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Abstract

Short-horizon demand forecasting is an important input to operational decision making in con-
tinuously operating electronic markets.While a large literature has examined high-frequency price
dynamics in cryptocurrency markets, comparatively less attention has been given to fore- casting
transactional demand at very short horizons and to understanding how predictive per- formance
changes as the forecasting horizon increases.This paper studies horizon-dependent demand
forecasting using one year of minute-level data for three major cryptocurrencies:Bit- coin,
Ethereum and Binance Coin.Baseline forecasting models based on historical demand and calendar
effects are compared with augmented models that incorporate simple system state in-
dicatorsderivedfromcontemporaneouspriceinformation. Forecastingperformanceisevaluated at one-
minute, five-minute and fifteen-minute horizons using standard accuracy metrics.The
empiricalresultsshowthatsystemstateindicatorsprovideconsistentimprovementsinforecast-
ingaccuracyatallhorizons, butthatthemagnitudeofimprovementdeclinessystematically as the horizon
lengthens. The findings highlight the importance of horizon-aware evaluation in short-term
forecasting and suggest that parsimonious state indicators can offer practical valuein high-
frequency demand prediction tasks.
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L Introduction

Short-horizon demand forecasting is a central component of operational decision-making in elec-
tronic systems that operate continuously and respond to rapidly evolving activity.In such envi- ronments,
forecasts are required at granular time scales, often measured in minutes rather than hours or days and are
repeatedly updated as new information becomes available.Even modest improvements in short-horizon
predictive accuracy can translate into meaningful operational gains when forecasts are used frequently for
monitoring, capacity allocation and real-time control.

A substantial forecasting literature documents that high-frequency activity exhibits strong tempo-
ral regularities, including intraday seasonality, short-term persistence and calendar effects.Clas- sical
forecasting frameworks emphasize the effectiveness of history-based predictors and temporal indicators
for  short-horizon forecasting tasks [1,2].Empirical studies further show that recent
observationsoftenexplainasignificantportionofnear-termvariability, motivatingbaselinemodels built around
lagged demand and moving-average structures [3,4].

At the same time, high-frequency systems are inherently state dependent.The contemporaneous
operating condition of a system—reflected in short-term variability, dispersion and intensity

ofobservedsignals—
capturesinformationabouttheinteractionofheterogeneousparticipantsandthecurrentbalancebetweensupplyanddem
and.Infinancialmarkets,suchstateinformationhas beenshowntoevolvegraduallyandtoinfluenceshort-

horizondynamicsbeyondwhatiscaptured by historical averages alone [10,7,8].

Recent advances in empirical forecasting increasingly combine traditional time-series features
with machine learning techniques to exploit nonlinear relationships and interaction effects.Tree-based
ensemble methods, such as random forests and gradient boosting, have demonstrated strong per-
formanceacrossawiderangeofappliedforecastingproblemsduetotheirflexibilityandrobustness [5,6].

However,large-scaleempiricalcomparisonsemphasizethatcarefulout-of-sampleevaluation
- -]
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remainsessentialtoensurethatreportedimprovementsreflectgenuinepredictivevalueratherthan over-fitting
[4].

Cryptocurrencymarketsprovideanaturallaboratoryforstudyingshort-horizondemandforecasting
under continuous operation.These markets trade on a 24/7 basis, exhibit substantial trading
activityandexperiencerapidtransitionsbetweenroutineandstressedconditions.Unliketraditional financial
markets, they do not exhibit opening or closing effects, allowing intraday dynamics to be analyzed
uniformly across the entire day.Existing empirical studies on cryptocurrencies focus primarily on price
behavior, volatility and market efficiency [11,12,13,14,15], while transactional demand has received
comparatively less attention.

An additional dimension that remains under-explored is the role of the forecasting horizon itself.
Forecastingdemandoneminuteaheaddiffersfundamentallyfromforecastingcumulativedemand over longer
horizons such as five or fifteen minutes.Temporal aggregation alters the signal-to-noise
ratio,therelevanceofcontemporaneousinformationandtheeffectivepersistenceofdemand.As a result, evaluating
forecasting models at a single horizon provides only a partial view of their operational usefulness.

