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ABSTRACT:  

India's economy heavily relies on energy, and ensuring a stable and secure energy supply is crucial for 

its growth and development. Accurate forecasting helps in planning for future energy needs, ensuring 

security and reliability in the energy supply chain. India's power grid faces challenges related to 

intermittency and variability due to the increasing integration of renewable energy sources like solar 

and wind power. Forecasting helps grid operators anticipate fluctuations in supply and demand, thus 

improving grid stability and reliability. This research explores the use of machine learning (ML) 

algorithms in energy forecasting, focusing on historical energy consumption and production data, 

weather patterns, and economic indicators. The study evaluates various ML models, including Linear 

Regression, Gradient Boost Regression, Decision trees, Random forest Regression, and Support vector 

Regression, for their predictive accuracy. Data pre-processing and Data mining are used to refine and 

prepare the dataset for model training. The results reveal distinct performance traits among ML 

algorithms, providing valuable insights into the application of ML in energy forecasting and guiding 

future research directions in meeting energy needs. We delve into various types of energy sources, 

including but not limited to solar, wind, fossil fuels, and emerging technologies, and discuss how 

machine learning models can enhance accuracy and adaptability in predicting load demands. 
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I. INTRODUCTION 

In today's rapidly evolving energy landscape, effective load forecasting is critical for ensuring the 

stability and efficiency of power systems. With the integration of diverse energy sources such as renewable, 

non-renewable, and distributed energy generation, the need for accurate load forecasting has become more 

pronounced. Traditional methods often struggle to adapt to the dynamic nature of these sources, making ML, an 

increasingly attractive solution for optimizing energy management. Load forecasting involves predicting future 

energy consumption patterns, taking into account various factors like weather conditions, economic indicators, 

and technological advancements. Machine learning algorithms excel in handling complex and nonlinear 

relationships within large datasets, making them well-suited for the multifaceted nature of load forecasting 

across different energy sources. This paper explores the application of machine learning techniques in load 

forecasting, addressing the unique challenges posed by the diverse energy landscape. The earlier study related 

to this compares ARIMA, SVM, and ANN for daily solar energy generation forecasting. SVM outperforms 

ARIMA, while ANN's underperformance is acknowledged [1].  Popular accuracy metrics include Root-Mean-

Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Weather and economic parameters 

heavily influence forecasts, with a preference for Very Short-Term to Long-Term forecasting periods [2]. The 

integration of Big Data and machine learning into the MERIDA system for energy efficiency management uses 

deep neural networks and Random Forest to create predictive models for energy consumption in public 

buildings [5]. The ensemble, which includes Support Vector Machines, Random Forests, Deep Learning, and 

ARIMA, outperforms existing models and individual experts focusing on PV power production and electricity 

demand [3]. The use of smart meter data for improved short-term energy forecasting, highlighting the benefits 

of customer segmentation and deep learning techniques, demonstrates the segmentation and feature extraction 

can improve single-day predictions by up to 12%, reducing blackouts and enabling smart grid control [4]. 

 

II. PROPOSED IDEA 

Previous studies have focused on energy forecasting individually for different energy types, resulting 

in various datasets and forecasting models. While effective to some extent, this approach lacks synergy and fails 

to capture potential correlations and interactions among different energy sources. Each energy type is forecasted 

using separate models, leading to suboptimal predictions and inefficiencies in resource allocation. 

 

Our proposed approach involves combining datasets from various energy sources, such as solar, wind, 

and hydroelectric power, into a unified framework within the generation-side transformer. By integrating multi-

energy datasets, we aimed to create a comprehensive forecasting model that considers the interdependencies 

and synergies among different energy sources. Our dataset also includes environmental factors such as wind, 

pressure, temperature, humidity etc..., This holistic approach enables more accurate predictions by leveraging 

the collective information from diverse energy inputs. We have aggregated data from different energy sources 

into a unified dataset, incorporating relevant features such as weather conditions, geographical factors, and 

historical energy production. The integrated approach facilitates enhanced forecasting accuracy by considering 

the combined effects of multiple energy sources on overall generation dynamics. The generation-side 

transformer leverages the synergies among energy inputs to make more informed and precise predictions, 

leading to improved resource allocation and energy management strategies. 

 

III. METHODOLOGY 

We have used an open source Python Platform named “Google Colab” for our work. Google Colab is a 

free cloud-based platform that enables Python code writing and execution in a collaborative environment. It is 

popular among data scientists, machine learning practitioners, and researchers due to its ease of use and 

integration with popular libraries and frameworks. Key features include Jupyter Notebooks, free GPU and TPU 

resources, seamless integration with Google Drive, pre-installed libraries like TensorFlow, PyTorch, Scikit-

learn, Matplotlib, and Pandas, real-time collaboration features, code snippets and examples, a flexible 

environment, and easy publishing. Colab is a crucial tool for data science and machine learning professionals, 

offering cloud-based computing resources and collaborative features. 

