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Some Contributions to Yang Mills Theory Fortification —
Dissipation Models

'Dr. K. N. Prasanna Kumar, ?Prof. B. S. Kiranagi, *Prof. C. S. Bagewadi

ABSTRACT: We provide a series of Models for the problems that arise in Yang Mills Theory. No claim is made that the
problem is solved. We do factorize the Yang Mills Theory and give a Model for the values of LHS and RHS of the yang Mills
theory. We hope these forms the stepping stone for further factorizations and solutions to the subatomic denominations at
Planck’s scale. Work also throws light on some important factors like mass acquisition by symmetry breaking, relation
between strong interaction and weak interaction, Lagrangian Invariance despite transformations, Gauge field,
Noncommutative symmetry group of Gauge Theory and Yang Mills Theory itself..

We take in to consideration the following parameters, processes and concepts:

(1) Acquisition of mass

(2) Symmetry Breaking

(3) Strong interaction

(4) Unified Electroweak interaction

(5) Continuous group of local transformations

(6) Lagrangian Variance

(7) Group generator in Gauge Theory

(8) Vector field or Gauge field

(9) Non commutative symmetry group in Gauge Theory

(10) Yang Mills Theory (We repeat the same Bank’s example. Individual debits and Credits are conservative so
also the holistic one. Generalized theories are applied to various systems which are parameterized. And we
live in ‘measurement world’. Classification is done on the parameters of various systems to which the Theory

is applied. ).
(11) First Term of the Lagrangian of the Yang Mills Theory(LHS)
L= 1T F) = 11?**”1:‘“
gf — _4 I'{ ) - _4 it
(12) RHS of the Yang Mills Theory
Lo = — S Te(F2) = — 1 prwa o
gf — _4 I'( } - _4 i

SYMMETRY BREAKING AND ACQUISITION OF MASS:
MODULE NUMBERED ONE
NOTATION:
G,3 : CATEGORY ONE OF SYMMETRY BREAKING
G4 : CATEGORY TWO OF SYMMETRY BREAKING
G5 : CATEGORY THREE OF SYMMETRY BREAKING
T,3 : CATEGORY ONE OF ACQUISITION OF MASS
T14 : CATEGORY TWO OF ACQUISITION OF MASS
T15 :CATEGORY THREE OF ACQUISITION OF MASS

UNIFIED ELECTROWEAK INTERACTION AND STRONG INTERACTION:
MODULE NUMBERED TWO:

G16 : CATEGORY ONE OF UNIFIED ELECTROWEAK INTERACTION

G,7 : CATEGORY TWO OFUNIFIED ELECTROWEAK INTERACTION
G5 : CATEGORY THREE OFUNIFIED ELECTROWEAK IONTERACTION
T16 :CATEGORY ONE OF STRONG INTERACTION

T17 : CATEGORY TWO OF STRONG INTERACTION

T15 : CATEGORY THREE OF STRONG INTERACTION

LAGRANGIAN INVARIANCE AND CONTINOUS GROUP OF LOCAL TRANSFORMATIONS:
MODULE NUMBERED THREE:

G, : CATEGORY ONE OF CONTINUOUS GROUP OF LOCAL TRANSFORMATIONS
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G,, :CATEGORY TWO OFCONTINUOUS GROUP OF LOCAL TRANSFORMATIONS
G,, : CATEGORY THREE OF CONTINUOUS GROUP OF LOCAL TRANSFORMATION
T, : CATEGORY ONE OF LAGRANGIAN INVARIANCE

T,, :CATEGORY TWO OF LAGRANGIAN INVARIANCE

T,, : CATEGORY THREE OF LAGRANGIAN INVARIANCE

GROUP GENERATOR OF GAUGE THEORY AND VECTOR FIELD(GAUGE FIELD):
: MODULE NUMBERED FOUR:

G,, : CATEGORY ONE OF GROUP GENERATOR OF GAUGE THEORY
G,5 : CATEGORY TWO OF GROUP GENERATOR OF GAUGE THEORY
G, : CATEGORY THREE OF GROUP GENERATOR OF GAUGE THEORY
T,, :CATEGORY ONE OF VECTOR FIELD NAMELY GAUGE FIELD

T,5; :CATEGORY TWO OF GAUGE FIELD

T, : CATEGORY THREE OFGAUGE FIELD

YANG MILLS THEORYAND NON COMMUTATIVE SYMMETRY GROUP IN GAUGE THEORY:
MODULE NUMBERED FIVE:

G,g : CATEGORY ONE OF NON COMMUTATIVE SYMMETRY GROUP OF GAUGE THEORY
G,o : CATEGORY TWO OF NON COMMUTATIVE SYMMETRY GROUP OPF GAUGE THEORY
G;, :CATEGORY THREE OFNON COMMUTATIVE SYMMETRY GROUP OF GAUGE THEORY
T,g : CATEGORY ONE OFYANG MILLS THEORY (Theory is applied to various subatomic particle systems and
the classification is done based on the parametricization of these systems. There is not a single system known which is
not characterized by some properties)
T, :CATEGORY TWO OF YANG MILLS THEORY
T30 :CATEGORY THREE OF YANG MILLS THEORY

LHS OF THE YANG MILLS THEORY AND RHS OF THE YANG MILLS THEORY.TAKEN TO THE OTHER

SIDE THE LHS WOULD DISSIPATE THE RHS WITH OR WITHOUT TIME LAG :
MODULE NUMBERED SIX:

1 2 1 L
Lgr = ~1 Tr(F7) = _EFP F

G;, : CATEGORY ONE OF LHS OF YANG MILLS THEORY

G;; : CATEGORY TWO OF LHS OF YANG MILLS THEORY

G;, : CATEGORY THREE OF LHS OF YANG MILLS THEORY

T;, : CATEGORY ONE OF RHS OF YANG MILLS THEORY

T35 : CATEGORY TWO OF RHS OF YANG MILLS THEORY

T;, : CATEGORY THREE OF RHS OF YANG MILLS THEORY (Theory applied to various characterized systems
and the systemic characterizations form the basis for the formulation of the classification).