Theobjectiveofthisstudyistoexaminewhethersimpleandeasilycomputablesystemstate indicators improve
short-horizon demand forecasting performance and to characterize how their predictive contribution varies
systematically across forecasting horizons.Using one year of minute-level data for three highly liquid
cryptocurrency assets—Bitcoin, Ethereum and Binance Coin—we compare baseline history-based models with
augmented models that incorporate contemporaneous state information.The analysis is conducted across one-
minute, five-minute and fifteen-minutehorizonsusinglinearregressionandnonlinearensemblemethods.

The contribution of this paper is empirical and methodological.First, it provides evidence that
parsimonioussystemstateindicatorsyieldconsistentreductionsinforecastingerroracrossmultiple model
classes.Second, it documents a clear horizon-dependent decay in the magnitude of these improvements,
highlighting the importance of horizon-aware evaluation.Finally, the study adoptsa controlled, model-
agnostic comparison framework that emphasizes robustness and operational interpretability rather than
aggressive optimization.

The remainder of the paper is organized as follows.Section 2 describes the data and preprocessing
pipeline.Section 3 formalizes the forecasting setup and feature construction.Section 4 outlines the forecasting
models and  experimental  design.Section 5  presents and interprets the  multi-horizon
empiricalresults.Section6discussesoperationalimplicationsandlimitations.Section7concludes the paper.

IL. Data Description
The empirical analysis in this study is based on one year of high-frequency data obtained from the
cryptocurrency market, focusing on three major digital assets:Bitcoin (BTC), Ethereum (ETH)
andBinanceCoin(BNB).Theseassetswereselectedduetotheirsustainedliquidity,consistently
hightradingvolumesandcentralrolewithinthebroadercryptocurrencyecosystem.Together,
theyprovidearepresentativeandreliablesettingforexaminingshort-horizondemandforecasting
incontinuouslyoperatingelectronicmarkets.
The raw data were collected from the Binance exchange using the official Binance application
programming interface (API), specifically through the k/ines endpoint.Binance klines provide aggregated
market information at fixed time intervals and are widely used in empirical studies due to their
transparency, availability and consistency.Each kline record corresponds to a predefined intervaland
summarizes market activitywithin that interval usingstandard price and volume fields.
In this study, one-minute klines were used as the base temporal resolution.The one-minute fre- quency
represents a practical compromise between capturing short-horizon market dynamics and maintaining
computational tractability for large-scale empirical analysis.At this resolution, thedata retain meaningful
intraday structure while avoiding the excessive noise and microstructural artifacts often present at sub-
minute frequencies.
Cryptocurrency markets operate continuously without centralized trading hours, overnight clo- sures, or
formal opening and closing periods.This continuous operation distinguishes them from traditional equity
and futures markets and eliminates the need to account for market open or close effects.As a result, all
minutes within the day are treated symmetrically, allowing the analysis to focus entirely on intrinsic
demand dynamics rather than institutional trading schedules.
Each raw observation contains a timestamp identifying the start of the one-minute interval, an asset
identifier and the standard open, high, low, close and volume (OHLCYV) fields.The open and close prices
represent the first and last traded prices within the minute, while the kigh and low prices record the
maximum and minimum traded prices during that interval. The volume variable records the total traded
quantity executed within the minute and serves as the primary proxy for transactional demand.
Transactional demand is proxied by traded volume throughout the analysis.At very short horizons, volume
]
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provides a direct and operationally meaningful measure of executed activity and reflects the intensity of
participation by market participants.Interpreting volume as demand aligns the analysis with broader
operational concepts such as system load, throughput and activity intensityin electronic platforms.
Rawdataforeachassetwerecollectedseparatelyandsubsequentlycombinedintoaunifieddataset using an asset
identifier.Before feature construction, all observations were sorted strictly by as-set and timestamp to
ensure correct temporal ordering.This step is essential in high-frequency forecasting to avoid information
leakage and to preserve the causal structure of the data.

