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I. Introduction 
In recent years, formation control for Multi-Agent Systems (MAS), including mobile robot teams, 

unmanned aerial vehicles (UAVs), and autonomous ground vehicles, has emerged as a research direction 

receiving significant attention from the scientific and engineering communities. The fundamental framework for 

addressing this problem lies in graph theory, which provides powerful mathematical tools for modeling and 

analyzing the interaction topology among agents. 

In graph-based modeling, each agent is represented as a vertex (node), while communication or 

information-sharing links between agents are described as edges. Graph-theoretic structures such as incidence 

matrices and Laplacian matrices play a critical role in characterizing system dynamics and assessing stability 

properties. By leveraging graph-theoretic representations, inter-agent interactions can be described in a clear and 

structured manner, offering a comprehensive view of the connectivity and information-exchange mechanisms 

within the networked system. 

Formation control is defined as a cooperative control strategy that enables one or multiple groups of 

agents to perform common tasks while maintaining a prescribed geometric configuration in space [1]. 

Originating from applications in intelligent highway systems, formation control has been investigated to allow 

autonomous vehicles to self-organize into platoons, maintain fixed inter-vehicle distances, and synchronize 

velocities [2]. Once the formation is established, high-speed motion can be achieved safely—preventing 

collisions between vehicles—and minimizing speed fluctuations, thereby improving fuel efficiency. 

Formation control has been widely applied across various domains, including security patrol, 

environmental monitoring, search and rescue in hazardous environments, as well as military and transportation 

industries. The recent development of UAV technology has further introduced emerging applications such as 

geological exploration, disaster search and rescue, and area surveillance. These tasks can be performed more 

effectively and reliably when UAVs operate in predefined formations [3]. In military applications, groups of 

autonomous vehicles are required to maintain specific formations for area coverage and reconnaissance; in 

satellite cluster control, formations reduce propulsion fuel consumption while enhancing sensing capability and 

overall operational efficiency of the system [4]; in automated highway systems, traffic throughput can be 

ABSTRACT 

Graph theory serves as a fundamental framework for the design and analysis of formation control 

systems, particularly in multi-agent networks. By modeling interactions using graph structures, the inter-

agent relationships are represented in a clear and systematic manner, providing comprehensive insights 

into the mechanisms of connectivity and information exchange within the system. This enables the 

development of control strategies tailored to specific formation objectives. This study focuses on three key 

aspects: (1) fundamental concepts of graph theory, including undirected and directed graphs, incidence 

matrices, adjacency matrices, degree matrices, and Laplacian matrices; (2) an overview of formation 

control methods based on relative position information; and (3) the formulation and validation of 

formation control laws using relative position data in ddd-dimensional space. Simulation results in 

MATLAB demonstrate that the proposed approach achieves stable formation maintenance and fast 

convergence, even when agents are initialized at random positions. These findings highlight the potential 

for broad application in autonomous robotic systems, unmanned aerial vehicles (UAVs), and coordinated 

mobile platforms operating in real-world environments. 

Keywords:Graph Theory; Multi-Agent Systems; Formation Control; 

 



Application of Graph Theory to Formation Control Based on Relative Position Information 

| IJMER | ISSN: 2249–6645 |                               www.ijmer.com                 | Vol. 15 | Iss. 5 | Sep.-Oct.2025| 37 | 

significantly improved if vehicles are able to form platoons traveling at a desired velocity while maintaining 

fixed inter-vehicle spacing [5]. 

In formation control, two main control architectures are commonly employed: centralized control and 

distributed control [10]. For large-scale and complex Multi-Agent Systems (MAS), centralized control is often 

difficult to implement or even infeasible. Consequently, distributed formation control has gained broader 

attention due to its self-organizing capability, ease of implementation, and high reliability. The primary 

objective of formation control is to generate suitable control commands to guide multiple agents so that the 

required constraints on their states are satisfied [6]. 