(a13)(1), (a14)(1), (a15)(1); (b13)(1); (b14)(1), (b15)(1) (a16)(2)' (a17)(2), (013)(2) (b16)(2)1 (b17)(2)' (b13)(2)5
(azo)m, (a21)(3), (azz)(s) , (bzo)(g); (b21)(3), (bzz)(s)
(a24)(4), (azs)@); (aze)(4); (b24)(4); (bzs)“), (bze)m, (bzs)(s), (b29)(5), (b30)(5) ,(azg)(5), (azg)(s)' (a30)(5),

(a32)(6), (a33)(6); (a34)(6); (bsz)(e); (bss)(G), (b34)(6)
are Accentuation coefficients

RN )] RN ¢ )] RN )] N NG (@) 72 v @) @) N )] r £\(2) ()
(a13) (33(“14) (33(“15) (3') (b13) (33 (b14) (33 (b15) (33 (a16) ,(a17) '(am) ) (bm) :(b17) '(b18)
’(a'2024) ’(a'2124) ’(a'ZZ)(‘l) ’(b'2024) ’(bé124) ’(bé224) (5) (5) (5) (5) (5) (5)
(a'24) '(a'25) '(a'ZG) '(b'24) '(b'zs) '(b'za) '(bés) '(bét)) '(b:'m) (alzs) :(a’29) '(aéo) ,

NGO NG NG r (6 r \(6) r (6)
(asz) , (ass) ’ (a34) ’ (bsz) ’ (b33) ’ (b34)
are Dissipation coefficients.

SYMMETRY BREAKING AND ACQUISITION OF MASS:
MODULE NUMBERED ONE

The differential system of this model is now (Module Numbered one).1

dé ! ;
23 — (0,5)V6,4 — [(@i)® + (@)D (T, O]Grs 2
£088 — (0,) V61 ~ (@)D + (@) O (T, D] 61 3
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G NS PN ¢S]
J_(6115)(1)614 [(‘115) + (a5 (T14't)] Gy 4
”13 = (b13) VT — [(b13)® — (b13) D (G, 1)]T15 .5
i , .,

2 = (b)) VT3 — [(b1)P — (b1)P (G, DTy 6
dTls

= i)V = [(b15)" = (b15) V(6,0 115 7

+(a13)( )(Ty,, t) = First augmentation factor .8

—(b{3)M(G,t) = First detritions factor.

UNIFIED ELECTROWEAK INTERACTION AND STRONG INTERACTION:
MODULE NUMBERED TWO

The differential system of this model is now ( Module numbered two).9
dGlG = (a16)? G617 — [(016)@ + (a16) P (T17, )]Gy .10

= (7)PGy — [(ai7)(2) + (a{7)(2)(T17,t)]G17 11

dGlg = (a13)?Gy7 — [(019)@ + (a15) P (Ty7,1)]Grg .12

”16 = (b1) Ty — [(bi6)® — (bis) P ((G1o), 1) Ty 13

”” = (1)) PTys — [(bi))? — (b)) P ((Gro), £)]Ty; 14

d ' "
2 = (byg)DTy; — [(b)® = (big)P((G1o), t)]Tyg 15
+(a16)(2)(T17, t) = First augmentation factor .16
—(b16)@((Gyo), t) = First detritions factor .17
LAGRANGIAN INVARIANCE AND CONTINOUS GROUP OF LOCAL TRANSFORMATIONS:
MODULE NUMBERED THREE

dGl7

The differential system of this model is now (Module numbered three).18

dGZO = (a20)®Gy1 — [(a30)® + (az0)® (T, )]Gy .19
dGn = (a21)® Gy — [(@31)® + (a31)® (T, )]Gy 20
dGzz = (a2)® Gy — [(a5)® + (a3) (T, )]Gy, 21
‘”20 = (b)) ¥ = [(b20)® = (b30)® (G, O] Ty -2
‘”“ = (b)) ¥y = [B2)® = (50D (G, O]Ty 23
dez

= (b)) PTyy — [(032)® — (b7)P (Gp3, )] Tyy .24
+(a20)( )(T,;,t) = First augmentation factor.
—(by)® (Gy3,t) = First detritions factor .25

GROUP GENERATOR OF GAUGE THEORY AND VECTOR FIELD(GAUGE FIELD):
: MODULE NUMBERED FOUR:

The differential system of this model is now (Module numbered Four).26
d624 = (a24) PG5 — [(@3)@ + (az) P (Ts, )| Goq .27
dG_ZS = (az5) WGy — [(azs)( : +(a 25)( )(Tzs»t)] Gos .28
dGZ() = (a26)® G5 — [(a36)® + (az6)™® (Tos, )| Goe 29
Z2 = (bp)PTys — [(b2)® = (03)P((G27), )] T4 .30
T = (b2) Ty = [(b3) ™ = (b35) ™ (G2), )] Tos 31

dT ' "
=28 = (bye) D Tys — [(b26) ™ — (be) P ((Gy7), )| Ty .32
+(a24)( )(T,s,t) = First augmentation factor.33
—(b3)®((G7),t) = First detritions factor .34
YANG MILLS THEORYAND NON COMMUTATIVE SYMMETRY GROUP IN GAUGE THEORY':
MODULE NUMBERED FIVE

