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I. INTRODUCTION 
Tomato (Solanum lycopersicum L.) is among the most extensively cultivated and economically 

significant vegetable crops globally. Nonetheless, it is particularly vulnerable to various fungal infections, with 

Early Blight, induced by Alternaria solani, being one of the most devastating. The ailment first manifests as dark 

brown concentric lesions on mature leaves and proliferates swiftly in warm, humid environments, resulting in 

chlorosis, leaf drop, and a marked decrease in photosynthetic efficiency. Severe infections can result in yield 

losses of 30–80% [2], presenting a significant risk to both greenhouse and open-field production systems. 

Conventional disease detection techniques, including visual field examinations and laboratory analysis, are 

laborious, costly, and necessitate specialized people, rendering them unfeasible for small-scale farmers. These 

constraints underscore the pressing want for automated, swift, and economical monitoring and decision-support 

systems proficient in identifying Early Blight in its nascent phases. Timely identification facilitates targeted 

treatment of affected regions, decreases pesticide application, and mitigates environmental pollution and 

financial losses, thereby promoting sustainable agricultural practices [11]. 

In recent years, the amalgamation of artificial intelligence (AI), deep learning (DL), and computer 

vision has transformed plant disease diagnostics. Convolutional Neural Networks (CNNs) and models based on 

transfer learning have demonstrated exceptional precision in identifying and categorizing leaf diseases across 

various situations. Kılıçarslan and Paçal (2023) performed a comparative analysis utilizing DenseNet-121, 

ResNet50v2, and MobileNet architectures trained on the PlantVillage dataset, attaining 99% accuracy and an 

F1-score of 0.9892, with DenseNet identified as the most dependable model [3].Özben and Güler (2025) created 

a MobileNet-based deep learning system utilizing 16,011 authentic tomato leaf photos, which include nine 

disease categories and healthy specimens. Of the evaluated models, MobileNetV3-Large attained the best 

accuracy at 99%, with both precision and recall surpassing 0.97 across all classes. The resultant model was 

effectively implemented in an Android mobile application for real-time, offline detection, showcasing the 

viability of edge-based smart agriculture [3]. Terzioğlu et al. (2025) proposed a hybrid approach that combines 

deep learning feature extraction with machine learning classifiers. The study utilized a dataset of 6,414 tomato 

photos across five categories (Late Blight, Early Blight, Gray Mold, Bacterial Canker, and healthy samples) to 

Around the world, tomato cultivation suffers substantial production and quality losses due to the tomato early blight 
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on leaves, stem rot, and fruit rot. Reducing the use of chemicals and encouraging sustainable agriculture depend 

greatly on early disease identification. Expert knowledge-based visual assessment and laboratory tests are examples 

of classic sickness diagnosis procedures. These treatments have limitations, such as being expensive, time-

consuming, and subject to subjective evaluations. The usage of ESP32-CAM, a low-cost embedded system, for real-

time disease diagnosis was studied in this work, along with the use of AI-based image processing algorithms in 

agricultural decision support operations. Because of its low power consumption, wireless connectivity, and built-in 

camera capability, the ESP32-CAM module provides continuous monitoring capabilities in field circumstances. 

Using models constructed using deep learning techniques (CNN, MobileNet, etc.), the system can automatically 

detect disease symptoms and warn growers in real time. The results suggest that small- and medium-sized producers 

can benefit from economical smart agriculture systems. The recommended method optimizes spraying schedules and 

prevents superfluous chemical use by recognizing the disease early with good accuracy rates (85–95%). 

Additionally, it permits remote monitoring and data analysis through connectivity with IoT infrastructure, which 

helps precision agriculture techniques become more extensively adopted. This technique is seen as a vital step in 

promoting environmental and economic sustainability in the transition to digital agriculture. 
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analyze 21 deep learning architectures in conjunction with feature selection algorithms like MRMR, Chi2, and 

ReliefF. The combination of EfficientNet-b0, Chi2, and Fine KNN attained an accuracy of 92%, underscoring 

the efficacy and cost-efficiency of hybrid learning methodologies [4]. Molina et al. (2014) previously presented 

a computer vision method utilizing MPEG-7 color descriptors for the identification of Early Blight. The Color 

Structure Descriptor (CSD) attained 100% accuracy with 190 expert-annotated leaf areas, demonstrating that 

even simple color characteristics may effectively differentiate between diseased and healthy tissues without the 

need for deep networks [6]. Nurlanuly (2024) conducted a comprehensive comparison of DenseNet, ResNet, 

and GoogleNet using 39,000 plant leaf pictures across 19 disease categories, including Tomato Early and Late 

