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I. Introduction 

Short-horizon demand forecasting is a central component of operational decision-making in elec- 

tronic systems that operate continuously and respond to rapidly evolving activity.In such envi- ronments, 

forecasts are required at granular time scales, often measured in minutes rather than hours or days and are 

repeatedly updated as new information becomes available.Even modest improvements in short-horizon 

predictive accuracy can translate into meaningful operational gains when forecasts are used frequently for 

monitoring, capacity allocation and real-time control. 

A substantial forecasting literature documents that high-frequency activity exhibits strong tempo- 

ral regularities, including intraday seasonality, short-term persistence and calendar effects.Clas- sical 

forecasting frameworks emphasize the effectiveness of history-based predictors and temporal indicators 

for short-horizon forecasting tasks [1,2].Empirical studies further show that recent 

observationsoftenexplainasignificantportionofnear-termvariability, motivatingbaselinemodels built around 

lagged demand and moving-average structures [3,4]. 

 

At the same time, high-frequency systems are inherently state dependent.The contemporaneous 

operating condition of a system—reflected in short-term variability, dispersion and intensity 

ofobservedsignals—

capturesinformationabouttheinteractionofheterogeneousparticipantsandthecurrentbalancebetweensupplyanddem

and.Infinancialmarkets,suchstateinformationhas beenshowntoevolvegraduallyandtoinfluenceshort-

horizondynamicsbeyondwhatiscaptured by historical averages alone [10,7,8]. 

Recent advances in empirical forecasting increasingly combine traditional time-series features 

with machine learning techniques to exploit nonlinear relationships and interaction effects.Tree-based 

ensemble methods, such as random forests and gradient boosting, have demonstrated strong per- 

formanceacrossawiderangeofappliedforecastingproblemsduetotheirflexibilityandrobustness [5,6]. 

However,large-scaleempiricalcomparisonsemphasizethatcarefulout-of-sampleevaluation 

Abstract 

Short-horizon demand forecasting is an important input to operational decision making in con- 

tinuously operating electronic markets.While a large literature has examined high-frequency price 

dynamics in cryptocurrency markets, comparatively less attention has been given to fore- casting 

transactional demand at very short horizons and to understanding how predictive per- formance 

changes as the forecasting horizon increases.This paper studies horizon-dependent demand 

forecasting using one year of minute-level data for three major cryptocurrencies:Bit- coin, 

Ethereum and Binance Coin.Baseline forecasting models based on historical demand and calendar 

effects are compared with augmented models that incorporate simple system state in- 

dicatorsderivedfromcontemporaneouspriceinformation.Forecastingperformanceisevaluated at one-

minute, five-minute and fifteen-minute horizons using standard accuracy metrics.The 

empiricalresultsshowthatsystemstateindicatorsprovideconsistentimprovementsinforecast- 

ingaccuracyatallhorizons,butthatthemagnitudeofimprovementdeclinessystematically as the horizon 

lengthens. The findings highlight the importance of horizon-aware evaluation in short-term 

forecasting and suggest that parsimonious state indicators can offer practical valuein high-

frequency demand prediction tasks. 

Keywords:Demandforecasting;Cryptocurrencymarkets;High-frequencydata 

MSC2020:62M10,90B05,91B84 

 



Horizon-Dependent Demand Forecasting in High-Frequency Cryptocurrency Markets 

| IJMER | ISSN: 2249–6645 |                            www.ijmer.com                | Vol. 15 | Iss. 6 | Nov.-Dec.2025| 125 | 

remainsessentialtoensurethatreportedimprovementsreflectgenuinepredictivevalueratherthan over-fitting 

[4]. 

Cryptocurrencymarketsprovideanaturallaboratoryforstudyingshort-horizondemandforecasting 

under continuous operation.These markets trade on a 24/7 basis, exhibit substantial trading 

activityandexperiencerapidtransitionsbetweenroutineandstressedconditions.Unliketraditional financial 

markets, they do not exhibit opening or closing effects, allowing intraday dynamics to be analyzed 

uniformly across the entire day.Existing empirical studies on cryptocurrencies focus primarily on price 

behavior, volatility and market efficiency [11,12,13,14,15], while transactional demand has received 

comparatively less attention. 