The differential system of this model is now (Module number five).35

46 , )
i = (az8) P Gpo — [(a2)® + (az)® (Tyo, )] Gyg .36

i , )
22 = (a39)® G — [(a20)® + (@59)® (Tyo, )]G .37

WWW.ijmer.com 2244 | Page



International Journal of Modern Engineering Research (IJMER)

WWW.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2242-2286 ISSN: 2249-6645

d630 = (a30)®Gyo — [(a30)® + (a30)®(Ty9, )]G, 38

d , .

TZB = (byg) P Tye — [(35)™ — (b35) P ((G31),t)|Tog -39

d , ,

ng = (b39) P Tog — [(h3)® — (b39) ™ ((G31),t)]Tye .40

d , ,

T30 = (b30)® Ty — [(30)® — (b30) P ((G3y), t)|T5p 41

+(a28)(5)(T29, t) = First augmentation factor .42
—(by5)®((G31),t) = First detritions factor .43
LHS OF THE YANG MILLS THEORY AND RHS OF THE YANG MILLS THEORY.TAKEN TO THE OTHER

SIDE THE LHS WOULD DISSIPATE THE RHS WITH ORWITHOUT TIME LAG :

MODULE NUMBERED SIX

The differential system of this model is now (Module numbered Six).44

45

2 = (a3) @G35 — [(@1)® + (a3) @ (Tu3, )]G, 46
d633 = (a33)® G, — [(a§3)(6)+(a§3)(6)(T33't)]G33 47
“34 = (a34)©Ga3 — [(@3)©@ + (a3,)© (T3, £)]G3y 48
d— = (b3)©Tz5 — [(b3)® — (b3,) @ ((G3s), 1)] T, 49
%— (b33) ©Ts; — [(33)© — (b33)©((G3s),)]Ts3 .50
‘”34 = (b3)© T3 — [(B3)© — (b5) @ ((Gs5),t)]Tss 51

+(a32)(6) (Ts3,t) = First augmentation factor.52
—(b3,)®((G35),t) = First detritions factor .53

HOLISTIC CONCATENATE SYTEMAL EQUATIONS HENCEFORTH REFERRED TO AS “GLOBAL
EQUATIONS”
We take in to consideration the following parameters, processes and concepts:
(1) Acquisition of mass
(2) Symmetry Breaking
(3) Strong interaction
(4) Unified Electroweak interaction
(5) Continuous group of local transformations
(6) Lagrangian Variance
(7) Group generator in Gauge Theory
(8) Vector field or Gauge field
(9) Non commutative symmetry group in Gauge Theory
(10) Yang Mills Theory (We repeat the same Bank’s example. Individual debits and Credits are conservative so
also the holistic one. Generalized theories are applied to various systems which are parameterized. And we
live in ‘measurement world’. Classification is done on the parameters of various systems to which the Theory

is applied. ).
(11) First Term of the Lagrangian of the Yang Mills Theory(LHS)
Ly=—1T (F%) = L pwe g
O S o
(12) RHS of the Yang Mills Theory
Lo = 1 Tr(F?) = 1 pwa pa
& 4 4 My _
a0 ® (a13) [+ (a15) D (T4, )|+ (@10) 2 (T17, 0) || +(a50) 52 (1, 0)|
—==(a13)"Gyy — - - - Gy3 .55
|+(a24)(4'4'4'4') (Tys, ) ||+(f128)(5‘5‘5‘5‘) (Tye, 1) | | +(a3z,) 0000 (Ty, t)l
s (a1) ]+ (a1) D (T34, ] [+(@17) *2) (T, || +(a3) O (T, 1)
o = @) - v\ eAa4) " (5555 (6,666 G4 36
+(as) (T35, t) |+(f129)( 7 ')(ng,t)”+(a33)( o0 ‘)(T33:t)|_
[ D NG - ,,
dG1s ) (ai5) “|+(ais) (T4, ) |+(a18)(2'2')(T17,t)“+(a22)(3'3')(T21,t)|
—= = (ay5)" Gy — . _ _ Gys .97
I | +(age) 44 (Tys, t) | | +(a30) ) (T, t) | | +(a3,) 0008 (Tys, t) |
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I o " 1 . . . .
Where | (a;3) P (Ty,, t)| | (a;)V(Ty,, t)|, (ajs ( )(TM, t)| are first augmentation coefficients for category 1, 2 and 3

|+(a{6)(2r2r) (Ty7, t)| : |+(a{7)(2'2') (Ty7, t)| , |+(a{8)(2'2') (Ty7,t) | are second augmentation coefficient for category 1, 2 and
3
|+(a§0)(3'3') (Tyy, t)|,|+(a§1)(3'3') (Tyy, t)|,|+(a§2)(3'3') (Tyy, t)l are third augmentation coefficient for category 1, 2 and 3

