13%                                                                                          
	
	0.13
	
	
	

	2.3.1. Solar energy
	0.6
	
	0.078
	
	

		3.1.1. Thermal solar energy
	0.7 * 0.6
	
	
	
	0.0546

		3.1.2. Photovoltaic solar energy
	0.3 * 0.6
	
	
	
	0.0234

	1. 3.2. Geothermal energy
	0.3
	
	0.039
	
	

		3.2.1. Geothermal energy without heat pump
	0.8 * 0.3
	
	
	
	0.0312

		3.2.2. Geothermal energy with heat pump
	0.2 * 0.3
	
	
	
	0.0078

	1. 3.3. Renewable energies for the natural ecosystem
	0.1
	
	0.013
	
	

		3.3.1. Wind power
	0.3 * 0.1
	
	
	
	0.0039

		3.3.1. River and sea energy
	0.4 * 0.1
	
	
	
	0.0052

		3.3.1. Energy from underground sources
	0.3 * 0.1
	
	
	
	0.0039



Table 13. Weight of sub-categories and indicators, within the “use of natural energy sources” category


	      Name of the Category, Subcategory 1, Subcategory 2 and Indicator
	Percentage
	Category
weight
	Subcat1
weight
	Subcat2
weight
	Indicator
weight

	1. 4. Reduction of waste and emissions                                       12%                                                                                          
	
	0.12
	
	
	

	2.4.1. Waste and emissions generated in obtaining materials
	0.2
	
	0.024
	
	

		4.1.1. Waste
	0.3 * 0.2
	
	
	
	0.0072

		4.1.2. Emissions
	0.7 * 0.2
	
	
	
	0.0168

	1. 4.2. Waste and emissions generated in manufacturing 
	0.15
	
	0.018
	
	

		4.2.1. Waste
	0.2 * 0.15
	
	
	
	0.0036

		4.2.2. Emissions
	0.8 * 0.15
	
	
	
	0.0144

	1. 4.3. Waste and emissions generated in transport
	0.05
	
	0.006
	
	

		4.3.1. Waste
	0.1 * 0.05
	
	
	
	0.0006

		4.3.1. Emissions
	0.9 * 0.05
	
	
	
	0.0054

	1. 4.4. Waste and emissions generated in construction process
	0.2
	
	0.024
	
	

		4.4.1. Waste
	0.5 * 0.2
	
	
	
	0.0120

		4.3.1. Emissions
	0.5 * 0.2
	
	
	
	0.0120

	1. 4.5. Waste and emissions generated in building maintenance
	0.2
	
	0.024
	
	

		4.4.1. Waste
	0.3 * 0.2
	
	
	
	0.0072

		4.3.1. Emissions
	0.7 * 0.2
	
	
	
	0.0168

	1. 4.6. Waste and emissions generated in demolition of building
	0.2
	
	0.024
	
	

		4.4.1. Waste
	0.9 * 0.2
	
	
	
	0.0216

		4.3.1. Emissions
	0.1 * 0.2
	
	
	
	0.0024



Table 14. Weight of sub-categories and indicators, within the “reduction of waste and emissions” category



	      Name of the Category, Subcategory 1, Subcategory 2 and Indicator
	Percentage
	Category
weight
	Subcat1
weight
	Subcat2
weight
	Indicator
weight

	1. 5. Health and quality of life of building occupants                   8%                                                                                          
	
	0.08
	
	
	

	1. 5.1. Harmful emissions to natural ecosystem
	0.2
	
	0.0160
	
	0.0160

	1. 5.2. Harmful emissions to human health
	0.3
	
	0.0240
	
	0.0240

	1. 5.3. Number of illnesses of building occupants
	0.3
	
	0.0240
	
	0.0240

	1. 5.4. Degree of well-being of building occupants
	0.2
	
	0.0160
	
	0.0160



Table 15. Weight of sub-categories and indicators, within the “health and quality of life of building occupants” category


	      Name of the Category, Subcategory 1, Subcategory 2 and Indicator
	Percentage
	Category
weight
	Subcat1
weight
	Subcat2
weight
	Indicator
weight

	1. 6. Economic cost                                                                   10%                                                                                          
	
	0.10
	
	
	

	2.6.1. Direct economic cost in building construction
	0.4
	
	0.040
	
	0.040

	1. 6.2. Indirect economic cost in building construction
	0.05
	
	0.005
	
	0.005

	1. 6.3. Economic cost in maintenance
	0.2
	
	0.020
	
	

		6.3.1. Materials
	0.1 * 0.2
	
	
	
	0.002

		6.3.1. Labor
	0.3 * 0.2
	
	
	
	0.006

		6.3.1. Technological devices
	0.3 * 0.2
	
	
	
	0.006

		6.3.1. Cleaning
	0.3 * 0.2
	
	
	
	0.006

	1. 6.4. Cost of emissions and waste management
	0.1
	
	0.010
	
	0.010

	1. 6.5. Cost of treating diseases and illnesses
	0.05
	
	0.005
	
	0.005

	1. 6.6. Economic revaluation of the building
	0.05
	
	0.005
	
	0.005

	1. 6.7. Economic revaluation of the environment
	0.05
	
	0.005
	
	0.005

	1. 6.8. Construction speed
	0.05
	
	0.005
	
	0.005

	1. 6.9. Cost of demolishing/disassembling
	0.05
	
	0.005
	
	0.005



Table 16. Weight of sub-categories and indicators, within the “economic cost” category 


	      Name of the Category, Subcategory 1, Subcategory 2 and Indicator
	Percentage
	Category
weight
	Subcat1
weight
	Subcat2
weight
	Indicator
weight

	1. 7. Social adequacy                                                                  3%                                                                                          
	
	0.03
	
	
	

	2.7.1. Local level of economic development
	0.2
	
	0.006
	
	0.006

	1. 7.2. Local technological level
	0.2
	
	0.006
	
	0.006

	1. 7.3. Local quality preferences
	0.1
	
	0.003
	
	0.003

	1. 7.4. Local design preferences
	0.2
	
	0.006
	
	0.006

	1. 7.5. Local preferences in construction systems
	0.2
	
	0.006
	
	0.006

	1. 7.6. Local type of family unit
	0.1
	
	0.003
	
	0.003



Table 17. Weight of sub-categories and indicators, within the “social adequacy” category