Missing or irregular intervals were handled prior to feature engineering to preserve a uniform one- minute
grid.Maintaining a regular temporal structure is particularly important when constructing rolling-window
statistics and lagged variables, as irregular spacing can introduce artificial disconti- nuities and distort
derived indicators.

To capture systematic temporal patterns in demand, two calendar variables were constructed di-
rectlyfromthetimestamp. Thevariableminuteofdayrecordsthepositionofeachobservation

within the daily cycle, measured as the number of minutes elapsed since midnight.The variableday of week
identifies the day of the week associated with each observation. Although cryptocur- rency markets operate
continuously, empirical evidence suggests that intraday and weekly regular-
itiesmaystillariseduetohumanbehavior,institutionalparticipationandregionalactivitycycles.

All subsequent variables used in the empirical analysis were constructed exclusively from informa- tion
available up to the forecasting origin. No future information was used at any stage of feature
constructionortargetdefinition. Thisdesignensuresthattheforecastingexercisereflectsarealistic operational
setting and that reported performance measures correspond to genuine out-of-sample predictions.

II1. Forecasting Variables and System State Indicators
The forecasting framework employed in this study is based on transforming raw minute-level mar- ket
observations into a structured set of explanatory variables suitable for short-horizon demand
prediction.Each row of the final modeling dataset corresponds to a specific asset and minute and all
variables are computed using information available up to that time.This section provides a de- tailed
description of the forecasting targets, baseline demand variables and system state indicators used in the
empirical analysis.
Theprimaryobjectiveistoforecastnear-futuretransactionaldemandovermultiplehorizons. Let Videnote the
observed traded volume at minute z.Three horizon-dependent forecasting targets are constructed.The
variable target volume next min corresponds to V1, the demand observed in the immediately subsequent
minute.The variables target volume next 5min and tar- get volume next 15min are defined as the
cumulative traded volume over the next five and fifteen minutes, respectively. Using cumulative volume
rather than averages aligns the targets with oper- ational interpretations of total expected load over short
planning windows.
Baselinedemandpredictorsaredesignedtocaptureshort-termpersistence,localtrendsandsystem- atic temporal
patterns. The wvariable vol lag 1 represents the observed demand in the immediately
precedingminuteandservesasthemostbasicpersistence-basedpredictor.High-frequencydemand is known to
exhibit strong short-term dependence, making lagged volume a natural starting point for forecasting.
To summarize recent demand trends while smoothing high-frequency noise, two moving-average variables
are constructed.The variable vol ma 5 represents the average traded volume over the previous five minutes,
while vol ma 15 captures the average demand over the previous fifteen minutes.These variables provide
information about local demand intensity and help distinguish transient fluctuations from more persistent
changes in activity.
Calendar variables complement historical demand measures by capturing systematic temporal ef-
fects.The variable minute of day encodes intraday position, allowing the model to account for recurring
daily patterns in demand.The variable day of week captures potential weekly regulari- ties. Together, these
variables form the core of the baseline forecasting specification.
In addition to baseline demand features, several system state indicators are constructed from con-
temporaneous price information.These variables are intended to capture the current operating condition of
the market, reflecting short-term variability, dispersion and intensity that may influ- ence near-future
demand.
Thevariablereturn mmeasurestherelativechangeintheclosingpricebetweenconsecutive
minutes.This one-minute return serves as a proxy for short-term price movement intensity and
reflectsthearrivalofnewinformationorshiftsintradingbehavior.Periodsoflargeabsolutereturns often coincide
with heightened activity and increased participation.
Price dispersion within a minute is captured by the variable hl range, defined as the relative differ- ence
-
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between the high and low prices during the interval. This measure summarizes intraminute volatility and
reflects the degree of price fluctuation observed within a very short time window.

