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Abstract
The present investigation delves into the flow of a magnetized non-Newtonian Williamson fluid by
nonlinear mixed convection. A stagnation point regulates the fluid’s motion. The mathematical
model underlying the problem is transmuted via some similarity transformations to exhibit ordinary
derivatives equations of order three. Consequently, a numerical solution is obtained through the
Runge-Kutta-Fehlberg approach in conjunction with the shooting technique. The influences of some
dimensionless physical terms such as the magnetic field, Eckert, Schmidt and Prandtl numbers cou-
pled with activation energy are discussed graphically. The numerical results demonstrate a flawless
connection when compared to pertinent literature results in limited contexts. The analysis reveals a
decrease in velocity profile and a rise in fluid temperature are observed when the magnitude of the
viscosity and magnetic field parameters increases. An increase in radiation and heat source param-
eters leads to an increase in the heat transfer rate, whereas factors involving viscosity and magnetic
field slow down the fluids but drive a rise in the temperature distribution. An enhancement of the
solutal boundary structure is found due to escalating nature of activation energy whereas diminish
trend occurs with chemical reaction and Schmidt number.
Keywords: Nonlinear mixed convection; Elongating sheet; Williamson nanoliquid; Stagnation-point;
Dimensionless parameters.

1 Introduction

The non-Newtonian fluids have innumerable uses in a wide range of human undertakings; hence,
studies of them are currently gaining a lot of interest from scientists and researchers. This class
of fluid is common in oil drilling industry, paints rheology, molten polymers, mud drilling, drug and
pharmaceutical industry, the cosmetics industry, etc. Several authors have reported on the importance
of the non-Newtonian fluids in industrial and engineering works, [1-2]. Highly nonlinear and complex
equations are required to describe the flow of non-Newtonian fluids, which differ significantly from the
flow of Newtonian fluids due to the stress tensors’ nonlinear relation to the deformation rate. Since
no single constitutive model can fully account for the properties of these fluids, various theories and
concepts have been developed to try and capture their flow characteristics. Some of the many fluid
models used to describe non-Newtonian fluids are the Williamson fluid, the Carreau fluid, the Jeffery
fluid, the Maxwell fluid, the micropolar fluid, and the Giesekus fluid [3-5].

The Williamson fluid model stands out among the rest. For example, as shear stress rates increase,
the fluid’s viscosity thins, demonstrating its non-Newtonian fluid nature. This class of fluids includes
not only plasma and blood but also emulsion sheets like those used in photography. Nadeem it
et al. [6] were the first to develop the boundary layer transport of such fluids along a stretched
surface, building on the work of Williamson [7]. This has led to a plethora of studies that, considering
various aspects such as the geometry of the flow, heating conditions at the energy field, etc. In the
investigation of the Williamson fluid on Blasius flow near a stagnation-point, Sha et al. [8] evaluated
the significance of heat transmission in the presence of thermal radiation over permeable elongated
device. Quran et al. [9] evaluated how Williamson fluid is affected by forced convection forces and
uniform heat transmission at the boundary using a numerical procedure on a porous material medium.
The results showed that the Williamson fluid has the tendency to increase the shear stress and the
velocity profiles.

Flowing fluids across extending plates are often encountered in diverse areas of industry and
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technology. Many potential applications for are found in the production of polymers, extrusion of
plastic sheets, paper manufacturing, cooling of metal sheets and so on, [10-14]. Such investigation
evolved from the study of Crane [15]. The author reiterated the possibility of a closed-form solution
to a time-independent two-dimensional problem when the sheet extended in a linear form. Other
researchers have discussed the possibility of a nonlinear elongating sheet (see Refs [16-17) which is
more realistic in practical situations such as wire drawing. The present study deals with Williamson
fluid flowing across a nonlinearly extending sheet due to real engineering applications.

Fluids composed of nanoparticles (small particles) of metals, oxides, etc. are called nanofluids
[18-19]. Researchers have reported an enhanced thermal conductivity when this new category of fluid
is used as compared to those of traditional base fluids (such as water, oil, ethylene glycol, etc.). Many
engineering and industrial processes rely on heating and cooling fluids, such as power production and
atomic reactors, as such, the cooling process becomes vital in high-energy equipment at such fields.
Due to its potential usefulness in a wide range of fields relevant to modern society, including medicine,
transportation, and electronics, nanofluid research has recently gained a lot of scholarly attention
[20-22].