	      Name of the Category, Subcategory 1, Subcategory 2 and Indicator
	Percentage
	Category
weight
	Subcat1
weight
	Subcat2
weight
	Indicator
weight

	1. 8. Complementary sustainable aspects                                    2%                                                                                          
	
	0.02
	
	
	

	2.8.1. Adaptability to change and flexibility of the building
	0.3
	
	0.006
	
	0.006

	1. 8.2. Social aesthetic appeal of building
	0.3
	
	0.006
	
	0.006

	1. 8.3. Ecological regeneration of environment
	0.4
	
	0.008
	
	0.008



Table 17. Weight of sub-categories and indicators, within the “complementary sustainable aspects” category


6. Description of the CEDES operation process
To illustrate the CEDES evaluation process a house, the Casa Mariposa, which was built in 2010 in Cali (Colombia) was evaluated (Fig. 5). The house is bioclimatic and provides a comfortable internal temperature without the need for heating, air conditioning or ventilation, so that its energy consumption is very low. The house is self-sufficient in water and energy at a very low price due to its low energy requirement. The house was been built by a normal construction company and hardly any waste was generated in its construction so that a final score will be very high. However, this fact is secondary since this house was chosen solely to illustrate the CEDES evaluation process.
[image: C:\Users\User\Desktop\Mariposa Eco-House. Cali. Colombia. PhD. Architect Luis De Garrido 1.jpg]

Figure 5. Mariposa Eco-House

Eight tables were created to carry out the evaluation (Tables 19, 20, 21, 22, 23, 24, 25, 26) corresponding to the 8 CEDES categories. Each table contains a column with the name of the category, subcategories 1, subcategories 2, and indicators; a column with the score that can be given to each indicator (from 0 to 5), a column with the general weight of each indicator, and a column with the partial score of the indicators. At the end of each table, the total score provided by each category is shown.
By adding the scores provided by each of the 8 categories, the final score of the dwelling is obtained, on a scale of 0 to 5. Multiplying by 2, the final score of the dwelling is obtained, on a scale of 0 to 10 (Table 27).
The total score obtained, 8.04918, is very high, since it is extremely difficult to achieve a score higher than 8. By looking at the scores in each table, it is easy to deduce the actions needed to further increase the score of the Mariposa house: use more natural materials, design the house so that it can be dismantled, and thus allow for future reuse of components, use waste and materials previously used in construction, and increase the flexibility of uses and spaces in the house. The usefulness of CEDES as a guide in the design process can now be clearly appreciated.

	      Name of the Category, Subcategory 1, Subcategory 2 and Indicator
	  Score
  0 - 5
	Indicator
weight
	 Final Score

	1. 1. Optimization of resources                                                18%   
	
	
	

	1. 1.1. Use of natural resources 
	
	
	

		1.1.1. Water 
	
	
	

			1.1.1.1. Rain water
	5
	0.00432
	0.02160

			1.1.1.2. Groundwater
	5
	0.00288
	0.01440

		1.1.2. Vegetation
	
	
	

			1.1.2.1. Wild vegetation
	5
	0.00135
	0.00675

			1.1.2.2. Unprocessed wood
	1
	0.00180
	0.00180

			1.1.2.3. Vegetable waste
	5
	0.00135
	0.00675

		1.1.3. Soil
	
	
	

			1.1.3.1. Not elaborated stones
	2
	0.00225
	0.00450

			1.1.3.2. Soil
	5
	0.00225
	0.01125

		1.1.4. Choice of site
	
	
	

			1.1.4.1. Use of not arable land
	5
	0.00054
	0.00270

			1.1.4.2. Accessibility
	4
	0.00054
	0.00216

			1.1.4.3. Positive impact on the place
	5
	0.00072
	0.00360

	1. 1.2. Resource optimization
	
	
	

		1.2.1. Amount of resources needed
	
	
	

			1.2.1.1. Resources needed in construction
	5
	0.00388
	0.01940

			1.2.1.2. Resources needed throughout the lifecycle of building
	5
	0.00259
	0.01295

			1.2.1.3. Resources needed for building maintenance
	5
	0.00129
	0.00645

			1.2.1.4. Abundance of resources for component manufacturing 
	5
	0.00518
	0.02590

		1.2.2. Durability level of components and materials 
	5
	0.02916
	0.14580

		1.2.3. Waste utilization level
	1
	0.01620
	0.01620

		1.2.4. Reusability of components
	
	
	

			1.2.4.1. Use of previously used components
	1
	0.00550
	0.00550

			1.2.4.2. Component reparability level
	4
	0.01101
	0.04404

			1.2.4.3. Component reusability level	
	2
	0.01101
	0.02202

			1.2.4.4. Disassembly level. Reconfigurability and expandability
	1
	0.02754
	0.02754

		1.2.5. Component recycling
	
	
	

			1.2.5.1. Use of recycled components
	2
	0.00162
	0.00324

			1.2.5.2. Use of recycled grey water
	5
	0.00162
	0.00810

			1.2.5.3. Component recycling level
	3
	0.00324
	0.00972

		1.2.6. Level of exploitation of resources
	
	
	

			1.2.6.1. Refined design
	4
	0.02700
	0.10800

			1.2.6.2. Industrialization level
	4
	0.01800
	0.07200

		1.2.7. Functional durability of components
	5
	0.01080
	0.05400

		1.2.8. Functional adaptation of components
	5
	0.00720
	0.03600

	Total
	0.67131


	
Table 19. Scoring process using indicators of “optimization of resources” category

	      Name of the Category, Subcategory 1, Subcategory 2 and Indicator
	  Score
  0 - 5
	Indicator
weight
	 Final Score

	1. 2. Reduction in energy consumption                                      34%                                                                                          
	
	
	

	1. 2.1. Energy consumption in obtaining materials 
	5
	0.01462
	0.07310

	2.2.2. Energy consumption in transportation of materials/components
	5
	0.00748
	0.03740

	2.2.3. Energy consumption in transportation of labor
	5
	0.00442
	0.02210

	2.2.4. Energy consumption in building construction process
	5
	0.03910
	0.19550

	2.2.5. Energy consumption by building throughout its lifecycle
	
	
	

		2.5.1. Energy consumption in building accessibility
	
	
	

			2.5.1.1. Accessibility to the area
	4
	0.00276
	0.01104

			2.5.1.2. Accessibility to the rooms of the building
	5
	0.00276
	0.01380

		2.5.2. Energy consumption by building devices
	
	
	