The variable co range measures the relative difference between the closing and opening prices within a
minute.Unlike A/ range, which captures dispersion, this variable emphasizes directional movement and
provides information about the net price change over the interval.
Tosummarizerecentvolatilityconditionsbeyondasingleminute,arealizedvolatilitymeasure is computed over
a rolling five-minute window.The variable realized vol 5m aggregates squared short-
termpricechangesovertheprecedingfiveminutesandprovidesacompactmeasureofrecent market
instability.Elevated realized volatility indicates departures from routine conditions andmay signal
increased uncertainty in near-term demand.

An interaction term, demandpressure, is constructed to capture situations in which elevated trading activity
coincides with heightened volatility. This  variable combines contemporancous volume  with
recentvolatilityandisdesignedtoidentifystressedmarketconditionsinwhichforecastingerrors
maybemoreconsequentialfromanoperationalperspective.

All system state indicators are computed using minimal and readily available information derived from
price series.No order book data or proprietary indicators are required, emphasizing the generality and ease
of implementation of the proposed framework.

All explanatory variables are aligned so that only information available up to time ¢ is used to forecast
demand at future horizons. This strict alignment ensures that the forecasting exercise re- mains fully out-
of-sample and avoids look-ahead bias.The resulting dataset provides a transparent and reproducible
mapping from raw market observations to the forecasting variables used in the empirical analysis.

By separating baseline demand features from system state indicators, the framework allows a controlled
comparison between history-based forecasting and state-aware forecasting approaches. This structure
makes it possible to isolate the incremental predictive contribution of system state information and to
assess how its relevance varies systematically across forecasting horizons.

Forecasting Models and Experimental Design

This section describes the forecasting models employed in the empirical analysis and outlines the ex- perimental
design used to evaluate their out-of-sample performance.The objective is not to propose novel forecasting
algorithms, but to assess, in a controlled and transparent manner, whether incor- porating system state indicators
improves short-horizon demand forecasts across different modelclasses and forecasting horizons.

Three forecasting models are considered:linear regression, random forest regression and gradi-ent boosting
regression. These models represent increasing levels of functional flexibility and are widely used in applied
forecasting and empirical modeling. Examining performance across these model classes allows the analysis
to distinguish between improvements attributable to additional explanatory information and those driven
purely by model complexity.

For each model class, two specifications are estimated.The baseline specification includes onlyhistorical
demand variables and calendar effects, while the augmented specification additionally incorporates system state
indicators derived from contemporaneous price information. This paired
designensuresthatanyobservedimprovementinforecastingaccuracycanbeattributeddirectlyto the inclusion of
system state variables rather than differences in estimation procedures or sample composition.
Atime-orderedtrain—testsplitisusedtoevaluateout-of-sampleperformance.Specifically, thefirst 80% of the
observations for each asset are used for model estimation,while the remaining 20%are reserved for
evaluation. This approach avoids look-ahead bias and reflects realistic forecasting conditions in which
future demand must be predicted using only information available at the forecasting origin.
Forecastingtargetsareconstructedformultiplehorizons. Theone-minutetargetcorrespondstodemand observed
in the immediately subsequent minute. The five-minute and fifteen-minute targets
aredefinedascumulativedemandoverthenextfiveandfifteenminutes,respectively.Usingcumulative ~ volume
rather than averages aligns the targets with operational interpretations of expected system load over short
planning windows.

Linear regression is employed as a benchmark forecasting model due to its transparency, inter-
pretabilityandwidespreaduseinoperationalsettings.Despiteitssimplicity, linearregressionoften  performs
competitively in short-horizon forecasting tasks, particularly when strong persistence and seasonal effects
are present.