The present study aims to examine the impact of several critical parameters on the flow of a
reactive magnetised Williamson nanofluid in the presence of nonlinear mixed convection, activation
energy, thermal radiation, thermo-migration of small particles, Brownian motion of the particles, and
convective heating of the thermal boundary layer. The thermal thermal conductivity and an external
heat source cause a nonlinearly expanding plate to undergo the motion. The study has important
implications for chemical and extrusion operations. A numerical solution is employed to discuss the
parametric effects of crucial terms on the non-dimensional velocity, temperature, and concentration
profiles.

2 Development of the Problem

As illustrated in Figure 1. A Williamson nanoliquid is flowing across a two-dimensional extending
material device in the neighbourhood a stagnation point. It is assumed that the fluid motion is time-
independent, it is simply laminar and not turbulent, it is not compressible as well. The extending
plate causes the flow and that the device stretches in a nonlinear fashion with the surface velocity
uw = bxm at the wall and velocity Ue = axm at the far field. A convective heating type is adhered
to in the thermal region, but the ambient temperature relates to that of the fluid. The coordinates
of the material device are described using (x, y) and their respective velocity components are (u, v).
The radiative heat flux is simplified by Rosseland approximation, there is an internal heat generation
in the energy field while the nanoparticles concentration field consists of the chemical reaction in
conjunction with the activation energy. The application of non-uniform external magnetic field B(x)(
B(x) = B0x

(m
2
− 1

2)
)
on the direction of flow is done on the material device but no account of the

induced magnetic field is considered. The thermophysical attributes of the fluid are functions of
temperature.
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Figure 1 Sketch of the configuration

On the basis of the aforementioned assumptions, the transport equations are listed as follows
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The boundary constraints are listed as:

U(x, y) = U = bxm, V (x, 0) = 0,−k∞
∂T

∂y
= −gb (T∞ − Tf ) , G(x, y) = Gw at y = 0

u→ Ue = axm, T → T∞, G→ G∞, as y → ∞.

(5)

These symbols that are included in the governing equations are u, v which is component of velocity
in x, y direction, T indicating Temperature, ν∞ meaning ambient kinematic viscosity, G denoting
nanoparticles concentration, ρ∞ which is a Ambient fluid density, Ue indicating far field velocity, µ∞
meaning a ambient Fluid viscosity, Uw connoting surface velocity σ standing for electrical conductiv-
ity, hT connoting coefficient of heat transfer, h1 symbolizing chemical reaction rate, hc is the mass
transfer coefficient, Γ standing for the relaxation time, T∞ indicating the far field temperature, (ρf )
connoting nanofluid density, C∞ indicating far field concentration. Similarly, (ρp) stands for nanopar-
ticles density but E0 means activation energy while (ρcp)f indicates heat capacity of nanoparticles
whereas (ρcp)f shows the heat capacity of the fluid. More so, DB represents coefficient of Brownian
motion, DT indicates thermophoretic diffusion coefficient, Tf is standing for surface temperature, Gw

is symbolizing sheet concentration, and k stands for thermal conductivity
Equations (7-9) are the result of plugging in the quantities from Eq. (6) in order to change the
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governing equations to their ordinary derivatives of order three. Using (6) also satisfies the equation
of mass conservation (1).

η = y
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In the same vein, the wall constraints are transformed as follows

f ′(η) = 1, f(η) = 0, 0′(η) = −ζ (1− θ(0)) , ϕ(η) = 1 at η = 0

f ′(η) = H, θ(η) = 0, ϕ(η) = 0 as η → 0.
(10)

Pr =
µ∞cp
k∞

,M =
σB2

0

bρ
,Nr =

16σ⋆T 3
∞

3k⋆k∞
, Q =

Q0 (Tw − T∞)

cρCp(Tf − T∞)
, Re =

Usx

ν∞
, β =

(Cf − C∞)

C∞

Ec =
U2
w

Cp(Tw − T∞)
, Sc =

ν∞
DB

, γ1 =
k22
b
, E =

Ee

λT∞
, ζ =

hf
k∞

√
ν∞
b
,We = Γ

√
2
c3x3r−1

ν∞
,

Nb =
(ρcp)pDB (Gw −G∞)

(ρcp)fν
,Nt =

(ρcp)pDT (Tw − T∞)

(ρcp)fT∞ν
, γ =

(ρc)p
(ρc)f

, H =
c

b
.