			2.5.2.1. Heating
	5
	0.03480
	0.17400

			2.5.2.2. Air-conditioning
	5
	0.03480
	0.17400

			2.5.2.3. Human technological adequacy
	5
	0.00497
	0.02485

			2.5.2.4. Ventilation systems
	5
	0.00497
	0.02485

			2.5.2.5. Lighting
	5
	0.00497
	0.02485

			2.5.2.6. Home appliances
	5
	0.00994
	0.04970

			2.5.2.7. Telecommunication systems
	5
	0.00497
	0.02485

		2.5.3. Energy consumption in building maintenance
	
	
	

			2.5.3.1. Cleaning
	5
	0.00165
	0.00825

			2.5.3.2. Repairs
	5
	0.00221
	0.01105

			2.5.3.3. Improvements
	5
	0.00165
	0.00825

	1. 2.6. Bioclimatic architectural design                
	
	
	

		2.6.1. Location
	4
	0.00389
	0.01556

		2.6.2. Correct N-S orientation
	5
	0.01557
	0.07785

		2.6.3. Appropriate architectural typology 
	5
	0.04671
	0.23355

		2.6.4. Efficacy of sun protections
	5
	0.01557
	0.07785

		2.6.5. Architectural heating systems
	5
	0.01557
	0.07785

		2.6.6. Architectural cooling systems
	5
	0.01557
	0.07785

		2.6.7. Proper thermal inertia of building
	5
	0.01557
	0.07785

		2.6.8. Proper building insulation
	5
	0.01557
	0.07785

		2.6.9. Natural ventilation
	5
	0.00389
	0.01945

		2.6.10. Thermal bridges
	5
	0.00778
	0.03890

	1. 2.7. Energy consumption in demolishing/disassembling
	3
	0.00816
	0.02448

	Total
	1.27068



Table 20. Scoring process using indicators of “reduction in energy consumption” category


	      Name of the Category, Subcategory 1, Subcategory 2 and Indicator
	  Score
  0 - 5
	Indicator
weight
	 Final Score

	1. 3. Use of natural energy sources                                            13%                                                                                          
	
	
	

	2.3.1. Solar energy
	
	
	

		3.1.1. Thermal solar energy
	5
	0.0546
	0.32700

		3.1.2. Photovoltaic solar energy
	3
	0.0234
	0.07020

	1. 3.2. Geothermal energy
	
	
	

		3.2.1. Geothermal energy without heat pump
	5
	0.0312
	0.15600

		3.2.2. Geothermal energy with heat pump
	0
	0.0078
	0

	1. 3.3. Renewable energies for the natural ecosystem
	
	
	

		3.3.1. Wind power
	0
	0.0039
	0

		3.3.1. River and sea energy
	0
	0.0052
	0

		3.3.1. Energy from underground sources
	0
	0.0039
	0

	Total
	0.55320



Table 21. Scoring process using indicators of “use of natural energy sources” category


	      Name of the Category, Subcategory 1, Subcategory 2 and Indicator
	  Score
  0 - 5
	Indicator
weight
	 Final Score

	1. 4. Reduction of waste and emissions                                       12%                                                                                          
	
	
	

	2.4.1. Waste and emissions generated in obtaining materials
	
	
	

		4.1.1. Waste
	4
	0.0072
	0.02880

		4.1.2. Emissions
	4
	0.0168
	0.06720

	1. 4.2. Waste and emissions generated in manufacturing 
	
	
	

		4.2.1. Waste
	5
	0.0036
	0.01800

		4.2.2. Emissions
	5
	0.0144
	0.07400

	1. 4.3. Waste and emissions generated in transport
	
	
	

		4.3.1. Waste
	5
	0.0006
	0.00300

		4.3.1. Emissions
	5
	0.0054
	0.02700

	1. 4.4. Waste and emissions generated in construction process
	
	
	

		4.4.1. Waste
	5
	0.0120
	0.06000

		4.3.1. Emissions
	5
	0.0120
	0.06000

	1. 4.5. Waste and emissions generated in building maintenance
	
	
	

		4.4.1. Waste
	5
	0.0072
	0.03600

		4.3.1. Emissions
	5
	0.0168
	0.08400

	1. 4.6. Waste and emissions generated in demolition of building
	
	
	

		4.4.1. Waste
	3
	0.0216
	0.06480

		4.3.1. Emissions
	4
	0.0024
	0.00960

	Total
	0.53240



Table 22. Scoring process using indicators of “reduction of waste and emissions” category



	      Name of the Category, Subcategory 1, Subcategory 2 and Indicator
	  Score
  0 - 5
	Indicator
weight
	 Final Score

	1. 5. Health and quality of life of building occupants                   8%                                                                                          
	
	
	

	1. 5.1. Harmful emissions to natural ecosystem
	5
	0.016
	0.08000

	1. 5.2. Harmful emissions to human health
	5
	0.024
	0.12000

	1. 5.3. Number of illnesses of building occupants
	5
	0.024
	0.12000

	1. 5.4. Degree of well-being of building occupants
	5
	0.016
	0.08000

	Total
	0.40000



Table 23. Scoring process using indicators of “health and quality of life of building occupants” category


	      Name of the Category, Subcategory 1, Subcategory 2 and Indicator
	  Score
  0 - 5
	Indicator
weight
	 Final Score

	1. 6. Economic cost                                                                   10%                                                                                          
	
	
	

	2.6.1. Direct economic cost in building construction
	4
	0.040
	0.16000

	1. 6.2. Indirect economic cost in building construction
	5
	0.005
	0.02000

	1. 6.3. Economic cost in maintenance
	
	
	

		6.3.1. Materials
	5
	0.002
	0.01000

		6.3.1. Labor
	5
	0.006
	0.03000

		6.3.1. Technological devices
	5
	0.006
	0.03000

		6.3.1. Cleaning
	5
	0.006
	0.03000

	1. 6.4. Cost of emissions and waste management
	
	
	

	1. 6.5. Cost of treating diseases and illnesses
	5
	0.005
	0.02500

	1. 6.6. Economic revaluation of the building
	5
	0.005
	0.02500

	1. 6.7. Economic revaluation of the environment
	5
	0.005
	0.02500

	1. 6.8. Construction speed
	4
	0.005
	0.02000

	1. 6.9. Cost of demolishing/disassembling
	4
	0.005
	0.02000

	Total
	0.39500



Table 24. Scoring process using indicators of “economic cost” category 


	      Name of the Category, Subcategory 1, Subcategory 2 and Indicator
	  Score
  0 - 5
	Indicator
weight
	 Final Score