Formally, the linear regression model specifies the forecasted demand as a linear combination of
explanatoryvariablesavailableattimes.Inthebaselinespecification,thesevariablesincludelagged demand,
moving averages and calendar indicators.The augmented specification extends this setby adding system
state indicators such as short-term returns, price ranges and realized volatility measures.
]
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Thelinearmodelprovidesausefulreferencepointforassessingtheincrementalvalueofsystemstate
information.Because linear regression cannot capture nonlinear interactions or regime-dependent effects,
any improvement observed in this model indicates that system state indicators contain information that is
not redundant with historical demand patterns alone.
Randomforestregressionisincludedasanonlinearforecastingapproachcapableofcapturingcom-
plexrelationshipsamongexplanatoryvariables. Arandomforestconsistsofanensembleofdecision
trees,eachtrainedonabootstrapsampleofthedata. Ateachsplitinatree,arandomsubset of explanatory variables
is considered, introducing diversity among trees and reducing correlation within the ensemble.

The final random forest prediction is obtained by averaging predictions across all trees in the
ensemble.Thisaggregationreducesvarianceandenhancesrobustness,makingrandomforestspar- ticularly well
suited for high-frequency forecasting tasks characterized by noisy and heterogeneous data.

In the context of short-horizon demand forecasting, random forests can capture nonlinear depen- dencies
and interaction effects between historical demand variables and system state indicators. For example, the
impact of short-term volatility on future demand may depend on the prevailing level of activity, a
relationship that is difficult to represent using linear specifications.

Gradient boosting regression is employed as a second nonlinear forecasting approach that comple-
mentstherandomforestmodel. Whilebothmethodsaretree-basedensembles,gradientboosting

differs fundamentally in how individual trees are constructed and combined. In gradient boosting, trees are
added sequentially rather than independently.

Each new tree in the gradient boosting model is trained to predict the residual errors of the cur- rent
ensemble, allowing the model to gradually improve predictive performance through iterative
refinement. This sequential structure enables gradient boosting to capture complex nonlinear rela- tionships
and subtle interaction effects among explanatory variables.

Although gradient boosting models are powerful, they are also more sensitive to over-fitting if not
carefullyregularized. Tomitigatethisrisk, modelcomplexityiscontrolledthroughalimitednumber of trees,
shallow tree depth and the wuse of shrinkage parameters.These constraints ensure that
observedperformancegainsreflectgenuinepredictiveinformationratherthanexcessiveadaptation to noise.
Using both random forest and gradient boosting models allows the analysis to assess whether
improvements from system state indicators persist across different nonlinear modeling strategies.
Consistent gains across these approaches provide stronger evidence that the indicators capture meaningful
information rather than model-specific artifacts.

Forecast accuracy is evaluated using two standard metrics:mean absolute error (MAE) and root mean
squared error (RMSE). These metrics provide complementary perspectives on predictive performance and
are widely used in empirical forecasting studies.

Mean absolute error is defined as the average absolute difference between observed demand and predicted
demand over the evaluation sample. MAE measures the typical magnitude of forecasting errors and is
robust to extreme deviations.As such, it provides an intuitive and interpretable measure of average forecast
accuracy.

Root mean squared error is defined as the square root of the average squared difference between observed
and predicted demand.RMSE penalizes larger errors more heavily than MAE and is therefore sensitive to
occasional large deviations.In high-frequency settings, where extreme demand
spikesmayoccur,RMSEprovidesvaluableinformationabouttailriskinforecastingerrors.

Evaluating both MAE and RMSE allows the analysis to distinguish between improvements in typi-
calforecastingperformanceandreductionsinlarge,potentiallycostlyerrors.Consistentreductions in both
metrics indicate robust improvements across the entire error distribution.

Together, the forecasting models and experimental design provide a structured and transparent framework
for assessing the predictive value of system state indicators across multiple horizons.By combining linear
and nonlinear models, multiple forecasting horizons and complementary ac-
curacymetrics,theanalysisoffersacomprehensiveevaluationofshort-horizondemandforecasting performance
in continuously operating electronic markets.

Iv. Empirical Results

This section reports out-of-sample forecasting performance for baseline and augmented models across
multiple forecasting horizons.Forecast accuracy 1is evaluated using mean absolute error
(MAE)androotmeansquarederror(RMSE).ResultsaresummarizedinTable 1.