An additional dimension that remains under-explored is the role of the forecasting horizon itself. 

Forecastingdemandoneminuteaheaddiffersfundamentallyfromforecastingcumulativedemand over longer 

horizons such as five or fifteen minutes.Temporal aggregation alters the signal-to-noise 

ratio,therelevanceofcontemporaneousinformationandtheeffectivepersistenceofdemand.As a result, evaluating 

forecasting models at a single horizon provides only a partial view of their operational usefulness. 

Theobjectiveofthisstudyistoexaminewhethersimpleandeasilycomputablesystemstate indicators improve 

short-horizon demand forecasting performance and to characterize how their predictive contribution varies 

systematically across forecasting horizons.Using one year of minute-level data for three highly liquid 

cryptocurrency assets—Bitcoin, Ethereum and Binance Coin—we compare baseline history-based models with 

augmented models that incorporate contemporaneous state information.The analysis is conducted across one-

minute, five-minute and fifteen-minutehorizonsusinglinearregressionandnonlinearensemblemethods. 

The contribution of this paper is empirical and methodological.First, it provides evidence that 

parsimonioussystemstateindicatorsyieldconsistentreductionsinforecastingerroracrossmultiple model 

classes.Second, it documents a clear horizon-dependent decay in the magnitude of these improvements, 

highlighting the importance of horizon-aware evaluation.Finally, the study adoptsa controlled, model-

agnostic comparison framework that emphasizes robustness and operational interpretability rather than 

aggressive optimization. 

The remainder of the paper is organized as follows.Section 2 describes the data and preprocessing 

pipeline.Section 3 formalizes the forecasting setup and feature construction.Section 4 outlines the forecasting 

models and experimental design.Section 5 presents and interprets the multi-horizon 

empiricalresults.Section6discussesoperationalimplicationsandlimitations.Section7concludes the paper. 

 

II. Data Description 

The empirical analysis in this study is based on one year of high-frequency data obtained from the 

cryptocurrency market, focusing on three major digital assets:Bitcoin (BTC), Ethereum (ETH) 

andBinanceCoin(BNB).Theseassetswereselectedduetotheirsustainedliquidity,consistently 

hightradingvolumesandcentralrolewithinthebroadercryptocurrencyecosystem.Together, 

theyprovidearepresentativeandreliablesettingforexaminingshort-horizondemandforecasting 

incontinuouslyoperatingelectronicmarkets. 

The raw data were collected from the Binance exchange using the official Binance application 

programming interface (API), specifically through the klines endpoint.Binance klines provide aggregated 

market information at fixed time intervals and are widely used in empirical studies due to their 

transparency, availability and consistency.Each kline record corresponds to a predefined intervaland 

summarizes market activitywithin that interval usingstandard price and volume fields. 

In this study, one-minute klines were used as the base temporal resolution.The one-minute fre- quency 

represents a practical compromise between capturing short-horizon market dynamics and maintaining 

computational tractability for large-scale empirical analysis.At this resolution, thedata retain meaningful 

intraday structure while avoiding the excessive noise and microstructural artifacts often present at sub-

minute frequencies. 

Cryptocurrency markets operate continuously without centralized trading hours, overnight clo- sures, or 

formal opening and closing periods.This continuous operation distinguishes them from traditional equity 

and futures markets and eliminates the need to account for market open or close effects.As a result, all 

minutes within the day are treated symmetrically, allowing the analysis to focus entirely on intrinsic 

demand dynamics rather than institutional trading schedules. 

Each raw observation contains a timestamp identifying the start of the one-minute interval, an asset 

identifier and the standard open, high, low, close and volume (OHLCV) fields.The open and close prices 

represent the first and last traded prices within the minute, while the high and low prices record the 

maximum and minimum traded prices during that interval. The volume variable records the total traded 

quantity executed within the minute and serves as the primary proxy for transactional demand. 

Transactional demand is proxied by traded volume throughout the analysis.At very short horizons, volume 
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provides a direct and operationally meaningful measure of executed activity and reflects the intensity of 

participation by market participants.Interpreting volume as demand aligns the analysis with broader 

operational concepts such as system load, throughput and activity intensityin electronic platforms.  