	1. 7. Social adequacy                                                                  3%                                                                                          
	
	
	

	2.7.1. Local level of economic development
	5
	0.0060
	0.03000

	1. 7.2. Local technological level
	3
	0.0060
	0.01800

	1. 7.3. Local quality preferences
	4
	0.0030
	0.01200

	1. 7.4. Local design preferences
	5
	0.0060
	0.03000

	1. 7.5. Local preferences in construction systems
	3
	0.0060
	0.01800

	1. 7.6. Local type of family unit
	4
	0.0030
	0.01200

	Total
	0.12000



Table 25. Scoring process using indicators of “social adequacy” category


	      Name of the Category, Subcategory 1, Subcategory 2 and Indicator
	  Score
  0 - 5
	Indicator
weight
	 Final Score

	1. 8. Complementary sustainable aspects                                    2%                                                                                          
	
	
	

	2.8.1. Adaptability to change and flexibility of the building
	2
	0.006
	0.01200

	1. 8.2. Social aesthetic appeal of building
	5
	0.006
	0.03000

	1. 8.3. Ecological regeneration of environment
	5
	0.008
	0.04000

	Total
	0.08200



Table 26. Scoring process using indicators of “complementary sustainable aspects” category



	Category
	score

	1. Optimization of resources
	0.67131

	2. Reduction of energy consumption
	1.27068

	3. Use of natural energy sources
	0.55320

	4. Reduction of waste and emissions
	0.53240

	5. Increase in the quality of life of the occupants
	0.40000

	6. Reduction in economic cost
	0.39500

	7. Social adequacy
	0.12000

	8. Others
	0.08200

	Total (0 - 5)
	4.02459

	Total (0 - 10)
	8.04918



Table 27. Overall score using CEDES


7. Results
- Use of CEDES as evaluation tool
The CEDES aevaluation tool is simple to operate. Each indicator must be scored with numbers from 0 to 5, then this value must be multiplied by its specific weight and finally the resulting values must be added. 
In this way, a total value can be obtained that shows the building’s ecological and sustainable level. A partial value per category can be obtained, which shows the goodness of a building in that category. Finally, the values ​​of each indicator can also be obtained, which shows the possible environmental deficiencies of a building in the different environmental aspects.
With these results, the most effective and economical actions that can be taken to improve the ecological and sustainable level of a building can be determined.

- Using CEDES as design tool
CEDES serves especially as a tool for the building design process and can be used in each of the design stages. The CEDES indicators are well defined and structured without ambiguities and without overlaps, so that they can be associated with the most appropriate, economical and effective set of actions at each stage of the design process.
The different indicators must first be classified according to their specific weight, and then a specific list of possible actions associated with each indicator must be made. These actions must be classified according to their environmental effectiveness and economic cost (inverted pyramid model). When perfectly integrated into the general design process, the actions must be executed in order from the most effective and economical actions to the least effective and most expensive actions.
This strategy is valid for all stages of the design process, from the first sketches through the development of the general project to determine all the construction details.

8. Discussion    
The current GBRS are under suspicion, and as indicated, they have many flaws and their usefulness is questioned. To make matters worse, the current GBRS are very different from each other, so that each one would give a different score to the same building. They all have a different internal structure and different assessment mechanisms. They all have different categories and a different number of indicators with a different specific weight. This raises the suspicion that sustainable assessment is subject to too many local interpretations based on economic and political interests and therefore it is possible that none of the current GBRS are adequate. The term "sustainable construction" should thus be defined in detail and given a common taxonomic structure to design more adequate, effective and legitimate GBRS, capable of rigorous evaluationa.
This paper describes the basic structure of the new CEDES GBRS, which solves these problems and also serves as a guide to the design process. Its internal structure is very clear, but of course it is subject to revisions and improvements, based on future studies. Studies should be carried out to determine the relative importance of each category, and especially the weight of the different indicators. Our idea is to compile many more studies that can be carried out in this regard and to improve the system gradually based on their results. However, we believe that CEDES is an important contribution, since it is a much more complete and seamless system, which resolves the current criticisms of the GBRS, is easy to use and, above all, is a simple tool capable of guiding the sustainable design process. 

9. Conclusions  
In this work, a new GBRS is described that we consider to be free of the defects and limitations of the current GBRS, which are widely different from each other, are incomplete, do not consider the importance of architectural design, have a complex operation and questionable specific weights of their indicators. It is therefore necessary to design a new framework that can serve as a common reference point to design new GBRS in the future. 
For this reason, CEDES was designed based on a taxonomic structure of 8 categories and 106 indicators. It is an easy-to-use system which facilitates the complete initial evaluation and allows the execution of all types of innovative and varied actions with the aim of increasing the sustainable level of any building. And above all, CEDES is a system for designing buildings, from the initial idea to the execution of the final project in every detail.
With the proposed categories and indicators the total spectrum of the LCA of all the different parameters of the construction process of a building is swept, so that no aspect is left unevaluated. In addition, a specific weight relative to each indicator has been assigned based on the evaluation carried out by the rest of the indicators, and based on studies carried out on the environmental impact of all aspects of the construction process, and especially with respect to the comparative energy consumption of all aspects of the building construction process. The score that can be assigned to each indicator in the evaluation process of a given building is extraordinarily simple (an integer from 0 to 5) so that anyone can carry out the evaluation. Each indicator evaluates the sustainable level of a certain aspect of the building, and is associated with a set of actions that could be executed to increase the sustainable level in the said aspect. These actions must be adapted to a given building, in a given environment. Once identified, they must be classified in order of maximum environmental effectiveness and minimum economic cost.
[bookmark: _bookmark35]Thus, CEDES serves especially as a perfect guide that can be easily integrated into the usual design process of engineers and architects with the aim of achieving buildings with the highest ecological and sustainable level possible. In this way, as it always should have been, the evaluation process would become a simple process of free administrative verification.


Data Availability Statement (DAS)
The data that support the findings of this study are available from the corresponding autor (De Garrido, Luis), upon reasonable request.