m " 4,444, " . ..
|+(a24)(4'4'4'4') (Tys, t)| , +(a25)( )(TZS, t) ,|+(a26)(4'4'4'4') (Tys, t)| are fourth augmentation coefficient for category 1,
2and 3
|+(a§8)(5'5'5'5') (Tyo, t) || +(ay9) 555 (T, t)|,|+(a'3'0)(5'5'5'5') (Tyo, t)| are fifth augmentation coefficient for category 1, 2
and 3
|+(a§2)(6'6'6'6') (Ts3,t) | |+(a§3)(6'6'6'69 (Ts3, t)| ,|+(a§4)(6'6'6'6') (Ty3, t)| are sixth augmentation coefficient for category 1, 2

and 3.58 59
.60
dTy3 - (b1'3)(1)|—(b1”3)(1)(G; t)| |_(b1”6)(2'2') (Gyo, t)H‘ (bgo)(3'3') (Gy3, t)|
—2 = (by3)WTy, — - - - T3 .61
i (b13)"Thy |_(b24)(4,4,4,4,)(G27't)”_(bzg)(S,S,S,S,)(G31't)||_(b32)(6,6,6,6,)(635,t)| 13
T _ (o7 (b1'4)(1)|—(b1”4)(1)(G; t)| |—(b1”7)(2'2.)(619' t)H‘ (b£1)(3'3')(G23»t)| I 6
2 \P1a 13 — L (44,44) - - 14 -
‘ | _(bzs) (Gy7,1) |—(b29)(5’5’5’5’)(031't)||—(b33)(6’6’6'6‘)(635»t)|_

[ @D D . " ]
it _ oy, —| Gis) [=05) TG 0] G G O] 0OV G )] |
e ~ Wis 14 . _ _ 15 -

| | —(bza)(4'4'4'4') (Gy7,8) ||—(b30)(5’5’5’5’) (G31,8) || —(b34)(6’6’6'6‘) (G35, 1) | ]

Where | —(bj5)D (G, t) | ,|—(b1"4)(1)(G, t)|, —(b{s)(l)(G, t)|are first detrition coefficients for category 1, 2 and 3
|—(b{6)(2'2') (Gyo,t) | | — (b))% (G0, t)| | —(b1g) %) (G0, t)| are second detritions coefficients for category 1, 2 and 3
|—(b§0)(3'3') (Gys, t)| | —(by1) B3 (Gps, )|, | = (b72) 33 (Gy3, 1) | are third detritions coefficients for category 1, 2 and 3

|—(b§4)(4'4'4'4')(G27, t) | —(bé’s)(4'4'4'4') (Gyy, t) ,|—(b£6)(4'4'4'4') (Gyy, t) | are fourth detritions coefficients for category 1, 2
and 3

|—(b§8)(5'5'5'5')(631, t)| , |—(b§9)(5'5'5'5') (Gsy, t)l , |—(b§0)(5'5'5'5') (Gs1,t) | are fifth detritions coefficients for category 1, 2
and 3

|—(b§2)(6'6'6'6')(635, t)| , |—(b§3)(6'6'6'6') (Gss, t)l ,|—(b§4)(6'6'6'6') (Gss, t) | are sixth detritions coefficients for category 1, 2
and 3 .64.65

4615 © (1)@ +(a10) P (Ti7, ) || +(a13) ) (T1, || +(az0) 2P (T, )]

7 - (a16) 617 N " N(4,4,4,4,4) " N(5,5,5,5,5) " N(6,6,6,6,6) G16 '66
| [ +(@5) @444 (Tys, 0] [+ (ag) 5555 (T, £)|| +(azp) G456 (T35, 1) |

W0 _ (g 3 (@) @[+ (ai) @ (17, 0) ||+ ) (T, ]| +(a3) O (T, )|

_— = a17 616 - Gl7 67

dt vy (4,4,4,4,4) m o

] +(ajs) (s, t) |+(a29)(5'5'5'5'5)(T29, t)“ +(a33) (00000 (Ty, t)l
[ , m PNGCED) -

dGig @ (a18)(2)|+(a18)(2)(T17:t)l +(ajs) " (Tyy, 1) |+(a22)(3'3'3)(T21,t)|

(018) Gi7 — . - _ G,g .68
| [+(a5e) @449 (Tys, )] [+(@3) O35 (Tyo, )| +(a3) @400 (T, 1) |

Where | +(ai6) P (T, 1) | , |+(a{7)(2)(T17, t)|,|+(a{8)(2)(T17, t) | are first augmentation coefficients for category 1, 2 and 3

|+(a{3)(1'1') (Tua, f)| , |+(a{4)(1'1') Ty, f)l , +(a{5)(1'1')
|+(a§0)(3'3'3)(T21, t)|,|+(a§1)(3'3'3)(T21, t)|,|+(a§2)(3'3'3)(T21, t)|are third augmentation coefficient for category 1, 2 and
3
|+(a§4)(4'4'4'4'4) (Tys, t) | +(a£5)(4’4’4’4’4) (Tys, t) ,|+(a§6)(4'4'4'4'4) (Tys, t)| are fourth augmentation coefficient for category
1,2and 3
|+(a§8)(5'5'5'5'5)(T29,t) | |+(a£9)(5'5'5'5'5)(T29, t)l ,|+(a'3'0)(5'5'5'5'5)(T29, t)| are fifth augmentation coefficient for category
1,2and 3

|+(a§2)(6r6'6'6'6) (Ts3, t)|, |+(a§3)(6'6'6'6'6) (Ty3, t)l , |+(a§4)(6'6'6'6'6) (Ty3, t)| are sixth augmentation coefficient for category