Rawdataforeachassetwerecollectedseparatelyandsubsequentlycombinedintoaunifieddataset using an asset 

identifier.Before feature construction, all observations were sorted strictly by as-set and timestamp to 

ensure correct temporal ordering.This step is essential in high-frequency forecasting to avoid information 

leakage and to preserve the causal structure of the data. 

Missing or irregular intervals were handled prior to feature engineering to preserve a uniform one- minute 

grid.Maintaining a regular temporal structure is particularly important when constructing rolling-window 

statistics and lagged variables, as irregular spacing can introduce artificial disconti- nuities and distort 

derived indicators. 

To capture systematic temporal patterns in demand, two calendar variables were constructed di- 

rectlyfromthetimestamp.Thevariableminuteofdayrecordsthepositionofeachobservation 

 

within the daily cycle, measured as the number of minutes elapsed since midnight.The variableday of week 

identifies the day of the week associated with each observation.Although cryptocur- rency markets operate 

continuously, empirical evidence suggests that intraday and weekly regular- 

itiesmaystillariseduetohumanbehavior,institutionalparticipationandregionalactivitycycles. 

All subsequent variables used in the empirical analysis were constructed exclusively from informa- tion 

available up to the forecasting origin. No future information was used at any stage of feature 

constructionortargetdefinition.Thisdesignensuresthattheforecastingexercisereflectsarealistic operational 

setting and that reported performance measures correspond to genuine out-of-sample predictions. 

 

III. Forecasting Variables and System State Indicators 

The forecasting framework employed in this study is based on transforming raw minute-level mar- ket 

observations into a structured set of explanatory variables suitable for short-horizon demand 

prediction.Each row of the final modeling dataset corresponds to a specific asset and minute and all 

variables are computed using information available up to that time.This section provides a de- tailed 

description of the forecasting targets, baseline demand variables and system state indicators used in the 

empirical analysis. 

Theprimaryobjectiveistoforecastnear-futuretransactionaldemandovermultiplehorizons. Let Vtdenote the 

observed traded volume at minute t.Three horizon-dependent forecasting targets are constructed.The 

variable target volume next min corresponds to Vt+1, the demand observed in the immediately subsequent 

minute.The variables target volume next 5min and tar- get volume next 15min are defined as the 

cumulative traded volume over the next five and fifteen minutes, respectively. Using cumulative volume 

rather than averages aligns the targets with oper- ational interpretations of total expected load over short 

planning windows. 

Baselinedemandpredictorsaredesignedtocaptureshort-termpersistence,localtrendsandsystem- atic temporal 

patterns. The variable vol lag 1 represents the observed demand in the immediately 

precedingminuteandservesasthemostbasicpersistence-basedpredictor.High-frequencydemand is known to 

exhibit strong short-term dependence, making lagged volume a natural starting point for forecasting. 

To summarize recent demand trends while smoothing high-frequency noise, two moving-average variables 

are constructed.The variable vol ma 5 represents the average traded volume over the previous five minutes, 

while vol ma 15 captures the average demand over the previous fifteen minutes.These variables provide 

information about local demand intensity and help distinguish transient fluctuations from more persistent 

changes in activity. 

Calendar variables complement historical demand measures by capturing systematic temporal ef- 

fects.The variable minute of day encodes intraday position, allowing the model to account for recurring 

daily patterns in demand.The variable day of week captures potential weekly regulari- ties.Together, these 

variables form the core of the baseline forecasting specification. 

In addition to baseline demand features, several system state indicators are constructed from con- 

temporaneous price information.These variables are intended to capture the current operating condition of 

the market, reflecting short-term variability, dispersion and intensity that may influ- ence near-future 

demand. 

Thevariablereturn1mmeasurestherelativechangeintheclosingpricebetweenconsecutive 

minutes.This one-minute return serves as a proxy for short-term price movement intensity and 

reflectsthearrivalofnewinformationorshiftsintradingbehavior.Periodsoflargeabsolutereturns often coincide 

with heightened activity and increased participation. 