Acknowledgements
We are very grateful to Carlos Bermudez Velasco, Fidel Ernesto González Rojas and Nicolas Ezequiel Picco, students and professors involved in the Advanced Master of Sustainable, Bioclimatic and Self-Sufficient Architecture [57], managed by the National Association for Sustainable Architecture, in Spain [56].


[bookmark: _GoBack]References 
[1] Andújar, J. M., Gómez, S., & Sánchez, A. (2020). Green building rating systems and the new framework level(s): A Critical Review of Sustainability Certification within Europe. Energies 13(1), 66, 
https://doi.org/10.3390/en13010066
[2] Doan, D.T., Ghaffarianhoseini, A., Naismith, N., Zhang, T., Ghaffarianhoseini, A. & Tookey, J. (2017). A critical comparison of green building rating systems. Building and Environment, 123, 243-260
https://doi.org/10.3390/su11061672  
https://doi.org/10.1016/j.buildenv.2017.07.007
[3] Berardi, U. (2013). Clarifying the new interpretations of the concept of sustainable building. Sustainable Cities and Society 8, 72-8
https://doi.org/10.1016/j.scs.2013.01.008
[bookmark: _bookmark80][4] Asdrubali, F., Baldinelli, G., Bianchi, F. & Sambuco, S. (2015). A comparison between environmental sustainability rating systems LEED and ITACA for residential buildings. Building and Environment 86, 98-108   
https://doi.org/10.1016/j.buildenv.2015.01.001 
[5] Andrade, J. & Braganca, L. (2016). Sustainability assessment of dwellings-A comparison of methodologies. Civil Engineering and Environmental Systems 2016, 33, 125-146. 
http://dx.doi.org/10.1080/10286608.2016.1145676 
[bookmark: _bookmark59][6] Awadh, O. (2017). Sustainability and green building rating systems: LEED, BREEAM, GSAS and Estidama critical analysis. Journal of  Building Engineering, 11, 25-29 
https://doi.org/10.1016/j.jobe.2017.03.010 
[7] Florez, L. (2020). Sustainability and Green Building Rating Systems: A Critical Analysis to Advance Sustainable Performance, Editor(s): Saleem Hashmi, Imtiaz Ahmed Choudhury, Encyclopedia of Renewable and Sustainable Materials, Elsevier, 211-220
https://doi.org/10.1016/B978-0-12-803581-8.11411-0 
[8] Bernardi, E., Carlucci, S., Cornaro, C. & Bohne, R.A. (2017). An Analysis of the Most Adopted Rating Systems for Assessing the Environmental Impact of Buildings. Sustainability, 9(7), 1226. 
https://doi.org/10.3390/su9071226 
[9] Borrallo, M., López de Asiain, M., Esquivias, P. M. & Delgado, D. (2022). Comparative study between the Passive House Standard in warm climates and Nearly Zero Energy Buildings under Spanish Technical Building Code in a dwelling design in Seville, Spain. Energy and Buildings 254 (111570)
https://doi.org/10.1016/j.enbuild.2021.111570 
[bookmark: _bookmark69][10] Ding, Z., Fan, Z., Tam, V.W., Bian, Y., Li, S., Illankoon C. S. & Moon, S. (2018). Green building evaluation system implementation. Building and Environment 133, 32-40 
https://doi.org/10.1016/j.buildenv.2018.02.012
[11] Ferreira, J., Pinheiro, M. D. & de Brito, J. (2014). Portuguese sustainable construction assessment tools benchmarked with BREEAM and LEED: An energy analysis. Energy Building 69, 451-463 
https://doi.org/10.1016/j.enbuild.2013.11.039 
[12] He, Y., Kvan, T., Liu, M. & Li, B. (2018). How green building rating systems affect designing green. Building and Environment 133, 19-31 
https://doi.org/10.1016/j.buildenv.2018.02.007 
[13] Lu, W., Chi, B., Bao, Z. & Zetkulic, A. (2019). Evaluating the effects of green building on construction waste management: A comparative study of three green building rating systems. Building and Environment, 155, 247-256
https://doi.org/10.1016/j.buildenv.2019.03.050 
[14] Mattoni, B., Guattari, C., Evangelisti, L., Bisegna, F., Gori, P. & Asdrubali, F. (2018). Critical review and methodological approach to evaluate the differences among international green building rating tools. Renewable and Sustainable Energy Review, 82, 950-960
https://doi.org/10.1016/j.rser.2017.09.105 
[15] Tang, K. H. D., Foo, C. Y. H. & Tan, I. S.  (2020). A review of the green building rating systems. IOP Conference Series. Materials Science and Engineering, Bristol, 943(1)  doi:10.1088/1757-899X/943/1/012060  
[bookmark: _bookmark66][16] Varma, C. R. S. & Palaniappan, S. (2019). Comparision of green building rating schemes used in North America, Europe and Asia. Habitat International 89, 101989
https://doi.org/10.1016/j.habitatint.2019.05.008 
[17] De Garrrido, L. (2008). Analysis of Sustainable Architecture Projects. “Artificial Natures 2001-2008”. McGraw-Hill. 485 pages. ISBN 978-84-481-6802-5 
[bookmark: _bookmark20][18] Runde, T. & Thoyre, S. (2010) Integrating sustainability and green building into the appraisal process. Journal of Sustainable Real Estate 2(1), 221-48
https://doi.org/10.1080/10835547.2015.12091873 
[19] Yanarella, E. J., Levine,  R. S. & Lancaster,  R. W. (2009). Research and  solutions: " Green"  vs.  Sustainability:  From semantics to enlightenment. Sustainability: The Journal of Record, 2, 296-302
https://doi.org/10.1089/SUS.2009.9838
[20] Friedmann, W. & Munro, L. (2010). United Nations International Journal 1, 102 
[21] Littig, B. & Griessler, E. (2006). Social sustainability: A catchword between political pragmatism and social theory. International Journal of Sustainable Development 8, 65
doi:10.1504/IJSD.2005.007375
[22] Buter, R. & Van Raan, A. (2013). Identification and analysis of the highly cited knowledge base of sustainability science. Sustainability science 8, 253-67
https://doi.org/10.1007/s11625-012-0185-1
[23] Komeily, A. & Srinivasan, R. S. (2015). A need for balanced approach to neighborhood sustainability assessments: A critical review and analysis. Sustainable Cities and Society 18, 32-43
https://doi.org/10.1016/j.scs.2015.05.004 
[24] Chen, X., Yang, H. & Lu, L. (2015). A comprehensive review on passive design approaches in green building rating tools. Renewable and Sustainable Energy Reviews, Elsevier, 50(C), 1425-1436
https://doi.org/10.1016/j.rser.2015.06.003 
[25] Katiyar, M., Sahu, A.K., Agarwal, S.K., & Tiwari, P.K. (2021). Role of Spatial Design in Green Buildings-A Critical Review of Green Building Rating Systems. IOP Conference Series: Materials Science and Engineering 1116 
doi:10.1088/1757-899X/1116/1/012166 
[26] Scofield, J. H. (2009). “Do LEED-certified buildings save energy? Not really…”. Energy and Buildings 41, 1386-90
https://doi.org/10.1016/j.enbuild.2009.08.006 
[27] Scofield, J. H. & Cornell, J. (2019). A critical look at “Energy savings, emissions reductions, and health co-benefits of the green building movement”. Journal of Exposure Science & Environmental Epidemiology 29, 584-593. 
https://www.nature.com/articles/s41370-018-0078-1.pdf 