1,2and 3 .6970.71

(Ty4,t)| are second augmentation coefficient for category 1, 2 and 3
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s = (bye)@T, (i) =01 ™ 610, O] [~ VG O 0 G 0)] |
16 17 = 16 -
| (=2 444 (G, O] [~ (00) 55539 (G, || ~(b5,) 0% (G35, D |
i GNP =GN G0, O] [FGiD VG,V (b)) Gy, 0)| ]
(b17)( )T16 (44444 - - Ty; .73
| _(bzs) (Gy7,8) |_(b29)(5'5'5'5'5)(G31; t) || —(b33)(6'6’6‘6‘6) (G5, 8) | |
[ , - BINGCED) ,, 1
it _ pyop | 0?0060, 0] |=0i) G 0|02V @ 0] |,
18 17 — 18 -
_ | —(byg) @444 (G 1) | | —(b4y) 55555 (Gay, ) || —(b3,)©6668) (G t) | |

where| —(b{6)(2)(G19,t)| , |—(b{7)(2)(G19,t)| ,|—(b{8)(2)(G19,t)| are first detrition coefficients for category 1, 2 and 3

|—(b'1'3)(1'1') (G, t)| | —(b1 )G, t)| , —(b{s)m') (G, t)| are second detrition coefficients for category 1,2 and 3
|—(b§0)(3'3'3') (Gys, t)| | —(b31) B33 (G, t)|,|—(b§2)(3'3'3') (Gys, t)l are third detrition coefficients for category 1,2 and 3

|—(b§ D@D (G 1) | _(bgs)(4'4'4'4'4) (Gyy,t) ,|—(b§6)(4'4'4'4'4) (Gyy, t)| are fourth detritions coefficients for category 1,2
and 3
|—(b§8)(5'5'5'5'5) (Gs1, t)| , |—(b§9)(5'5'5'5'5)(G31, t)| ,|—(b§0)(5'5'5'5'5)(631, t)| are fifth detritions coefficients for category 1,2
and 3
|—(b§2)(6'6'6'6'6) (Gss,t) |,|—(b§3)(6'6'6'6'6) (Gss, t)| , |—(b§4)(6'6'6'6'6) (Gss, t)| are sixth detritions coefficients for category 1,2

and 3
75

(azo)(3)|+(a20)(3)(T21;t)||+(a16)(222)(T17 t)||+(a13)(1 V) (Ty, t)|
Gy, .76
|+(a24)(4,4,4,4,4,4)(T25’t)||+(a28)(5,5,5,5,5,5)(T29’t)||+(a32)(6,6,6,6,6,6)(T t)| 20

dGz()

= (azo)( )G21

1 _ (g, )9 (@)@ az) P (T, ) || +(ai) @22 (T, ) || +ar) D (T, )| i
a .
21 20 — +( . )(4,4,4,4,4,4)(T 0 |+( GBS (T t)||+( T GE R (T, t)| 21
azs 257 Q29 29, ass 33,
[ , - - +N(1,1,1) 1
dGzz = (@,,))®6 (azz)(3)|+(a22)(3)(T21,t)||+(a18)(2'2'2)(T17,t)| +(a15) (T4, t) G 78
22 21 — 22 -
+(a” )(4,4,4,4,4,4)(T ,t) +(a” )(5,5,5,5,5,5)(T ,t) +(a” )(6,6,6,6,6,6)(T ,t)
| 26 25 30 29 34 33, 1)|]

|+(a§0)(3)(T21, t)|, |+(a§1)(3)(T21, t) | |+(a§2)(3)(T21, t)l are first augmentation coefficients for category 1, 2 and 3

|+(a{6)(2'2'2)(T17, t) |,|+(a{7)(2'2'2)(T17, t)| , |+(a{8)(2'2'2)(T17, t) | are second augmentation coefficients for category 1, 2
and 3

” ,, " 1,1,1, . . ..
|+(a13)(1'1'1') (Tyq,t) |,|+(a14)(1'1'1') (T4, t)|, +(a15)( )(T14, t)| are third augmentation coefficients for category 1, 2
and 3

| +(ag,) 444D (Tys, t) | +(a
category 1, 2and 3
|+(a§8)(5'5'5'5'5'5)(T29, t) |,|+(a§9)(5'5'5'5'5'5)(T29, t)|,|+(a§0)(5'5'5'5'5'5)(T29, t) | are fifth augmentation coefficients for
category 1, 2 and 3
|+(a§2)(6'6'6'6'6'6) (Ts3,t) | , | +(a3z3)©000600) (T, 1) |,|+(a§4)(6'6'6'6'6'6) (Ts3, t)| are sixth augmentation coefficients for
category 1, 2and 3 .79 80

(44,4,44,4)
)

(Tys, t) ,|+(a§6)(4'4'4'4'4'4) (Tys, t)| are fourth augmentation coefficients for