(11)

The emerging physical terms listed in equation (11) are described as follows: Ec denotes Eckert num-
ber, Nr indicates radiation term, We indicates Weissenberg number while K defines the stretching
ratio, γ1 denotes the chemical reaction term, ϵ shows the thermal conductivity term, E symbolizes the
activation energy, β is the temperature relative parameter, M shows the magnetic, δ is the concentra-
tion relative parameter, Nt is the thermo-migration term while Nb describes the haphazard motion
of the minute particles, whereas Sc(Pr( defines the Schmidt Prandtl) number. For the engineering
application of the current work, those quantities of delight are described as (i) the skin frictional
factor Cfx (ii) the Nusselt number Nux and (iii) the Sherwood number Shx which are respectively
expressed as

Cfx =
2τw
ρ∞U2

s

, Nux =
xqw

k∞ (Tf − T∞)
, Shx =

xqm
DB (Cw − C∞)

, (12)

The dimensionless forms of these quantities are expressed as:
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3 Numerical Method with Validation

For the system of equations (7-9) and its wall constraints expressed in equation (10), we have employed
a numerical means to obtain the required solution because the set of equations (7-9) has a grater
dimension of nonlinearity nature. The Runge-Kutta-Gills technique has been applied having step size
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∇η = 0.01 with absolute tolerance of 105. The program had been implemented on Maple 16. The
results have been authenticated by comparing the computational data of f ′′(0) for alterations in M
with some published data under restrictive conditions as displayed in Table 2. There are excellent
agreement between the current work and those of published records.

Table 2:Computed data for f ′′(0) for variation in M
M Mabood et al. [23] Present results

0 1.000005 1.00000
1 -1.4142143 -1.41421
5 -2.4494893 -2.44949
10 -3.3166242 -3.31662
50 -7.1414285 -7.14143
100 -10.049876 -10.0499

4 Outcomes of the analysis and deliberation

In what follows in this section, we have included several graphs to explain the impact of the emerging
terms on the profiles of the dimensionless quantities of interest. Important parameter effects affecting
the velocity field and temperature region have been publicized in Figures 2 and 3. In figure 2, there
is an exhibition of the character of the magnetic field parameter M as it affects the trend of the
velocity. As M increases, flow is stifled because the transverse magnetic field exerts a Lorentz force
on the electrically conducting Williamson fluid, causing resistance to its motion. The flow of the fluid
is slowed because when M increases, the Lorentz force also increases, and vice versa. In view of that,
there is a thinning of the hydrodynamic bounding structure.

Figure 2 Alterations in velocity field due to changes in M

Different from this, temperature field becomes energized due to friction as a result of growth inM (see
Figure 3). Here, the interaction of the Lorentz force and the electric nature of the Williamson fluid
prevents the motion of the fluid due to a magnetic field M and in consequence, there is an upsurge in
friction, which enables a rise in the heat profiles and thus causes temperature to appreciate, and the
thermal boundary structure expands significantly as M grows in magnitude. In this view, the flow
and thermal distribution can be modified appropriately by the alterations of the magnetic field term
in the flow region.
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Figure 3 Trend of temperature profiles due to alterations in M

Transport phenomena for the heat and motion profiles owing to changes in the Ec’s magnitude are
depicted in Figures 4 and 5. Elevated Ec values are associated with an upward shift in the velocity
profiles. The thermal neighborhood also increases in value dramatically with increasing Ec. As Ec
increases, more heat is generated in the flow field because of the frictional impact of the Williamson
fluid particles and the growing sheet. In fact, the thermal bounding surface is seen to enlarge noticeably
with increasing Ec.