[28] Conniff, R. (2017). Why Don't Green Buildings Live Up to Hype on Energy Efficiency? Yale Environment 360: New Haven, CT. https://e360.yale.edu/features/why-dont-green-buildings-live-up-to-hype-on-energy-efficiency 
[29] Ali, A., Juudit, O. & Jaana, S. (2019). Are buildings with LEED certifications energy efficient in practice?. Sustainability 11(6), 1672.
https://www.mdpi.com/2071-1050/11/6/1672
[30] Amiri, A., Ottelin, J., & Sorvari, J. (2019). ¿Are LEED-Certified Buildings Energy-Efficient in Practice? Sustainability, 11(6), 1672
https://doi.org/10.3390/su11061672
[31] Scofield, J. H. & Doane, J. (2018). Energy performance of LEED-certified buildings from 2015 Chicago benchmarking data, Energy and Buildings, Volume 174, Pages 402-413.
https://doi.org/10.1016/j.enbuild.2018.06.019 
[32] Imam, S., Coley, D., & Walker, I. (2017). The building performance gap: Are modellers literate? Building Services Engineering Research and Technology 38(3), 351-375. 
https://doi.org/10.1177/0143624416684641 
[33] Saldanha, C. M. & O'Brien, S. M. (2016). A study of energy use in New York City and LEED-certified buildings (ASHRAE and IBPSA-USA SimBuild 2016, Building Performance Modeling Conference, Salt Lake City, UT, August 8-12, 2016 
[34] LEED litigations 2011
https://www.greenbuildinglawupdate.com/2015/07/articles/leed/the-first-green-building-litigation-the-rest-of-the-story/  
https://www.hahnlaw.com/news/contractors-and-owners-beware-lawsuit-follows-green-construction
https://www.greenbuildinglawupdate.com/files/2011/02/gifford-amended-complaint.pdf
https://www.greenbuildinglawupdate.com/2011/02/articles/legal-developments/giffords-leed-lawsuit-takes-new-shape  (accessed 13 November 2024)
[35] De Garrrido, L. (2012). A New Paradigm in Architecture. Monsa. 528 pages. ISBN 978-84-152-2375-7
[36] De Garrrido, L. (2012 b). Self-Sufficient Green Architecture. Monsa. 96 pages. ISBN 978-84-15223-76-4
[37] De Garrrido, L. (2013). Design Practice of the New Architectural Paradigm. Synthesis. 216 pages. ISBN 978-84-94009-40-2
[38] De Garrrido, L. (2014). Zero Energy Architecture. Editorial Monsa. 112 pages. ISBN. 978-84-15829-54-6
[39] De Garrrido, L. (2014 b). Extreme Bioclimatic Architecture. Monsa. 112 pages. ISBN. 978-84-15829-55-3
[40] De Garrrido, L. (2017). Manual of Advanced Ecological Architecture. Editorial Nobuko Design. 354 pages. ISBN. 978-98-74160126
[41] Sadineni, S., Madala, S. & Boehm, R. (2011). Passive building energy savings: A review of building envelope components. Renewable and Sustainable Energy Reviews 15(8), 3617-3631
https://doi.org/10.1016/j.rser.2011.07.014
[42] Montes, G. M., Bayo, J. A., Escobar, B.M., Mattinzioli, T., & Pinazo, M. A. (2021). Sustainability building rating systems. A critical review. Time for change?. In Ayuso Muñoz, J. L., Yagüe Blanco, J. L., Capuz-Rizo, S. F. (eds). Project Management and Engineering Research, 391-404 
https://doi.org/10.1007/978-3-030-54410-2_28
[43] Mattinzioli, T., Sol-Sánchez, M., Moreno, B., Alegre, J., & Martínez, G. (2021). Sustainable building rating systems: A critical review for achieving a common consensus. Critical Reviews in Environmental Science and Technology 51(5), 512-534.
https://doi.org/10.1080/10643389.2020.1732781 
[44] Ashok, K. S., Manoj, K., Pravesh, T., & Sanjay, A. (2021). Role of Spatial Design in Green Buildings-A Critical Review of Green Building Rating Systems. IOP Conference Series: Materials Science and Engineering, 1116, 1, 12-166
https://doi.org/10.1088/1757-899x/1116/1/012166
[45] Jalaei, F., Jalaei, F., & Mohammadi, S. (2020). An integrated BIM-LEED application to automate sustainable design assessment framework at the conceptual stage of building projects. Sustainable Cities and Society, 53, 101979
https://doi.org/10.1016/j.scs.2019.101979 
[46] Lavaf Pour, Y. (2017). Self-Shading Façade Geometries to Control Summer Overheating in UK Passivhaus Dwellings for Current and Future Climate Scenarios [Doctoral dissertation]. University of Liverpool
doi: 10.17638/03009183
[47] Markelj, J., Kitek Kuzman, M., Grošelj, P., & Zbašnik-Senegačnik, M. (2014). A simplified method for evaluating building sustainability in the early design phase for architects. Sustainability, 6(12), 8775-8795
https://doi.org/10.3390/su6128775
[48] Adamec, J., Janoušková, S., & Hák, T. (2021). Cómo medir la vivienda sostenible: una propuesta para una herramienta de evaluación basada en indicadores. Sustainability, 13(3), 1152.
https://doi.org/10.3390/su13031152
[49] Ali-Toudert, F., Ji, L., Fährmann, L., & Czempik, S. (2020). Comprehensive assessment method for sustainable urban development (CAMSUD)-a new multi-criteria system for planning, evaluation and decision-making. Progress in Planning, 140, 100430.
https://doi.org/10.1016/j.progress.2019.03.001
[50] Ameen, R. F. M., & Mourshed, M. (2019). Urban sustainability assessment framework development: The ranking and weighting of sustainability indicators using analytic hierarchy process. Sustainable Cities and Society, 44, 356-366
https://doi.org/10.1016/j.scs.2018.10.020
[51] Hazem, N., Abdelraouf, M., Fahim, I. S., & El-Omari, S. (2020). A Novel Green Rating System for Existing Buildings. Sustainability, 12(17), 7143
https://doi.org/10.3390/su12177143
[52] Illankoon, C. S., Tam, V. W. Y., Le, K. N., & Shen, L. (2017). Key credit criteria among international green building rating tools. Journal of Cleaner Production, 164, 209-220. https://doi.org/10.1016/j.jclepro.2017.06.206
[53] Vyas, G. S., Jha, K. N., & Patel, D. A. (2019). Development of green building rating system using AHP and fuzzy integrals: A case of India. Journal of Architectural Engineering, 25(2), 04019004.
https://doi.org/10.1061/(ASCE)AE.1943-5568.000034
[54] Yadegaridehkordi, E., Hourmand, M., Nilashi, M., Alsolami, E., Samad, S., Mahmoud, M., Alarood, AA, Zaino, A., Majeed, H., & Shuib, L. (2020). Assessment of sustainability indicators for green building manufacturing using fuzzy multi-criteria decision-making approach. Journal of Cleaner Production. 277, 122905
https://doi.org/10.1016/j.jclepro.2020.122905
[55] Younan, V. A. (2011). Developing a green building rating system for Egypt [Master’s thesis]. The American University in Cairo.
https://fount.aucegypt.edu/retro_etds/2435 
[56] Ignatius, J., Rahman, A., Yazdani, M., Šaparauskas, J., & Haron, S. H. (2016). An integrated fuzzy ANP–QFD approach for green building assessment. Journal of Civil Engineering and Management, 22(4), 551-563
https://doi.org/10.3846/13923730.2015.1120772
[57] Bienvenido-Huertas, D., Farinha, F., Oliveira, M. J., Silva, E. M., & Lança, R. (2020). Comparison of artificial intelligence algorithms to estimate sustainability indicators. Sustainable Cities and Society, 63, 102430.