From a mathematical perspective, formation control for MAS is developed based on concepts from 

graph theory and consensus dynamics [7]. Graph theory serves as an effective tool for describing the spatial 

configuration of MAS formations as well as the sensing, communication, and control topology among agents in 

a distributed structure. To achieve coordinated behavior, each agent must exchange information with its 

neighboring agents to reach an agreement on certain shared objectives. In formation control problems, the 

control variables may be the absolute positions [8],[9], the relative positions, or the inter-agent distances 

[6],[10]. 

To address the formation control problem, numerous approaches have been proposed; however, this 

work develops a distributed formation control law using absolute position information as the control input, 

combined with graph-based modeling to define the inter-agent interaction topology. Fundamental concepts of 

graph theory are presented and synthesized based on [11],[12]. In applying graph theory to formation control, 

both directed and undirected graphs can be employed to represent information exchange among agents: directed 

graphs are used for unidirectional interactions ( ),G V E= , whereas undirected graphs are used for 

bidirectional interactions ( ),G V E=  [11]. 

 

2.1 Theoretical Preliminaries. 

2.1.1 Undirected Graph 

Consider a multi-agent system formation represented by a simple undirected graph comprising a set of vertices 

and a set of edges. 

Consider a multi-agent system formation represented by a simple undirected graphG = (V, E)comprising a set of 

vertices  1 2, ,..., nv vV v= with 0V n=  elements, a set of edges

 ( , ) , 1,..., ,i jE Vv v i j n i j V=   = with E m= elements. 

Let iv V và ( ),i jv v E denote a vertex and an edge of graphG. A graph is undirected if ( , )i jv v E

implies ( , )j iv v E .When considering multiple graphs, the vertex set and edge set of G are denoted 

byV(G)andE(G)respectively.In certain contexts, for simplicity, vertex 

i, and edge(vi,vj),may be represented as (i,j)or eij. Each graph G admits a corresponding geometric 

representation, where small circles denote the verticesvi∈ V and line segments (or arcs) connectvi and 

vjwhenever (vi,vj)) ∈ E. if (vi,vj) ∈ E(G)the vertices vi,vjare said to be adjacent(vi∼ vj),vertex viis said to be 

incident to edge(vi,vj). Two distinct edges that share a common vertex are called adjacent edges. 

In a simple undirected graph, there exists at most one edge between any two vertices. In contrast, an undirected 

multigraph, defined as G = (V, E), permits multiple edges between the same pair of vertices 

A weighted graph G is formally defined as an ordered triple (V,E,A)where, in addition to the vertex set V and 

the edge set E, there exists a weight set {𝜔𝑖𝑗 ∈ ℝ+|𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ 𝑉}. Each edge ( , )i j E is assigned a positive 

weigh 0ij  while non-adjacent vertex pairs are assigned a weight of zero 0ij =  

The relationships between the vertices and edges of the graph are typically described using matrix 

representations, which play a critical role in characterizing the connectivity structure of formation graphs[11]. In 

particular, the adjacency matrix 𝐴(𝐺) = [𝑎𝑖𝑗]𝑛×𝑛 ∈ ℝ𝑛×𝑛directly encodes the interconnections among the graph 

vertices. 

( ),

0

ij i j

ij

if v v E
a

otherwise

 
= 


          (1) 

For an undirected graph. 
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( )1 ,

0

i j

ij ji

if v v E
a a

otherwise

 
= = 



     (2) 

 

The degree of a vertex in a graph is defined as the number of edges incident to that vertex, denoted as deg(v) 

In an undirected graph, the degree matrix D(G) is a diagonal matrix representing the degree of each vertex. For a 

graph with n vertices, D(G) is an n×n square matrix. [11] 

deg( )      
[ , ]

0   

iv if i j
D i j

if i j

=
= 


         (3) 

Here, deg(vi)denotes the degree of vertexi (he number of edges incident to that vertex) andD is a diagonal matrix 

with nonzero entries only along its main diagonal 

 

2.1.2 Directed Graph. 

A directed graph G is defined as an ordered pair(V,E), where V=V(G) denotes the set of vertices and E = E(G) ∈ 