.81
0 _ (3, )T (b20) P~ 0)D G35, 0]|- i) 2 Gap, O||- i) G0 |
20) T2 — - - = 20 -
[= 3444 (G, 0)|| ~(b3) O55559) (G, £)]| —(b3p) @556 (G, 1) |
i 5 (3= (03P (63, || (b17) 22 (610, )| [~ (1) (G, )|
= (b)) Ty — RNCY YY) _ _ T,; .83
| =(b25) (Gy7, 1) |—(b29)(5'5'5'5'5'5)(G31. t)“ —(b33)(©00560) (G, t)| ]
[ , - p NCEED) 1
dez @) (bzz)(3)|—(b22)(3)(023: t)“- (b18)(2'2'2)(619:t)| - (bys) @G, ¢t)
= (b2)'Tyy — . - = T,, .84
I | —(bye) 4444 (Gyy, 1) | | —(b30) 555 (Gyy, 1) ” —(b34) (000560 (G, t)| ]
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|—(b§0)(3)(623, t)|,|—(b§1)(3)(623, t)| ,|—(b§2)(3)(623, t)l are first detritions coefficients for category 1, 2 and 3

|=(b1) 22D (1o, )|, [~ (01,)@2D (G5, D) |, |~ ({5) #*?(Gy, )| are second detritions coefficients for category 1, 2 and
3

|—(b’1’3)(1'1'1') (G, t)| ,|—(b’1’4)(1'1'1') (@G, t)| , —(b{s)(l'l'l')(G, t)| are third detrition coefficients for category 1,2 and 3

|—(b§ @D (G 1) | —(bgs)(4'4'4'4'4'4)(G27, t) ,|—(b§6)(4-4'4-4-4'4) (627,t)| are fourth  detritions coefficients for
category 1, 2 and 3

|=(b35) 555555 (Gay, )]}~ (b39) E55555) (Gay, 0)| |~ (b3)E55559) (G54, 1)| are fifth  detritions coefficients  for
category 1, 2 and 3
|—(b§2)(6'6'6'6'6'6) (Gss, ) |,|—(b§3)(6'6'6'6'6'6) (Gss, t) | | —(b34) 000660 (G, t) | are sixth detritions coefficients for category

1,2and 3 .85
.86
dGyy _ (0,6 (aé4)(4)|+(a£4)(4)(T25,t)||+(a§8)(5'5')(T29,t)||+(a§2)(6'6')(T33,t)| G 87
a2 S NLLLD (T TN@222)/(T, RCEEDIT 4
| +(ay3) (T14, )| +(as6) (T17, t)||+(az0) (Ty1, ) ]
[ N®|, @ . " ]
o _ (o Yiog (a35) " |+(ass) " (Tos, O || +(a50) &) (Tyo, )] | +(a3) @ (T, )] ‘. s
2 = lags 24~ . = = 25 -
] |+(a14)(1'1'1'1)(7'14, t) ||+(a17)(2'2'2'2)(T17, t) | | +(az) 333 (T, t)| ]
" . (a36) @ +(a36)® (Tys, )| +(a30) ) (Tyo, D)]|+(a34) @ (T35, 0|
—2 = (a6) PG5 — Gy .89
at LD "N22.2.2) " NG.3.3.3)
| +(ajs) (T14,t) |+(a18) e (T17,t)||+(a22) o (T21»t)| ]

Where|(ay,)® (Tys,t)|, (ags)(‘l) (Tys, ),] (aze) @ (Tys, t)| are first augmentation coef ficients for category 1,2 and 3

|+(a£8)(5'5') (Tyo, t)|,|+(a§9)(5'5') (Tyo, t)|,|+(a§0)(5'5') (Tyo,t) | are second augmentation coef ficient for category 1,2 and 3

|+(a§2)(6'6') (Ts3, t)|,|+(a§3)(6'6') (T3, ) | ,| +(az4)®%) (Ty, t) | are third augmentation coef ficient for category 1,2 and 3

[+ @i D (T, 0 [F @) (T, O [ +(ags)
2,and 3

|+(a{6)(2'2'2'2)(T17, t) | |+(a{7)(2'2'2'2)(T17, t) |,|+(a{8)(2'2'2'2)(T17, t)| are fifth augmentation coefficients for category 1,
2,and 3

|+(a§0)(3'3'3'3)(T21, t) | |+(a§1)(3'3'3'3)(T21, t) | |+(a§2)(3'3'3'3)(T21, t)| are sixth augmentation coefficients for category 1,

(T4, t)| are fourth augmentation coefficients for category 1,

2,and 3.90 91
92
it _ gy Yoy 2P [2020) G, O] [202) 5 G0, O] |- 0) G )] |
— = D2 25 — 24 -
“ (=)D G, )] [= (1) P22 (Gyo, D] |- (B50)%332 (Gyg, 1)
[/, \@® ANO) " "
2125 — (bys) T, (b2s) " |=(bzs) "~ (Gar, D) I—(bz9)(5‘5‘)(G31't)H—(b33)(6’6’)(G35:t)| .. o4
= 25 24 — 25 -
“ | [~ TD 6, )] [= ) P22 (Grg, D] |- (054332 (Gys, 1))
. | 2P 202® G, O] [~ 030) P G, O] |- (3) ) (G, D)
o (026) s = \LLLD "N2222 " (3,333 T2 95
—(by5) G,1) I_(b18)( e )(Gw't)“—(bzz) o )(523:0'