https://doi.org/10.1016/j.scs.2020.102430
[58] MAS 2024. Advanced Master in Sustainable, Bioclimatic and Self-Sufficient Architecture (M.A.S.)
www.masterarquitectura.info     (accessed 13 November 2024)
[59] ANAS 2024. Asociación Nacional para la Arquitectura Sostenible, España
www.anas-sostenible.com     (accessed 13 November 2024)
[60] Wang, F., Xie, J., Wu, S., Li, J., Barbieri, D. & Zhang, L., (2021). Life cycle energy consumption by roads and associated interpretative analysis of sustainable policies. Renewable and Sustainable Energy Reviews 141, 110823
https://doi.org/10.1016/j.rser.2021.110823
[61] Wu, H. J., Yuan, Z. W. & Zhang, L. (2012). Life cycle energy consumption and CO2 emission of an office building in China. International Journal of Life Cycle Assessment 17, 105-118 
https://doi.org/10.1007/s11367-011-0342-2
[62] Zabalza, I., Valero, A. & Aranda, A. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency potential improvement. Building and Environment 46(5), 1133-1140
https://doi.org/10.1016/j.buildenv.2010.12.002
[63] Zhang, Y., He, Ch., Tang, B. & Wei, Y. (2015). China's energy consumption in the building sector: A life cycle approach. Energy and Buildings 94, 240-251
https://doi.org/10.1016/j.enbuild.2015.03.011 
[64] Zujian Huang, Zhou, H., Miao, Z., Tang, H., Lin, B. & Zhuang, W. (2024). Life-Cycle Carbon Emissions (LCCE) of Buildings: Implications, Calculations, and Reductions. Engineering 35, 115-139
https://doi.org/10.1016/j.eng.2023.08.019 
[65] Guinée, J. & Heijungs, R. (2024). Introduction to Life Cycle Assessment. In: Bouchery, Y., Corbett, C.J., Fransoo, J.C., Tan, T. (eds) Sustainable Supply Chains. Springer Series in Supply Chain Management, vol 23. Springer, Cham.
https://doi.org/10.1007/978-3-031-45565-0_2 
[66] Life Cycle Assessment (LCA). ISO 14040. European Platform on LCA | EPLCA. Joint Research Center of the European Commission. International reference Life Cycle Data system handbook. https://eplca.jrc.ec.europa.eu/lifecycleassessment.html 
[67] United Nations Conference on Environment and Development, of Rio de Janeiro, in 1992 https://www.un.org/en/conferences/environment/rio1992   (accessed 13 November 2024)
[68] Jato-Espino, D., Castillo-Lopez, E., Rodriguez-Hernandez, J. & Canteras-Jordana, J. C. (2014). A review of application of multi-criteria decision making methods in construction. Automation in Construction 45, 151-162
https://doi.org/10.1016/j.autcon.2014.05.013
[69] Zavadskas, E. K., Antuchevičienė , J. & Kapliński, O. (2015). Multi-criteria decision making in civil engineering. Part II - applications. Engineering Structures and Technologies 7:4, 151-167
https://doi.org/10.3846/2029882X.2016.1139664
[70] Sánchez-Garrido, A. J., Navarro, I. J. & Yepes, V. (2021). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Journal of Cleaner Production 330, 129724
https://doi.org/10.1016/j.jclepro.2021.129724 
[71] Kendall, M. G. (1970). Rank correlation methods, 4th. ed. Griffin, London. ISBN-13: 978-0852641996
[72] Hajkowicz, S. & Collins, K. A. (2007). Review of Multiple Criteria Analysis for Water Resource Planning and Management. Water Resour Manage 21, 1553-1566
https://doi.org/10.1007/s11269-006-9112-5
[73] De Brito, M. M. & Evers, M. (2016). Multi-criteria decision-making for flood risk management: a survey of the current state of the art. Natural Hazards and Earth System Sciences 16, 1019-1033 
https://doi.org/10.5194/nhess-16-1019-2016
[74] Biswas, W. K. (2014). Carbon footprint and embodied energy consumption assessment of building construction works in Western Australia. International Journal of Sustainable Built Environment 3(2), 179-186
https://doi.org/10.1016/j.ijsbe.2014.11.004
[75] Global Status Report for Buildings and Construction. Towards a zero-emissions, efficient and resilient buildings and construction sector. (2020). UN Environment Program. Global Alliance for Buildings and Construction
https://wedocs.unep.org/bitstream/handle/20.500.11822/34572/GSR_ES.pdf 
[76] González-Torres, M., Pérez-Lombard, L., Coronel, J., Maestre, I. & Yan, D. (2022). A review on buildings energy information: Trends, end-uses, fuels and drivers. Energy Reports 8, 626-637
https://doi.org/10.1016/j.egyr.2021.11.280  
[77] How much energy is consumed in the U.S. buildings? (2023). US Energy Information Administration, 1000 Independence Ave., SW, Washington, DC 20585
https://www.eia.gov/tools/faqs/faq.php?id=86&t=1
[78] Lima, P. & Lobato, A. (2015). Embodied energy on refurbishment vs. demolition: A southern Europe case study. Energy and Buildings 87, 386-394
https://doi.org/10.1016/j.enbuild.2014.11.040
[79] Marzouk, M. & Azab, S. (2014). Environmental and economic impact assessment of construction and demolition waste disposal using system dynamics. Resources, conservation and recycling 82, 41-49 
https://doi.org/10.1016/j.resconrec.2013.10.015
[80] Nejat, P., Jomehzadeh, F., Taheri, M. M., Gohari, M. & Majid, M. Z. A. (2015). A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renewable and sustainable energy reviews 43, 843-862
https://doi.org/10.1016/j.rser.2014.11.066
[81] Optimize Energy Use the WBDG Sustainable Committee. Updated: 09-08-2021. Overview. 
https://www.wbdg.org/design-objectives/sustainable/optimize-energy-use 
[82] Pérez-Lombard, L., José Ortiz, J. & Pout, C. (2008). A review on buildings energy consumption information. Energy and Buildings 40(3), 394-398
https://doi.org/10.1016/j.enbuild.2007.03.007  
[83] Santamouris, M. & Vasilakopoulou, K. (2021). Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation Advances in Electrical Engineering, Electronics and Energy, Volume 1,100002
https://doi.org/10.1016/j.prime.2021.100002 
[84] Umbarek, M., Alghoul, S. & Dekam, E. (2020). Energy consumption in residential buildings: comparison between three different building styles. Sustainableable Development Research 2(1), 2690-9898
https://doi.org/10.30560/sdr.v2n1p1
[85] Xie, J., Liu, F. & Qiu, H. (2016). An integrated model for predicting the specific energy consumption of manufacturing processes. International Journal of Advanced Manufacturing Technology 85, 1339-1346 
https://doi.org/10.1007/s00170-015-8033-y
[86] Yang, L., Yan, H. &Lam, J. (2014). Thermal comfort and building energy consumption implications - A review. Applied Energy 115, 164-173 
https://doi.org/10.1016/j.apenergy.2013.10.062
[87] Daim, T. U., Udbye, A. & Balasubramanian, A. (2012). Use of analytical hierarchy process (AHP) for selection of 3PL providers. Journal of Manufacturing Technology Management 24(1), 28-51
DOI:10.1108/17410381311287472