Price dispersion within a minute is captured by the variable hl range, defined as the relative differ- ence 
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between the high and low prices during the interval.This measure summarizes intraminute volatility and 

reflects the degree of price fluctuation observed within a very short time window. 

The variable co range measures the relative difference between the closing and opening prices within a 

minute.Unlike hl range, which captures dispersion, this variable emphasizes directional movement and 

provides information about the net price change over the interval. 

Tosummarizerecentvolatilityconditionsbeyondasingleminute,arealizedvolatilitymeasure is computed over 

a rolling five-minute window.The variable realized vol 5m aggregates squared short-

termpricechangesovertheprecedingfiveminutesandprovidesacompactmeasureofrecent market 

instability.Elevated realized volatility indicates departures from routine conditions andmay signal 

increased uncertainty in near-term demand. 

An interaction term, demandpressure, is constructed to capture situations in which elevated trading activity 

coincides with heightened volatility.This variable combines contemporaneous volume with 

recentvolatilityandisdesignedtoidentifystressedmarketconditionsinwhichforecastingerrors 

maybemoreconsequentialfromanoperationalperspective. 

All system state indicators are computed using minimal and readily available information derived from 

price series.No order book data or proprietary indicators are required, emphasizing the generality and ease 

of implementation of the proposed framework. 

All explanatory variables are aligned so that only information available up to time t is used to forecast 

demand at future horizons. This strict alignment ensures that the forecasting exercise re- mains fully out-

of-sample and avoids look-ahead bias.The resulting dataset provides a transparent and reproducible 

mapping from raw market observations to the forecasting variables used in the empirical analysis.  

By separating baseline demand features from system state indicators, the framework allows a controlled 

comparison between history-based forecasting and state-aware forecasting approaches. This structure 

makes it possible to isolate the incremental predictive contribution of system state information and to 

assess how its relevance varies systematically across forecasting horizons. 

 

Forecasting Models and Experimental Design 

This section describes the forecasting models employed in the empirical analysis and outlines the ex- perimental 

design used to evaluate their out-of-sample performance.The objective is not to propose novel forecasting 

algorithms, but to assess, in a controlled and transparent manner, whether incor- porating system state indicators 

improves short-horizon demand forecasts across different modelclasses and forecasting horizons. 

Three forecasting models are considered:linear regression, random forest regression and gradi-ent boosting 

regression.These models represent increasing levels of functional flexibility and are widely used in applied 

forecasting and empirical modeling.Examining performance across these model classes allows the analysis 

to distinguish between improvements attributable to additional explanatory information and those driven 

purely by model complexity. 

 

For each model class, two specifications are estimated.The baseline specification includes onlyhistorical 

demand variables and calendar effects, while the augmented specification additionally incorporates system state 

indicators derived from contemporaneous price information.This paired 

designensuresthatanyobservedimprovementinforecastingaccuracycanbeattributeddirectlyto the inclusion of 

system state variables rather than differences in estimation procedures or sample composition. 

Atime-orderedtrain–testsplitisusedtoevaluateout-of-sampleperformance.Specifically, thefirst 80% of the 

observations for each asset are used for model estimation,while the remaining 20%are reserved for 

evaluation. This approach avoids look-ahead bias and reflects realistic forecasting conditions in which 

future demand must be predicted using only information available at the forecasting origin. 

Forecastingtargetsareconstructedformultiplehorizons.Theone-minutetargetcorrespondstodemand observed 

in the immediately subsequent minute. The five-minute and fifteen-minute targets 

aredefinedascumulativedemandoverthenextfiveandfifteenminutes,respectively.Usingcumulative volume 

rather than averages aligns the targets with operational interpretations of expected system load over short 

planning windows. 

Linear regression is employed as a benchmark forecasting model due to its transparency, inter- 

pretabilityandwidespreaduseinoperationalsettings.Despiteitssimplicity, linearregressionoften performs 

competitively in short-horizon forecasting tasks, particularly when strong persistence and seasonal effects 

are present. 