Where | —(by3) P (G,;,t) |, —(bé’S)G) (Gy7, ) ,|—(b£6)(4) (Gy7, t)l are first detrition coef ficients for category 1,2 and 3
|—(b£8)(5'5') (Gs1, t)| ,| —(byg) ) (G4, t)l,l—(bgo)(S'S') (Gs1, t)l are second detrition coef ficients for category 1,2 and 3
|—(b§2)(6'6') (Gss, t)| ,| —(b33)©0) (Gss, t)l,l—(b§4)(6'6') (G35, t) | are third detrition coef ficients for category 1,2 and 3

|—(bi,3)(1'1'1'1)(6; t) |;| _(b{4)(1'1'1'1)(6' t)l , _(bfs)(l'l‘l'l)(G, t)

are fourth detrition coef ficients for category 1,2 and 3

| —(b1s)?*?? (G, t) || | —(b;,)?*?2(G,q,t) |, |_(b1”8)(2'2'2'2) (Gyo, t)l
are fifth detrition coef ficients for category 1,2 and 3

|- (b30) 5333 (Gy3,t) |;|- (by1) 3333 (Gy3, t) I. I- (b32) 3333 (G, t)l
are sixth detrition coef ficients for category 1,2 and 3 .96, 9798

WWW.ijmer.com 2248 | Page




International Journal of Modern Engineering Research (IJMER)
WWW.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2242-2286 ISSN: 2249-6645

d(iﬁ G (aés)(5)|+(a£8)(5)(Tz9: t)||+(a£4)(4'4')(7'25't)||+(a'3'2)(6'6'6)(7133' t)| Gpy 99
[+ (@)D (1, O)|[+(a]) @222 (T, ) |[+(a30) B2233 (T4, )|
dng = (@) g — (aég)(5)|+(a£9)(5)(T29,t)| +(a£5)(4'4')(T25.t) |+(a'3'3)(6'6'6)(7133;t)| 6,0 100
[+ (@ )1y, 0 |[+(a),) @222 (T, O)|[+(a5) B2233 (T, 0)| |
o _ 0 [ (a30)®|+(@5)® (Tyo, )| [ +(ahe) “* (Tys, O)|[+(a3)©*O Ty, )| ]
= (@) = +(a£5)(1'1'1'1'1)(T14, t) |+(a )@2222(T,, 1) || +(az,)3333(Ty,, t)| Gao 201

Where | +(a28)(5)(T29, t)| |+(a29)(5)(T29, t)| |+(a30)(5)(T29, t)l are first augmentation coefflaents for category 1,2 and 3
44)

And | +(ay,) @ (Tys, t) |, +(ags) " (Tys, ) ,|+(a26)(4'4') (Tys, t)l are second augmentation coef ficient for category 1,2 and

|+(a§2)(6'6'6) (Ty3,t) | ,| +(az3) 000 (Ty,, t) | , | +(a34) 00 (T3, 1) | are third augmentation coef ficient for category 1,2 and 3

m m 1,1,1,1,1 . ..
|+(a13)(1'1'1'1'1)(T14, t) |,|+(a14)(1'1'1'1'1)(T14, t)| +(a 15)( )(TM, t)| are fourth augmentation coefficients for category
1,2,and 3
|+(a{6)(2'2'2'2'2)(T17, t) || +(aj,) %22 (T, t) |,|+(a{8)(2'2'2'2'2)(T17, t) | are fifth augmentation coefficients for category
1,2,and 3
|+(a§0)(3'3'3'3'3)(T21, t) |,|+(a§1)(3'3'3'3'3)(T21, t) |,|+(a§2)(3'3'3'3'3)(T21, t)| are sixth augmentation coefficients for category

1,2, 3 .102

.103

deg — (b,)OT. (bés)(5)|_(b£8)(5)(031:t)||_(b£4)(4’4’)(Gz7't)||—(b§2)(6'6'6)(635»t)| T 104

28 29 — 28 *

[—(b1) T (G, )] [=(bys) 222D (G, D)] |- (B50) 33323 (G, 1) |
(b39)]=(b30)® (G351, O] |~ (b3s) " (Go7, )| |- (B33) 59 (Gss, £)

deg _ (bzg)( )T28 29” | 29 31 | ” ( 25) 27 | ”33 35 | Ty 105
[~ (i) D6, 0] [~ (by) @222 (610, 0| |- (b51) 33329 (G5, D)

ino o (630) @[ =(b30)® (G1, D] [ = B3) ** (G, D] [~ (B3) 2 (G5, 1)

= (b3o)™ M5 = v \(LLLLL) "\22222) " (33333) T 106

|~ (b5) (6, 0] [~ (b1s) 22222 (619, 0)] |- (b3) #3339 (63, )|

where |— (byg) ™ (Gsy, t)| ,|—(b£9)(5)(G31, t)l ,|—(b§0)(5)(G31, t)l are first detrition coef ficients
for category 1,2 and 3

|—(b§4)(4'4') (Gy7, t)|, _(bgs)(4'4') (Gyy, 1) ,|—(b£6)(4'4') (Gyy, t)l are second detrition coef ficients for category 1,2 and 3
|—(b§2)(6'6'6) (Gss, t)| ,|—(b§3)(6'6'6) (Gss, t)l,l—(b§4)(6'6'6) (Gss, t)l are third detrition coef ficients for category 1,2 and 3

|—(bi'3)(1'1'1'1'1)(6, t) || —(by)BLLLD(G, t)l , —(bl”s)(l'l'l'l'l') (G, t)| are fourth detrition coefficients for category 1,2, and
3

|—(bf6)(2'2'2'2'2)(619, t) | | —(by;) @220 (G, t) | | —(b1g) @222 (G, t)| are fifth detrition coefficients for category 1,2,
and 3

|— (byg) 33333 (6,3, 1) | |— (by)33333) (6,3, 1) | |— (byp) 33333 (G,,, t)l are sixth detrition coefficients for category 1,2,