V ×Vdenotes the set of directed edges. A directed edge(u,v) ∈ E(u≠v)is represented geometrically by an arrow 

from vertex u tto vertex v. In directed graphs, (u,v)and(v,u)are distinct edges that may coexist, and the presence 

of(u,v) ∈ Edoes not imply(v, u) ∈ E. [11] 

Most definitions for undirected graphs naturally extend to directed graphs. For each vertex u ∈ V, the out-degree 

is defined asdeg+(u) = |N+(u)|, whereN+(u) = {v| (u,v) ∈ E}denotes the out-neighbor set of u. Similarly, the in-

degree deg−(u)and in-neighbor set N−(u)are defined analogously. A directed graph G is called balanced 

ifdeg+(u) = deg−(u) for allu ∈ V [11] 

The in-degree matrix of a directed graph is defined as 

D(G ) = diag(deg-(v1),...,deg-(vn))            (4) 

The adjacency matrix of a directed graph is determined analogously to that of an undirected graph, but 

ij jia a  

 

2.1.3 Laplacian matrix 

In graph theory, the Laplacian matrix is a fundamental algebraic tool that mathematically characterizes the 

connectivity structure of a graph and plays a critical role in stability analysis, consensus studies, and formation 

control. The general formulation of the Laplacian matrix, applicable to various classes of graphs, is commonly 

expressed as follows [11] 

L D A−                (5) 

In here,𝐿 = [ℓ𝑖𝑗]
𝑛×𝑛

∈ ℝ𝑛×𝑛represents the Laplacian matrix of the graph G 

 

2.1.4 Incidence Matrix 

A graph G = (V, E, A)with ∣V∣ = nvertices and ∣E∣ = m edges. The incidence matrixH=[hki]m×n ∈ Rm×nrepresents 

the vertex–edge relationships of the graph, where each row corresponds to an edge (e1,e2,…,em) and each column 

corresponds to a vertex [11] 

( )

( )

1, ,

1, ,

0,

k i j

ij k j i

if e v v

h if e v v

otherwise

 =


− =



          (6) 

 

2.1.5Overview of Formation Control Based on Relative Position 

Necessary assumptions for multi-agent systems in relative-position-based formation control:  

(1) Measurement: Each agent is equipped with a local reference frame aligned with the global coordinate frame; 

the agents need not know the origin of the global coordinate frame. Within their local frames, each agent can 

measure relative position (position error vector) and relative velocity vectors of a subset of neighboring agents. 

Because all local frames share the same orientation as the global frame, the measured relative position vectors 

are invariant across frames. (2) Interaction topology: The sensing relationships among agents are modeled by a 

connected undirected graph G = (V,E). The desired formation is specified by a set of prescribed relative position 

vectors assigned to the edges of G. 
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In the case where each agent in the formation is modeled as a first-order integrator 

;   1,..., ,i ip u i n= =               (7) 

In here, pi∈ Rdvà ui∈ Rddenote the position and the control input of agentiexpressed in the global reference 

frame gΣ.  

From the aforementioned sensing assumptions, each agent i can measure 

   , .ij j i iz p p j N= −    

The desired formation is specified by the set ( )*    , ,{ }ijz i j E =  the target for each agent is to achieve a 

formation configuration in which all desired relative position vectors are satisfied.

( )*   , ,ij j i ijz p p i j Ez= − =  

Set ( )*    , ,{ }ijz i j E =  is said to be feasible if  p  is nonempty 

( ) *         , ,   |dn

p j i ijp R p p z ij i j E   − =    

The set Γ is assumed to be feasible, and we define ( )
1

* ** ,...,
n

p vec p p= as an element of  p   

Assume that each agent only knows a set of predefined position errors
* * *   ,
ij j i iz p p j N= −    without 

knowing
* *  &
j i

p p  

The problem is to drive pto a formation that differs fromp*by a translation, or equivalently, to ensure 

thatp(t)converges to the set p∗khi t → +∞.For this problem, the formation control law is designed as follows. 