Formally, the linear regression model specifies the forecasted demand as a linear combination of 

explanatoryvariablesavailableattimet.Inthebaselinespecification,thesevariablesincludelagged demand, 

moving averages and calendar indicators.The augmented specification extends this setby adding system 

state indicators such as short-term returns, price ranges and realized volatility measures. 
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Thelinearmodelprovidesausefulreferencepointforassessingtheincrementalvalueofsystemstate 

information.Because linear regression cannot capture nonlinear interactions or regime-dependent effects, 

any improvement observed in this model indicates that system state indicators contain information that is 

not redundant with historical demand patterns alone. 

Randomforestregressionisincludedasanonlinearforecastingapproachcapableofcapturingcom- 

plexrelationshipsamongexplanatoryvariables.Arandomforestconsistsofanensembleofdecision 

trees,eachtrainedonabootstrapsampleofthedata.Ateachsplitinatree,arandomsubset of explanatory variables 

is considered, introducing diversity among trees and reducing correlation within the ensemble. 

The final random forest prediction is obtained by averaging predictions across all trees in the 

ensemble.Thisaggregationreducesvarianceandenhancesrobustness,makingrandomforestspar- ticularly well 

suited for high-frequency forecasting tasks characterized by noisy and heterogeneous data. 

In the context of short-horizon demand forecasting, random forests can capture nonlinear depen- dencies 

and interaction effects between historical demand variables and system state indicators. For example, the 

impact of short-term volatility on future demand may depend on the prevailing level of activity, a 

relationship that is difficult to represent using linear specifications. 

Gradient boosting regression is employed as a second nonlinear forecasting approach that comple- 

mentstherandomforestmodel.Whilebothmethodsaretree-basedensembles,gradientboosting 

 

differs fundamentally in how individual trees are constructed and combined. In gradient boosting, trees are 

added sequentially rather than independently. 

Each new tree in the gradient boosting model is trained to predict the residual errors of the cur- rent 

ensemble, allowing the model to gradually improve predictive performance through iterative 

refinement.This sequential structure enables gradient boosting to capture complex nonlinear rela- tionships 

and subtle interaction effects among explanatory variables. 

Although gradient boosting models are powerful, they are also more sensitive to over-fitting if not 

carefullyregularized.Tomitigatethisrisk, modelcomplexityiscontrolledthroughalimitednumber of trees, 

shallow tree depth and the use of shrinkage parameters.These constraints ensure that 

observedperformancegainsreflectgenuinepredictiveinformationratherthanexcessiveadaptation to noise.  

Using both random forest and gradient boosting models allows the analysis to assess whether 

improvements from system state indicators persist across different nonlinear modeling strategies. 

Consistent gains across these approaches provide stronger evidence that the indicators capture meaningful 

information rather than model-specific artifacts. 

Forecast accuracy is evaluated using two standard metrics:mean absolute error (MAE) and root mean 

squared error (RMSE). These metrics provide complementary perspectives on predictive performance and 

are widely used in empirical forecasting studies. 

Mean absolute error is defined as the average absolute difference between observed demand and predicted 

demand over the evaluation sample.MAE measures the typical magnitude of forecasting errors and is 

robust to extreme deviations.As such, it provides an intuitive and interpretable measure of average forecast 

accuracy. 

Root mean squared error is defined as the square root of the average squared difference between observed 

and predicted demand.RMSE penalizes larger errors more heavily than MAE and is therefore sensitive to 

occasional large deviations.In high-frequency settings, where extreme demand 

spikesmayoccur,RMSEprovidesvaluableinformationabouttailriskinforecastingerrors. 

Evaluating both MAE and RMSE allows the analysis to distinguish between improvements in typi-

calforecastingperformanceandreductionsinlarge,potentiallycostlyerrors.Consistentreductions in both 

metrics indicate robust improvements across the entire error distribution. 

Together, the forecasting models and experimental design provide a structured and transparent framework 

for assessing the predictive value of system state indicators across multiple horizons.By combining linear 

and nonlinear models, multiple forecasting horizons and complementary ac- 

curacymetrics,theanalysisoffersacomprehensiveevaluationofshort-horizondemandforecasting performance 

in continuously operating electronic markets. 