For clarity, subscripts B and 4 are used to distinguish between baseline and augmented model
specifications.The baseline specification (B) includes only historical demand wvariables and calendar
effects,whiletheaugmentedspecification(4)additionallyincorporatessystemstateindicators
]
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derived from contemporaneous price information.Reported percentage improvements are computed relative to
the baseline model.

Tablel:Out-of-sampleforecastingperformanceacrosshorizons

Horizon Model MAE; RMSE; MAE, RMSE, AMAE(%) ARMSE(%)
1-min Linear 224.72 555.22 217.45 542.73 3.24 225
1-min RandomPForest 230.27 555.96 218.47 530.80 5.12 453
1-min GradientBoosting 229.25 553.19 217.81 528.19 4.99 4.52
5-min Linear 507.19 1152.52 483.39 1092.15 4.69 5.24
5-min RandomForest 506.36 1137.30 451.55 1008.86 10.82 11.29
5-min GradientBoosting 507.22 1136.53 453.48 1003.22 10.60 11.73
15-min Linear 570.09 1225.41 565.47 1213.53 0.81 0.97
15-min RandomForest 573.89 1240.08 566.13 1225.11 1.35 1.21
15-min GradientBoosting 576.13 1229.18 569.90 1210.09 1.08 1.55

Quantitatively, the results show that incorporating system state indicators leads to consistent reductions in
both  MAE and RMSE at all horizons and across all model classes.At the one-minute
horizon,improvementsrangebetweenapproximately3%and5%,indicatingthatcontemporaneous state
information provides incremental predictive value beyond historical demand patterns.

At the five-minute horizon, the magnitude of improvement increases substantially for nonlinear models,
with error reductions exceeding 10%. This suggests that short-term aggregation amplifies the usefulness of
stateindicators whencombined withflexible models capableof capturingnonlinear interactions.

At the fifteen-minute horizon,improvements remain positive but are markedly smaller,falling
below2%inmostcases. Thispatternindicatesaclearhorizon-dependentdecayinthepredictiverelevance
ofcontemporaneousstateinformation,consistentwithincreasingdominanceofcumulativenoise  and  longer-term
persistence effects.

Qualitatively, these findings suggest that system state indicators are most valuable when forecasts are
required at very short horizons or modest aggregation windows. As the horizon lengthens, the influence of
immediate system conditions diminishes and demand dynamics become increasingly governed by broader
temporal structure.

Tofurtherillustratethehorizon-dependentbehaviorobservedinTablel,agraphicalrepresentation of forecast error
improvements is provided.The figure summarizes percentage reductions in MAEacross forecasting horizons for
each model class, highlighting how the contribution of system state indicatorsvariesasthehorizonlengthens.
Figure 1 provides a visual summary of the horizon-dependent effect of system state indicators.Im- provements
are largest at short horizons and decline as the forecasting window increases.Nonlinear
modelsexhibitsubstantiallylargergainsatthefive-minutehorizon,indicatingtheirabilitytoex-  ploit  interactions
between historical demand and system state information.At the fifteen-minute horizon, improvements remain
positive but are markedly smaller, consistent with a decay in the relevance of contemporaneous state conditions.
WhileMAEsummarizestypicalforecasterrors, RMSEplacesgreaterweightonlargedeviations
andisthereforesensitivetoextremeforecastingerrors. Toexaminewhetherthehorizon-dependent
patternsobservedforMAEalsoholdwhenlargererrorsarepenalizedmoreheavily,acorresponding
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0

1 5 15
ForecastingHorizon(minutes)
Figurel:PercentagereductioninM A Efrémbaselinetoaugmentedmodelsacrossforecasting horizons

analysisbasedonRMSEispresentedbelow.
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Figure 2:Percentage reduction in RMSE=ffomrbaseline to augmented models across forecastinghorizons

Figure 2 confirms that the horizon-dependent effects observed for MAE are also present when fore-
castingaccuracyisevaluatedusingRMSE.Improvementsareagainlargestatshortandintermedi-
atehorizons,particularlyfornonlinearmodels,indicatingthatsystemstateindicatorshelpreduce  large  forecasting
errors  during  periods of  eclevated  activity.At the  fifteen-minute = horizon, = RMSE
improvementsremainpositivebutarecomparativelysmall,suggestingthatextremedeviations become increasingly
dominated by longer-term demand dynamics rather than contemporaneoussystem conditions.