Blight. DenseNet attained the best accuracy (99.8%) owing to its dense connectivity and effective feature 

reutilization, and the research highlighted its appropriateness for mobile, drone, and edge-deployed agricultural 

AI systems [7]. In addition to deep learning, Bal and Kayaalp (2023) investigated conventional machine 

learning methods by evaluating several SVM kernel functions on 4,000 tomato leaf images. The RBF kernel 

attained 90% accuracy, surpassing both linear and polynomial kernels, demonstrating that classical models 

retain efficacy in limited computing settings [8]. Conversely, Chakravarthy and Raman (2020) progressed 

beyond image-level categorization by utilizing object detection frameworks. Following the attainment of near-

perfect classification accuracy with ResNet (99.73%) and Xception (99.95%), they deployed YOLOv3, 

YOLOv3-SPP, and YOLOv3-tiny for targeted lesion identification. YOLOv3-SPP attained a mean average 

precision (mAP) of 90.52%, but YOLOv3-tiny realized real-time inference at 12 ms per image, making it 

suitable for mobile or embedded systems [9]. Alternative computational methodologies have also arisen. Anam 

and Fitriah (2021) devised a hybrid Particle Swarm Optimization (PSO)–K-means segmentation method that 

attained an F-measure of 0.90, significantly surpassing the normal K-means performance of 0.418, and 

proficiently identifying sick areas in tomato leaves [10]. Xie et al. (2015) similarly shown that hyperspectral 

imaging (380–1023 nm) integrated with textural analysis could differentiate Early and Late Blight with 97.1% 

accuracy utilizing an Extreme Learning Machine (ELM) model and only five selected wavelengths (442, 508, 

573, 696, 715 nm) [11]. Irmak and Saygılı (2020) developed a bespoke CNN model in Python/Keras utilizing a 

dataset including 18,345 tomato leaf pictures, categorized into nine disease classes and one healthy class. Their 

model attained a training accuracy of 97.05% with a test loss of 9.33%, and they proposed enhancing feature 

extraction to more effectively differentiate visually identical diseases, such as Early and Late Blight [5]. This 

research collectively indicates that deep learning frameworks, particularly lightweight CNN architectures like 

DenseNet, MobileNet, and EfficientNet, provide dependable, rapid, and scalable methods for the detection of 

tomato diseases. Incorporating these models into affordable, portable, and energy-efficient edge devices (e.g., 

ESP32-CAM or Raspberry Pi) can facilitate widespread AI use in agriculture, allowing for real-time, 

autonomous Early Blight detection and data-informed decision support for sustainable crop management. 

 

II. MATERIAL AND METHOD 
2.1 System Overview 

This research presents an economical, edge-computing Early Blight detection system with an ESP32-CAM 

microcontroller. The system executes on-device inference via a lightweight convolutional neural network (CNN) 

model built through the Edge Impulse platform. The gadget processes data locally and transmits just categorization 

results, thereby greatly decreasing bandwidth usage, latency, and energy consumption, rather than sending high-

resolution photos to cloud servers. The proposed configuration facilitates real-time disease detection in the field, 

offering instant input to cultivators and enabling targeted intervention tactics. 

Key advantages of the system include: 

• On-device inference: Eliminates the need for continuous internet access. 

• INT8 quantization: Enhances inference speed and minimizes model memory footprint. 

• Low power consumption: Ideal for battery or solar-powered deployments. 

• Reduced data transmission: Only diagnostic results are sent, not raw images. 

The main components of the tomato leaf disease detection system are summarized in Table 1, including the 

ESP32-CAM for image acquisition, a quantized Edge Impulse model for real-time classification, and MQTT-based 

communication with a remote dashboard. 

 

Table 1. Description of system components involved in real-time edge-based tomato leaf classification 

using ESP32-CAM and Edge Impulse. 
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Figure 1 presents the complete processing pipeline for on-device plant disease classification using ESP32-CAM 

and Edge Impulse. The system integrates real-time inference, result visualization, and remote communication 

via MQTT in a resource-constrained edge environment. 

 

1.2 Data Collection and Model Development 

The image dataset consisted of Early Blight–infected and healthy tomato leaves, collected under natural 

greenhouse lighting using the ESP32-CAM module and smartphone cameras for consistency. Images were 

 
Figure 1. Block diagram of the proposed Early Blight detection system. 
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resized to 96×96 pixels and uploaded to Edge Impulse Studio for preprocessing, labeling, and model 

training.Additionally, supplementary labeled images were incorporated from the publicly available Tomato Leaf 

Disease Dataset on Kaggle [13], which contains verified samples across multiple disease classes. 