 

IV. Empirical Results 

This section reports out-of-sample forecasting performance for baseline and augmented models across 

multiple forecasting horizons.Forecast accuracy is evaluated using mean absolute error 

(MAE)androotmeansquarederror(RMSE).ResultsaresummarizedinTable1. 

For clarity, subscripts B and A are used to distinguish between baseline and augmented model 

specifications.The baseline specification (B) includes only historical demand variables and calendar 

effects,whiletheaugmentedspecification(A)additionallyincorporatessystemstateindicators 
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derived from contemporaneous price information.Reported percentage improvements are computed relative to 

the baseline model. 

 

Table1:Out-of-sampleforecastingperformanceacrosshorizons 
Horizon Model MAEB RMSEB MAEA RMSEA ∆MAE(%) ∆RMSE(%) 

1-min Linear 224.72 555.22 217.45 542.73 3.24 2.25 

1-min RandomForest 230.27 555.96 218.47 530.80 5.12 4.53 

1-min GradientBoosting 229.25 553.19 217.81 528.19 4.99 4.52 

5-min Linear 507.19 1152.52 483.39 1092.15 4.69 5.24 

5-min RandomForest 506.36 1137.30 451.55 1008.86 10.82 11.29 

5-min GradientBoosting 507.22 1136.53 453.48 1003.22 10.60 11.73 

15-min Linear 570.09 1225.41 565.47 1213.53 0.81 0.97 

15-min RandomForest 573.89 1240.08 566.13 1225.11 1.35 1.21 

15-min GradientBoosting 576.13 1229.18 569.90 1210.09 1.08 1.55 

 

Quantitatively, the results show that incorporating system state indicators leads to consistent reductions in 

both MAE and RMSE at all horizons and across all model classes.At the one-minute 

horizon,improvementsrangebetweenapproximately3%and5%,indicatingthatcontemporaneous state 

information provides incremental predictive value beyond historical demand patterns. 

At the five-minute horizon, the magnitude of improvement increases substantially for nonlinear models, 

with error reductions exceeding 10%. This suggests that short-term aggregation amplifies the usefulness of 

stateindicators whencombined withflexible models capableof capturingnonlinear interactions. 

At the fifteen-minute horizon,improvements remain positive but are markedly smaller,falling 

below2%inmostcases.Thispatternindicatesaclearhorizon-dependentdecayinthepredictiverelevance 

ofcontemporaneousstateinformation,consistentwithincreasingdominanceofcumulativenoise and longer-term 

persistence effects. 

Qualitatively, these findings suggest that system state indicators are most valuable when forecasts are 

required at very short horizons or modest aggregation windows. As the horizon lengthens, the influence of 

immediate system conditions diminishes and demand dynamics become increasingly governed by broader 

temporal structure. 

Tofurtherillustratethehorizon-dependentbehaviorobservedinTable1,agraphicalrepresentation of forecast error 

improvements is provided.The figure summarizes percentage reductions in MAEacross forecasting horizons for 

each model class, highlighting how the contribution of system state indicatorsvariesasthehorizonlengthens. 

Figure 1 provides a visual summary of the horizon-dependent effect of system state indicators.Im- provements 

are largest at short horizons and decline as the forecasting window increases.Nonlinear 

modelsexhibitsubstantiallylargergainsatthefive-minutehorizon,indicatingtheirabilitytoex- ploit interactions 

between historical demand and system state information.At the fifteen-minute horizon, improvements remain 

positive but are markedly smaller, consistent with a decay in the relevance of contemporaneous state conditions. 