Figure 4 Trend of velocity field as Ec alters
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Figure 5 characteristics of temperature profile due to alterations in Ec

The behavioural pattern of the velocity field and that of the thermal region are clearly manifest in
figures 6 and 7 due to Pr. As is known, Pr is a description of the thickness of the momentum layer
compared to that of the thermal layer.

Figure 7 Trend of temperature owing to changes in Pr.

The velocity profiles fall due to Pr because there is a direct relationship between Pr and Williamson
fluid viscosity, and so growth in Pr corresponds to higher viscosity, which then creates resistance to
the fluid speed. At the same time, the thermal bounding structure thins out as Pr magnifies, and as
such, there is a cooling effect as the surface temperature falls significantly.
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Figure 6 Plot of the velocity field due to alterations in Pr

Figure 8 Trend of the concentration profiles due to Sc

The concentration of nanoparticles is shown to decline in nature as Sc improves in magnitude, as
depicted in figure 8. It is known that Sc is a description of the thickness of the momentum layer
compared to that of the concentration layer. In this view, a rise in Sc causes the mass diffusivity to
drop, and as such, there is a reduction in the concentration bounding surface, as revealed in figure 8.
Meanwhile, figure 9 manifests the trend of the concentration profiles versus η as the chemical reaction
term changes in value. The concentration of the tiny particles is a decreasing function of γ1, as found
in figure 9. A rise in activation energy parameter boosts the growth of the concentration profiles,
as exemplified in figure 10. As is known, E describes the minimum amount of energy required for a
reaction process to begin. So, an increase in E energizes the reaction to take place in the concentration
region, which led to the expansion of the profiles as portrayed in this figure.
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Figure 9 Behaviour of concentration due to alterations in γ1

The illustration of the thermal and solutal fields due to the alteration in the in Nt is sketched in
figures 11 and 12. Clearly, both profiles upsurge due to rising values of Nt. Also, the temperature
field field enhances due to the irregular movement of the minute particles Nb as found in figure 13.

Figure. 10 Trend of the concentration due to varying E
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Figure. 11 Trend of the temperature due to varying Nt

However, the concentration field behaves in an opposite manner as it falls significantly in the face of
Nb as clearly seen in figure 14. The figure demonstrates that Nb produces a thin layer in the boundary
structure and as such causes a decline in the concentration profiles.

Figure. 12 Trend of the concentration due to varying Nt
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Figure. 13 Trend of the concentration due to varying Nb

Figure. 14 Trend of the concentration due to varying Nb

Figure 15 and 16 manifest the behaviour of the mixed convection term on the velocity and thermal
profiles. A boost in λ causes the buoyancy force to appreciate over that of viscous force and so,
the velocity profiles appreciates, leading to higher fluid flow motion as found in figure 15. On the
other hand, thermal bounding surface declines due to growing values of the mixed convection term as
depicted in figure 16..
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Figure. 15 Trend of the velocity as λ varies

Figure. 16 Trend of the temperature as a result of variations in λ

5 Conclusion

This study investigates the flow of hydromagnetic Williamson nanofluids over a nonlinear stretchable
sheet in a material device experiencing non-uniform thermal conductivity. In the heat wall region
where convective heat restrictions are present, the effects of viscous dissipation, buoyancy force, mixed
convection, thermal radiation, activation energy, and chemical processes have been scrutinised. The
major equations have been simplified to ordinary derivatives of order three using a similarity modifica-
tion method, and then integrated them using the Runge-Kutta Fehlberg algorithm with the shooting
approach. Findings are presented in a tabular and graphical format for easy interpretation, and they
are highly connected with prior research in the literature. A few key takeaways from this study are
as follows:

� The Lorentz force applies a transverse magnetic field to an expanding plate causes theWilliamson
fluid to experience a significant slowing of its velocity.
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� The effects of the Prandtl number dampen the fluid’s motion, whereas the Eckert number and
mixed convection characteristics cause the fluid’s motion to surge.

� In the presence of thermo-migration of small particles and the erratic motion of minute particles
in the thermal region, the heat dispersion is much improved as the Eckert number raises the
temperature of the fluid.

� As a result of the effects of Sc and γ1, the concentration profiles are shown to decrease, yet the
activation energy (E) produces a considerable upward shift in the concentration profiles.
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