 

1.2.1 Preprocessing 

To ensure optimal model performance and robustness, a series of image preprocessing steps were 

applied prior to training. These steps were designed to standardize input data, account for environmental 

variability, and improve the model’s generalization capability. Specifically: 

 

• Cropping and Resizing: All input images were cropped and resized to a uniform resolution of 96×96 

pixels to match the input dimension of the MobileNetV2 architecture. 

• Color Normalization: This step compensates for lighting differences across captured images, ensuring 

that features are not biased due to illumination variation. 

• Data Augmentation: To further enhance generalization and reduce overfitting, augmentation techniques 

such as random rotation (±15°), brightness adjustment (±10%), and horizontal flipping were employed. 

These preprocessing operations collectively contribute to the stability and accuracy of the inference process, 

particularly under varying field conditions where lighting and image composition can fluctuate. 

 

1.2.2  Model Training on Edge Impulse 

The neural network was developed using the Edge Impulse Impulse Design platform [12], which 

provides an end-to-end pipeline for data acquisition, feature extraction, model training, and deployment on 

embedded devices. Edge Impulse enables developers to create optimized TinyML models suitable for real-time 

inference on microcontrollers. 

Training was conducted using the Adam optimizer with a learning rate of 0.001, batch size of 16, and 

45 training cycles (epochs). The training process was executed on the CPU processor with data augmentation 

enabled to enhance generalization and prevent overfitting. Additionally, INT8 quantization profiling was 

applied to optimize the model for edge devices, such as the ESP32-CAM, ensuring efficient on-device inference 

with minimal resource consumption. 

The model achieved remarkable performance with a validation accuracy of 98.5% and a loss value of 

0.03. The confusion matrix revealed strong class separation, correctly identifying 97.9% of Early Blight and 

99.0% of Healthy Leaf samples, with a weighted average F1-score of 0.98. Moreover, the Area Under the ROC 

Curve (AUC) reached 0.98, confirming the model’s high discriminative capability. The data explorer 

visualization illustrated clear feature clustering between diseased and healthy samples, demonstrating effective 

feature extraction and decision boundary learning. 

Overall, these results validate the quantized MobileNetV2 model’s robustness and efficiency for real-

time Early Blight detection on resource-limited embedded platforms, confirming its suitability for edge AI 

agricultural applications.The neural network training configuration and corresponding performance metrics are 

shown in Table 2. 

 

Table 2. Neural Network Training Configuration and Performance Metrics 

 
The classification performance and feature-space distribution of the quantized MobileNetV2 model are 

illustrated in Figure 2. As shown, the confusion matrix demonstrates high accuracy and minimal 

misclassification between the Healthy and Early Blight classes. The clear separation in the feature-space plot 
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confirms that the model effectively distinguishes the two categories, validating its suitability for real-time edge 

inference on the ESP32-CAM platform. 

 

 
Figure 2. Confusion Matrix and Data Visualization of the Quantized Model 

 

1.3 Model Quantization and Deployment 

To enable efficient on-device inference, the trained model was quantized to 8-bit integers (INT8) 

during the Edge Impulse deployment process. This conversion replaces 32-bit floating-point weights with 8-bit 

integer representations, effectively reducing the model size by approximately 75% while maintaining accuracy 

within ±1%. The quantized model was exported as a TensorFlow Lite Micro (TFLM) .cc source file and 

integrated directly into the ESP32-CAM firmware for real-time inference. 

The quantization process reduced the model size from approximately 2.5 MB to 600 KB, enabling the 

model to fit comfortably within the limited memory space of the ESP32 microcontroller. Additionally, 

quantization provided a 3–4× improvement in inference speed, allowing the model to perform near real-time 

classification tasks while operating within the device’s 320 KB SRAM limit. This improvement in both 

computational and memory efficiency makes the system highly suitable for continuous in-field monitoring. 