V. Discussion and Limitations
Thisstudyexaminedhorizon-dependentdemandforecastinginhigh-frequencycryptocurrencymar-
ketswithaparticularfocusontheroleofsimplesystemstateindicators. Theempiricalresults

demonstratethatincorporatingcontemporaneousstateinformationyieldsconsistentimprovements
inforecastingaccuracyacrossmultiplemodelclassesandforecastinghorizons. Atthesametime,
themagnitudeoftheseimprovementsvariessystematicallywiththeforecasthorizon,highlighting
theimportanceothorizon-awareevaluationinshort-termdemandprediction.

From an operational perspective, the findings suggest that system state indicators are most valuable
whenforecastsarerequiredatveryshorthorizonsormodestaggregationwindows. Attheone- minute horizon,
improvements are modest but persistent, reflecting the inherently noisy nature ofhigh-frequency demand.At the
five-minute horizon, gains become substantially larger for nonlinear models, indicating that short-term
aggregation allows system state information to interact more effectively with historical demand patterns.At the
fifteen-minute horizon, improvements remain
positivebutaremarkedlysmaller,suggestingadiminishinginfluenceofcontemporaneousconditions aslonger-
termdynamicsbegintodominate.

The observed horizon-dependent decay in predictive improvement has important implications for the
design of forecasting systems in continuously operating electronic markets.Features that are highly
informative at very short horizons may lose relevance as the forecasting window expands, even when the
same underlying data and modeling framework are used.This finding cautions against evaluating
forecasting models at a single horizon and extrapolating conclusions to other operational contexts without
explicit empirical verification.

An important insight from the empirical results is the differential behavior of linear and nonlinear
models.While all model classes benefit from the inclusion of system state indicators, nonlinear ensemble
methods exhibit substantially larger gains, particularly at the five-minute horizon.This
patternsuggeststhatthepredictivecontributionofstatevariablesisnotpurelyadditivebutarisesin
partthroughinteractionswithhistoricaldemandandcalendareffects.Suchinteractionsaredifficult to capture
using linear specifications but are naturally accommodated by tree-based ensemble models.

Despite these gains, it is noteworthy that even the most flexible models do not eliminate fore- casting error
at short horizons.High-frequency demand remains inherently volatile, reflecting the decentralized nature of
participation, rapid information arrival and heterogeneous trading motives in cryptocurrency markets.The
results therefore underscore the limits of predictability in such environments and highlight the need for
realistic expectations regarding achievable forecasting ac- curacy.

The simplicity of the system state indicators employed in this study is both a strength and a limitation.On
the one hand, all indicators are derived from readily available price and volume information and can be
computed in real time without access to proprietary order book data.This makes the proposed framework
broadly applicable and easy to implement in practical settings.On the other hand, more detailed micro-
structure information, such as depth, order flow imbalance, or queue dynamics, may contain additional
predictive signals that are not captured by the indicators considered here.

Another limitation of the present analysis is its focus on three highly liquid cryptocurrency assets. While
Bitcoin, Ethereum and Binance Coin provide a robust test environment, the results may not generalize

I ——
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directly to less liquid assets or markets with different participation structures.In thinner markets, demand
dynamics may be more irregular and the relative importance of state indicators may differ substantially.
The empirical evaluation adopts a deliberately conservative modeling approach.Model hyperpa-
rametersarenotaggressivelyoptimizedandtheanalysisemphasizesrobustnessandinterpretability

over maximal predictive performance. While this choice strengthens the credibility of the reported results, it may
understate the performance achievable through more elaborate tuning or adaptive modeling strategies.
Finally,thestudyispurelypredictiveinnatureanddoesnotattempttoestablishcausalrela- tionships between system

state indicators and future demand. The observed improvements should
thereforebeinterpretedasempiricalregularitiesratherthanstructuraleffects.Understanding the mechanisms through
which contemporaneous market conditions influence near-future demand

remainsanimportantdirectionforfutureresearch.