( )

( ) ( )

*

* *

  =   

p p

i

j i

i

i p ij ij ij

j N

p ij j i

j N

u k a z z

k a p p





−

= − − −




           (8) 

With kp> 0, δ = p∗- p  

( )   p dk L I = −                (9) 

According to consensus theory, if G is a connected graph, then ( )     1t n  → =   

In there ( ) ( )( )*

1

1
  0  0

n

i i

i

p p
n


=

= − is a constant vector. As a result, ( )   ,   p p t t − → →+  

Hay ( )   ,  ,p t p t → − →+ That is,p(t) converges to a fixed configuration belonging to the set  p   

In the case where each agent in the formation has second-order integrator dynamics 

,   1,..., .

i i

i i

p v

v u i n

=

= =
             (10) 

pi,vivà ui∈ Rdlần lượt là vị trí, vận tốc và tín hiệu điều khiển của tác tử i viết trên hệ qui chiếu toàn cục gΣ. Khi 

đó luật điều khiển viết cho từng tác tử như sau: 

pi,vivà ui∈ Rddenote the position, velocity, and control input of agent i, respectively, expressed in the global 

reference framegΣ. Then, the control law for each agent can be written as follows 

( )( )* *

1 2=      ,    1,..., ,i i j i j iu k p p p p k v i n− − − − − =  

k1,  k2are positive real constants 

By further performing the variable transformation
*   i ip p = − the following equation is obtained 

( )1 2

  

     ,    1,...,
i

i

i i j i

j N

i v

v k k v i n



 


=

= − − − =
       (11) 

The above control law drives the agents toward consensus  ,  0i i dv  → → , this is equivalent top(t) 

converges to a fixed configuration ( ) *  , .i ip t p t → + →+  
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III. Simulation Results 
Simulations were carried out in MATLAB to verify the formation control law based on relative 

positions in 2D and 3D spaces. The system consists of five agents, each moving directly toward its assigned 

position in space. The target positions are arranged at the vertices of a 5 -pointed star inscribed in a regular 

pentagon. The initial positions are randomly generated. Each agent in the formation is modeled as a first-order 

integrator and is governed by the control laws (8) and (9). The adjacency matrix H, of size 5×5, describes the 

relationships between the vertices and the edges in the graph. In this case, H is configured as a directed circular 

graph, where each agent receives control information from its preceding neighbor, ensuring strong connectivity 

and closure of the multi-agent system. 

The matrix H is presented as follows 

 
Processing the matrix H in MATLAB using a for loop 

n=5 

H = -eye(n) 

for i=1:1:n-1 

H(i,i+1) = 1 

end 

H(n,1) = 1 

 

 
(a) Formation in 2D space 

 
(b) Formation in 3D space 

Figure 1: Simulation of the formation control algorithm based on relative positions 

The agents successfully converged to their respective target points without significant deviations or oscillations. 

This demonstrates the correctness and effectiveness of the applied control law 

 

IV. Conclusion 
This study clarifies the central role of graph theory in the design and analysis of distributed formation 

control strategies for multi-agent systems. Modeling the interconnection structure using the adjacency matrix 

not only provides a rigorous mathematical foundation but also enables a clear characterization of agent 

interactions within the system. The designed closed directed graph structure ensures strong connectivity, 

allowing each agent to update its state based on position information received from its preceding neighbor in the 

cycle. 
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The formation control law (9) is formulated using relative position information between agents, with 

the objective of driving the entire system toward a desired geometric configuration—specifically, converging 

the agents to the vertices of a regular polygon inscribed in a circle of radius 5. Simulation results performed in 

MATLAB for both 2D and 3D spaces with five mobile agents demonstrate the effectiveness of the proposed 

approach. Despite random initialization in space, the agents rapidly converge to the desired formation with 

negligible error. These results not only validate the theoretical soundness of the algorithm but also highlight its 

potential for practical applications in cooperative robotic systems, UAVs, and autonomous vehicles operating in 

unstructured environments. 

Overall, this work strengthens the link between graph theory and modern formation control, laying a 

foundation for future extensions involving adaptive or fully distributed control strategies, as well as integration 

with dynamic environmental conditions and real-world disturbances 
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