WhileMAEsummarizestypicalforecasterrors,RMSEplacesgreaterweightonlargedeviations 

andisthereforesensitivetoextremeforecastingerrors.Toexaminewhetherthehorizon-dependent 

patternsobservedforMAEalsoholdwhenlargererrorsarepenalizedmoreheavily,acorresponding 
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Figure1:PercentagereductioninMAEfrombaselinetoaugmentedmodelsacrossforecasting horizons 

 

analysisbasedonRMSEispresentedbelow. 
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Figure 2:Percentage reduction in RMSE from baseline to augmented models across forecastinghorizons 

Figure 2 confirms that the horizon-dependent effects observed for MAE are also present when fore- 

castingaccuracyisevaluatedusingRMSE.Improvementsareagainlargestatshortandintermedi- 

atehorizons,particularlyfornonlinearmodels,indicatingthatsystemstateindicatorshelpreduce large forecasting 

errors during periods of elevated activity.At the fifteen-minute horizon, RMSE 

improvementsremainpositivebutarecomparativelysmall,suggestingthatextremedeviations become increasingly 

dominated by longer-term demand dynamics rather than contemporaneoussystem conditions. 

 

V. Discussion and Limitations 
Thisstudyexaminedhorizon-dependentdemandforecastinginhigh-frequencycryptocurrencymar- 

ketswithaparticularfocusontheroleofsimplesystemstateindicators.Theempiricalresults 

 

demonstratethatincorporatingcontemporaneousstateinformationyieldsconsistentimprovements 

inforecastingaccuracyacrossmultiplemodelclassesandforecastinghorizons.Atthesametime, 

themagnitudeoftheseimprovementsvariessystematicallywiththeforecasthorizon,highlighting 

theimportanceofhorizon-awareevaluationinshort-termdemandprediction. 

From an operational perspective, the findings suggest that system state indicators are most valuable 

whenforecastsarerequiredatveryshorthorizonsormodestaggregationwindows.Attheone- minute horizon, 

improvements are modest but persistent, reflecting the inherently noisy nature ofhigh-frequency demand.At the 

five-minute horizon, gains become substantially larger for nonlinear models, indicating that short-term 

aggregation allows system state information to interact more effectively with historical demand patterns.At the 

fifteen-minute horizon, improvements remain 

positivebutaremarkedlysmaller,suggestingadiminishinginfluenceofcontemporaneousconditions aslonger-

termdynamicsbegintodominate. 

The observed horizon-dependent decay in predictive improvement has important implications for the 

design of forecasting systems in continuously operating electronic markets.Features that are highly 

informative at very short horizons may lose relevance as the forecasting window expands, even when the 

same underlying data and modeling framework are used.This finding cautions against evaluating 

forecasting models at a single horizon and extrapolating conclusions to other operational contexts without 

explicit empirical verification. 

An important insight from the empirical results is the differential behavior of linear and nonlinear 

models.While all model classes benefit from the inclusion of system state indicators, nonlinear ensemble 

methods exhibit substantially larger gains, particularly at the five-minute horizon.This 

patternsuggeststhatthepredictivecontributionofstatevariablesisnotpurelyadditivebutarisesin 

partthroughinteractionswithhistoricaldemandandcalendareffects.Suchinteractionsaredifficult to capture 

using linear specifications but are naturally accommodated by tree-based ensemble models. 

Despite these gains, it is noteworthy that even the most flexible models do not eliminate fore- casting error 

at short horizons.High-frequency demand remains inherently volatile, reflecting the decentralized nature of 

participation, rapid information arrival and heterogeneous trading motives in cryptocurrency markets.The 

results therefore underscore the limits of predictability in such environments and highlight the need for 

realistic expectations regarding achievable forecasting ac- curacy. 

The simplicity of the system state indicators employed in this study is both a strength and a limitation.On 

the one hand, all indicators are derived from readily available price and volume information and can be 

computed in real time without access to proprietary order book data.This makes the proposed framework 

broadly applicable and easy to implement in practical settings.On the other hand, more detailed micro-

structure information, such as depth, order flow imbalance, or queue dynamics, may contain additional 

predictive signals that are not captured by the indicators considered here. 

Another limitation of the present analysis is its focus on three highly liquid cryptocurrency assets. While 

Bitcoin, Ethereum and Binance Coin provide a robust test environment, the results may not generalize 
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directly to less liquid assets or markets with different participation structures.In thinner markets, demand 

dynamics may be more irregular and the relative importance of state indicators may differ substantially.  

The empirical evaluation adopts a deliberately conservative modeling approach.Model hyperpa- 

rametersarenotaggressivelyoptimizedandtheanalysisemphasizesrobustnessandinterpretability 

 

over maximal predictive performance.While this choice strengthens the credibility of the reported results, it may 

understate the performance achievable through more elaborate tuning or adaptive modeling strategies. 