The quantized model’s classification performance and feature-space visualization are shown in Figure 

2, while the detailed training configuration and evaluation metrics are summarized in Table 2. As illustrated in 

Figure 2, the confusion matrix demonstrates high accuracy and minimal misclassification between the Healthy 

and Early Blight classes. The clear separation in the feature-space plot confirms that the quantized MobileNetV2 

model effectively distinguishes between the two categories, validating its robustness for edge AI–based tomato 

leaf disease detection. The overall training and deployment workflow, including image capture, data 

preprocessing, model training, INT8 quantization, and on-device inference, is summarized in Figure 3, which 

provides a step-by-step visual overview of the Edge Impulse pipeline. The main advantages of INT8 

quantization include a substantial reduction in model size—from approximately 2.5 MB to 600 KB—and a 3–4× 

increase in inference speed when deployed on the ESP32 platform. Furthermore, the quantized model requires 

significantly less RAM, enabling stable operation within the 320 KB SRAM limit of the device. This 

optimization not only improves computational efficiency but also enhances energy efficiency, allowing for 

continuous and autonomous field monitoring under real-world agricultural conditions. 
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Figure 3. Workflow of Edge Impulse training and deployment. 

 

1.4 On-Device Inference and Communication Architecture 

During operation, the ESP32-CAM periodically captures leaf images, performs inference using the 

embedded TFLM model, and outputs a binary classification result: 

• 0: Healthy 

• 1: Early Blight Detected 

If a diseased leaf is detected, the system immediately sends a JSON-formatted MQTT message containing 

the timestamp, device ID, and disease probability score to a remote server or mobile application. Only these 

lightweight results are transmitted, drastically reducing network load compared to image-based 

transmission.This approach enables real-time monitoring while maintaining low latency (≈100 ms) and minimal 

data transfer (<1 kB per message), making it suitable for farms with limited internet connectivity. 

 

1.5 Hardware and Software Specifications 

The hardware and software components utilized in the proposed system are summarized in Table 2. The 

ESP32-CAM microcontroller, featuring a 240 MHz dual-core Xtensa LX6 processor, serves as the central 

processing unit, while the integrated OV2640 camera module captures high-resolution leaf images. The system 

leverages Edge Impulse Studio for model development, Arduino IDE for firmware deployment, and TensorFlow 

Lite Micro for on-device inference. Power is supplied through either a 5V/2A battery or a solar source, 

enhancing deployment flexibility in field conditions. Communication is handled via Wi-Fi (2.4 GHz) using the 

MQTT protocol, enabling efficient data transmission with low bandwidth requirements. The system 

demonstrates high energy efficiency with an average power consumption of only 0.3 W during inference, 

making it highly suitable for remote agricultural environments with limited power and connectivity resources. 

 

Table 3. Hardware and software specifications of the proposed ESP32-CAM-based on-device inference 

system. 
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1.6 Field Testing and Evaluation 

The trained model was deployed in a greenhouse test environment. Each ESP32-CAM unit monitored 

multiple plants and performed detection every 15 minutes under natural lighting. Inference results were cross-

validated against expert visual inspection.The system maintained a detection accuracy above 94%, with real-

time feedback accessible through a simple web dashboard. Due to its low power consumption and fast inference, 

the device can operate continuously for more than 48 hours on a 5,000 mAh power bank. 

 

III. RESULTS AND DISCUSSIONS 
The proposed system was evaluated in real-world conditions to assess its performance in detecting 

Early Blight on tomato leaves. The quantized MobileNetV2 model, trained using INT8 optimization, achieved a 

validation accuracy of 98.5%, a weighted F1-score of 0.98, and an AUC of 0.98, indicating high classification 

reliability. Confusion matrix analysis demonstrated clear separability between healthy and diseased classes, with 

minimal false positives or false negatives. 

In on-device testing using the ESP32-CAM module, inference was performed with an average latency 

of approximately 100 milliseconds, enabling near real-time detection. The lightweight MQTT-based 

communication strategy effectively minimized data transmission to under 1 kB per message, significantly 

reducing network load while preserving key inference results. 

 

Overall, the system proved to be robust and efficient, demonstrating strong potential for deployment in 

agricultural settings, especially in areas with limited connectivity and power resources. 

 

IV. CONCLUSIONS AND RECOMMENDATIONS 
This study presented an edge-AI-based plant disease detection system using the ESP32-CAM and a quantized 

MobileNetV2 model. The system successfully demonstrated high accuracy and real-time performance with 

minimal computational resources and power consumption. Preprocessing techniques and model optimization 

played a critical role in enhancing generalization and efficiency. 

 

Key conclusions: 

• The model achieved high accuracy with lightweight design, suitable for embedded deployment. 

• Data augmentation and preprocessing significantly contributed to model robustness. 

• MQTT-based messaging ensured reliable communication with minimal data overhead. 

 

Recommendations for future work: 

• Extend the system to detect multiple plant diseases. 

• Integrate solar power harvesting for enhanced sustainability. 

• Explore LoRa or NB-IoT for broader communication range in rural environments. 

• Conduct long-term field testing across different seasons and lighting conditions. 
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