Highlights
- Taxonomic framework for designing better GBRS
- ASGB, BEAM, BREEAM, CASBEE, DNGB, GBI, GG, GM, GS, HQE, IGBC, LEED, LEVEL's, Minergie, PassivHaus, SBTools
- New GBRS more complete, legitimate and adequate
- Desing of better Green Building Rating Systems
- Improving Green Building Rating Systems
- New GBRS as a guide to sustainable building design 
 
image2.jpeg
Visualize the desired objective

\

Identify a complete set of measurement indicators

N

Evaluate the building through an appropriate strategy based on the indicators

\

Identify policies for action, implementing a set of appropriate actions

Evaluate performance policies based on results





image3.jpeg
GBRS

ccomponents
I
[ [ 1 I’ _____________
Category, cee Category, e Category, || GBRS score =2,CAS score * WC

T |

[ 1 | $
-77 Issue, stels Issue, eee Issue | : CAS score = 2, 1SS score

T |

\ . | 7
[ Criteria, see | Criteria cee | Criteria, : 1SS score =Y, CRS

P e 4 - e

Units

Indicators |

Indicators | Units

o
|
t
|
|
Indicators : Units
|
|
|
|
4




image4.jpeg
“ECO-FRIENDLY” AR-CONDITIONING DEVICES
“ECO-FRIENDLY"/HIGH TEGHNOLOGY DEVICES
DESIGN WITH PHOTOVOLTAIC SQLAR ENERGY DEVICES

THERMAL SOLAR ENERGY DEVICES
GEQTHERMAL ENERGY DEWICES
DESING TO RECYCLE AND BIODEGRADE
DEMOUNTABLE BUILDINGS

DESIGN FOR RECOVERY, REPAIR AND REUSE
DESIGN WITH BIOCLIMATIC TYPOLOGIES AND STRATEGIES
STAINABLE URBAN PLANNING (ECO-URBANISM)

ENVIRONMENTAL PERFORMANCE

HIGH

MEDIUM

Low

PRICE




image5.jpeg




image1.png
OBJECT MIGRATION

(OBJECT MIGRATION
OBJECT MIGRATION NATURAL ENERGY-
NATURAL ENERGY %ZM —>00 NATURAL ENERGY
OBJECT  |——) ﬁ RECOVER - REPAIR - REUSE RECYCLE ) "BS:J'-EECSTS
DESIGN ‘I
ASSEMBLY
DURABILITY
NATURAL ENERGY T OPTIMIZATION j[ NATURAL ENERGZVLZN NATURAL ENERGY l DISASSEMBLY
COMPONENTS NATURAL ENERGY
MANUFACTURING NATURAL CONSTRUCTION WASTE
EXTRACTION EXTRACTON  ECOLOGICAL SYSTEM WASTE

NATURAL ENERGY

DESIGN
DURABILITY
SITE

BIODEGRADATION

PHYSICAL SYSTEM

BIODEGRADATION

WASTE
NATURAL ENEREV TREATMENT