Finally,thestudyispurelypredictiveinnatureanddoesnotattempttoestablishcausalrela- tionships between system 

state indicators and future demand. The observed improvements should 

thereforebeinterpretedasempiricalregularitiesratherthanstructuraleffects.Understanding the mechanisms through 

which contemporaneous market conditions influence near-future demand 

remainsanimportantdirectionforfutureresearch. 

Taken together, the discussion highlights that system state indicators offer a practical and robust 

enhancement to short-horizon demand forecasting, but that their usefulness is inherently horizon 

dependent and subject to structural limitations.These findings provide a foundation for more detailed 

investigations into high-frequency predictability and operational forecasting in electronic markets. 

 

VI. Conclusion 

This paper investigated horizon-dependent demand forecasting in high-frequency cryptocurrency markets, 

with particular emphasis on the role of simple system state indicators derived from con- temporaneous 

price information.Using one year of minute-level data for Bitcoin, Ethereum and Binance Coin, the study 

compared baseline forecasting models based on historical demand and cal- 

endareffectswithaugmentedmodelsthatincorporateshort-termvariabilityandactivity measures. 

The empirical results demonstrate that system state indicators provide consistent improvementsin 

forecasting accuracy across linear regression, random forest and gradient boosting models.Im- portantly, 

these improvements persist across multiple forecasting horizons, but their magnitude declines 

systematically as the horizon lengthens.This horizon-dependent decay highlights the im- portance of 

aligning forecasting models with the operational time scales at which decisions are made. 

The findings contribute to the forecasting literature by emphasizing that predictive relationships observed 

at one horizon cannot be assumed to hold uniformly at others.Even within a fixed 

modelingframeworkanddataset,therelevanceofexplanatoryvariablesmaychangesubstantiallyas 

temporalaggregationincreases.Thisinsightreinforcestheneedforexplicitmulti-horizonevaluation in short-

term forecasting studies. 

From a practical standpoint, the results suggest that incorporating parsimonious system state indicators can 

enhance real-time monitoring and short-term planning in continuously operating electronic 

markets.Because the indicators considered in this study are easy to compute and rely only on readily 

available data, they offer a low-cost improvement to existing forecasting systems. 

The analysis also points toward several promising directions for future research within a coherent 

andfocusedresearchprogram.Onenaturalextensionistomovebeyondprice-basedstateindicators 

andexaminetheroleoforder-flowinformation.Forexample,futureworkmayinvestigatewhether order-

flowimbalanceservesasapredictorofshort-termpricemovementanddemandandhowsuch imbalance measures 

compare when weighted by liquidity rather than treated uniformly. 

Related questions include the interaction between order-flow imbalance and market frictions such as bid–

ask spread and slippage.Understanding how these factors influence the decay of intraday 

predictivesignalsmayprovidedeeperinsightintothelimitsofshort-horizonforecastingandthe 

 

sustainabilityofintradayalpha. 

Anotherimportantavenueconcernsregimedependence.Theprofitabilityandpredictivevalue of imbalance-

based signals may vary across market regimes characterized by differing volatility, 

liquidity,orparticipationintensity.Systematicallyidentifyingandmodelingsuchregimesmay help explain 

when and why short-horizon predictability emerges or disappears. 

By addressing these questions within a unified empirical framework and using a consistent dataset, 

futurestudiescanbuildacoherentsequenceofrelatedcontributionsthatprogressivelydeepenour understanding 

of high-frequency market dynamics.Such a programmatic approach allows indi- vidual studies to remain 

focused while collectively advancing knowledge in a well-defined research area. 

In summary, this paper provides empirical evidence that system state indicators enhance short- horizon 

demand forecasting in high-frequency cryptocurrency markets, but that their predictive contribution is 

inherently horizon dependent.The results clarify both the potential and the limi- tationsofstate-

awareforecastingandlaythegroundworkforfutureresearchonorderflow,regime dependence and intraday 
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predictability in electronic markets. 
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