(i)Data pre-processing: 

Handle missing numbers, outliers, and inconsistent data to make the data cleaner. To prepare the data for model 

training, this process may also include feature engineering, feature scaling, and data normalization. 

(ii)Exploratory Data analysis  

To learn more about the distribution, connections, and trends of the data, analyse and visualize it. EDA 

facilitates comprehension of the data's properties and the identification of possible model features. 

Outlier detection is performed for all the feature of our dataset. The Box-Plot of one of the features is shown 

below. 
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Figure 1: Box-Plot of Actual load to detect Outlier 

 

(iii)Feature Selection 

Feature selection is a critical step in machine learning that involves choosing the most relevant and informative 

features from the original dataset while removing irrelevant or redundant ones. Effective feature selection can 

improve model performance, reduce overfitting, and speed up training and inference. Here are some common 

methods for feature selection in machine learning 

Our dataset contains nearly 40 different features which includes generation from various sources like, solar, 

hydro power, wind, pressure, temperature, humidity etc...,

 (iv)Model Selection 

Select the machine learning approach or algorithms that best fit the type of objective (classification, regression, 

clustering, etc.) and the features of the data. Neural networks, decision trees, random forests, support vector 

machines, logistic regression, k-nearest neighbours, and support vector machines are examples of common 

machine learning methods. 

(v)Data training:  

Divide the data into sets for training and validation. Using the training data, train the chosen model(s), 

modifying model parameters to maximize performance while preventing either underfitting (model failing to 

capture the underlying patterns) or overfitting (model memorizing the training data). 

(vi)Model Evaluation:  

Utilizing the validation set, evaluate the trained model(s) for performance and predictability. Depending on the 

kind of problem, common evaluation metrics include mean squared error, accuracy, precision, recall, R2-score 

and F1-score. Here, we’ve used R_2 Score to determine the accuracy of our model. 

(vii) Hyperparameter tuning: Fine-tune the model's hyperparameters (parameters that control the learning 

process) using techniques such as grid search, random search, or Bayesian optimization to improve performance 

further. 

IV.WORKFLOW 

 
Figure 2: Workflow of the proposed work 
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IV. RESULTS AND DISCUSSIONS 

The results of our comparative study, as depicted in the bar graph below, highlight the performance of each 

algorithm across the specified metrics. Notably, the Random Forest Regression algorithm consistently 

outperformed the other algorithms in terms of accuracy, achieving higher R-squared scores, lower MAPE, and 

lower MAE values. 

The superior performance of the Random Forest Regression algorithm can be attributed to its ability to handle 

non-linear relationships and high-dimensional datasets effectively.  

 

 
Figure 3: Graphical representation of comparing different algorithms 

 

The above figure is the result of the proposed system that compared five different algorithms. 

 

 
Figure 4: Testing the dataset 

 

 

 
Figure 5: Predicted values using Random Forest Algorithm 

 

From the above image, we can see that the predicted value is almost similar to the values in test data. 

Hence, the R_2 Score and different errors for Random Forest algorithm is 

 

 
Figure 6: Accuracy determining parameters for our best algorithm. 

 

Similarly, for different algorithms, these four parameters are analysed based on their predictions. 
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Figure 7: Comparative analysis of selected 5 algorithms with four different parameters. 

 

The performance of each algorithm was evaluated using four key metrics: R-squared score, Root Mean Square 

Error (RMSE). Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE). The real-time 

dataset  was fed into training and testing sets to ensure unbiased evaluation. 

 

V.CONCLUSION 
In summary, our research underscores the critical role of energy forecasting in strategic planning, 

resource allocation, and grid management. Through the utilization of machine learning algorithms and 

comprehensive data analysis, we aimed to enhance predictive accuracy in forecasting energy trends. 

Our study involved a thorough examination of various machine learning models, including Linear 

Regression, Gradient Boost Regression, Decision Trees, Random Forest Regression, and Support Vector 

Regression. By evaluating their performance metrics such as R_2 Score, Root Mean Squared Error (RMSE), 

Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and R-squared, we were able to 

compare their effectiveness in forecasting future energy consumption and production patterns. 

Furthermore, our research involved meticulous data preprocessing techniques such as cleaning, 

normalization, and feature engineering to ensure the reliability and accuracy of the models. The division of data 

into training, validation, and test sets facilitated a rigorous assessment of model performance. 

Our findings revealed distinct performance traits among the machine learning algorithms, shedding 

light on their respective strengths and weaknesses in energy forecasting. This comparative analysis provides 

valuable insights for stakeholders in the energy sector, enabling them to make informed decisions and allocate 

resources more efficiently. 

Overall, this research contributes to the advancement of energy forecasting methodologies and offers 

practical guidance for future research and applications in this critical domain. We believe that our findings will 

not only enhance predictive accuracy but also foster innovation and improvement in energy-related predictive 

modeling techniques. 
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