Taken together, the discussion highlights that system state indicators offer a practical and robust
enhancement to short-horizon demand forecasting, but that their usefulness is inherently horizon
dependent and subject to structural limitations.These findings provide a foundation for more detailed
investigations into high-frequency predictability and operational forecasting in electronic markets.

VI Conclusion
This paper investigated horizon-dependent demand forecasting in high-frequency cryptocurrency markets,
with particular emphasis on the role of simple system state indicators derived from con- temporaneous
price information.Using one year of minute-level data for Bitcoin, Ethereum and Binance Coin, the study
compared  baseline forecasting  models based on  historical demand and  cal-
endareffectswithaugmentedmodelsthatincorporateshort-termvariabilityandactivity measures.
The empirical results demonstrate that system state indicators provide consistent improvementsin
forecasting accuracy across linear regression, random forest and gradient boosting models.Im- portantly,
these improvements persist across multiple forecasting horizons, but their magnitude declines
systematically as the horizon lengthens.This horizon-dependent decay highlights the im- portance of
aligning forecasting models with the operational time scales at which decisions are made.
The findings contribute to the forecasting literature by emphasizing that predictive relationships observed
at one horizon cannot be assumed to hold uniformly at others.Even within a fixed
modelingframeworkanddataset,therelevanceofexplanatoryvariablesmaychangesubstantiallyas
temporalaggregationincreases. Thisinsightreinforcestheneedforexplicitmulti-horizonevaluation in short-
term forecasting studies.
From a practical standpoint, the results suggest that incorporating parsimonious system state indicators can
enhance real-time monitoring and short-term planning in continuously operating electronic
markets.Because the indicators considered in this study are easy to compute and rely only on readily
available data, they offer a low-cost improvement to existing forecasting systems.
The analysis also points toward several promising directions for future research within a coherent
andfocusedresearchprogram.Onenaturalextensionistomovebeyondprice-basedstateindicators
andexaminetheroleoforder-flowinformation.Forexample,futureworkmayinvestigatewhether order-
flowimbalanceservesasapredictorofshort-termpricemovementanddemandandhowsuch imbalance measures
compare when weighted by liquidity rather than treated uniformly.
Related questions include the interaction between order-flow imbalance and market frictions such as bid—
ask spread and slippage.Understanding how these factors influence the decay of intraday
predictivesignalsmayprovidedeeperinsightintothelimitsofshort-horizonforecastingandthe

sustainabilityofintradayalpha.

Anotherimportantavenueconcernsregimedependence. Theprofitabilityandpredictivevalue of imbalance-
based signals may vary across market regimes characterized by differing volatility,
liquidity,orparticipationintensity.Systematicallyidentifyingandmodelingsuchregimesmay  help  explain
when and why short-horizon predictability emerges or disappears.

By addressing these questions within a unified empirical framework and using a consistent dataset,
futurestudiescanbuildacoherentsequenceofrelatedcontributionsthatprogressivelydeepenour — understanding
of high-frequency market dynamics.Such a programmatic approach allows indi- vidual studies to remain
focused while collectively advancing knowledge in a well-defined research area.

In summary, this paper provides empirical evidence that system state indicators enhance short- horizon
demand forecasting in high-frequency cryptocurrency markets, but that their predictive contribution is
inherently horizon dependent.The results clarify both the potential and the limi- tationsofstate-
awareforecastingandlaythegroundworkforfutureresearchonorderflow,regime dependence and intraday
]
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predictability in electronic markets.
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