and 3.107
.108
6 _ (4, )06 (a52) O+ (a5) O Ts5, )] [+(@2) 5D (T, O H@2) W0 T 0] |
32 33— - ~ ~ 32 -
[+ (ais) WD (T, B)|| +(age) @222 (Tyg, ) || +(az0) B339 (T, £)|
[ , - - vy (444,) 1
dG33 = (2,)®6 (a33)(6)|+(a33)(6)(T33,t)||+(a29)(5'5'5)(T29,t)l +(ass) (Tys,t) G 110
. 33 32~ 33 -
[+ (ar) VD Ty, ]| +(ai) 222228 (T, )| [+(a5,) O3 (T, )|
d634 ((154)(6)| +(a34)© (T35, 1) | | +(a30) 5> (T, t) ” +(ay6) 44 (Tys, 1) |
— = (a34)( )633 . A(1,1,1,1,1,1) ~ ~ 634 111
+(ajs) (Tys, B)|[+(ale) #2222 (Ty,, 1) | [+(a5) 333339 (I, 1)

|+(a§2)(6) (Ts3, t) |,|+(a§3)(6) (Ty3,t) |,| +(az4)© (Ts3, t)l are first augmentation coef ficients for category 1,2 and 3

|+(a£8)(5'5'5)(T29, t) |,|+(a£9)(5'5'5)(T29, t)|,|+(a§0)(5'5'5)(T29, t)l are second augmentation coef ficients for category 1,2 and 3
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. v \(444) . . . . ,
|+(a24)(4'4'4') (Tys, t) |, +(ays (Tys,t) ,|+(a26)(4'4'4') (Tys, t)l are third augmentation coef ficients for category 1,2 and

- - PANCEREEED . .
|+(a13)(1'1'1'1'1'1)(T14, t) |,|+(a14)(1'1'1'1'1'1)(T14, t) | +(ays) (T4, t)| - are fourth augmentation coefficients
|+(a]s)@22222(T,,, O [+(a;,) 222222 (T, O} | +(ajs) #2222D(Ty,, )| - fifth augmentation coefficients

|+(a§0)(3'3'3'3'3'3)(T21,t)|,|+(a§1)(3'3'3'3'3'3)(T21,t)|,|+(a§2)(3'3'3'3'3'3)(T21,t)| sixth augmentation coefficients .112
113

52 — (by,)OT: (b32)®|=(052)® (G5, 0) ||‘ (b38)®> (Gsy, 1) ||‘ (b3)“**)(Gyy, t)| T,, 114
.~ U3 33 — 32 -
dt |—(b1"3)(1'1'1'1'1'1) @, t)| |_(b1"6)(2,2,2,2,2,2) (Gyo, t)H_ (b5y) 333333 (G,s, t)|
[ , m B v\ (4,44) 1
dT33 _ (b )(G)T (b33)(6)|_(b33)(6)(G35't)”‘(b29)(5'5'5)(G31't)| ‘(bzs) (Ga7,0) T.. 115
2 b33 32~ . n = 33 -
t | —(b)ALLLID (G, t)| |—(b17)(2'2'2'2'2'2) (Gyo, t)||— (b3) 333333 (Gys, ) |
" o (B3B3 G5, 0] |- (5055 (631, )] |- (b) 44 Gy, D]
7 = (b34) T33 - " (1'1'1'1'1'1) - P T34 '116
| _(b15) (G,¢) |_(blg)(Z,Z,Z,Z,Z,Z)(Glg' t)H‘ (bzz)(3’3’3‘3‘3‘3)(623» t)|

|—(b§2)(6) (G35,t)|,|—(b§3)(6) (Ggs,t)| ,|—(b§4)(6) (Gss, t)l are first detrition coef ficients for category 1,2 and 3
|—(b£8)(5'5'5)(G31, t)| ,|—(b§9)(5'5'5)(G31, t)|,|—(b§0)(5'5'5)(631, t)l are second detrition coef ficients for category 1,2 and 3

|—(b£4)(4'4'4') (Gys) t)|, _(bé's)(4'4'4')(G27, t) ,|—(b£6)(4'4'4')(GZ7, t)l are third detrition coef ficients for category 1,2 and 3

|=(b;) LD (G, ) [~ (b )LD (G, 0) —(bi’s)(l'l'l'l'l'l)(G, t)| are fourth detrition coefficients for category 1, 2,
and 3
|—(b{6)(2'2'2'2'2'2) (Gyo, t)|, |—(b1"7)(2'2'2'2'2'2)(Glg, t) |,|—(bi’s)(z'z'z'z'z'z)((}19, t)| are fifth detrition coefficients for category 1,
2,and 3
|— (byg) 333333 (6,3, 1) | |— (byy) 333333 (6,5, 1) ||— (byy)Br33333) (G, t)| are sixth detrition coefficients for category 1,
2,and 3
117
118
Where we suppose.119
N RPN €Y NGO RPN Y
(A) @)W, (a)", (&), )W, ()7, (b)) >0,
i,j = 13,14,15
- " (1) " (1) -y - - -
(B)  The functions (a;) ", (b;) " are positive continuous increasing and bounded.
Definition of (p,))®, (r;)®:
D .
(@) (T, 1) < @)W < (Ay3)®
)V G0 s @DV < B < (B )P.120

121
, m (1)

©  limpol(@) (T, ) = @)@

limg.(5) " (6,00 = (r)®
Definition of (A3 )®, (B3 )M :

Where |(A13 YD, (B3 )D, (p)D, (ri)(l)lare positive constants and [i = 13,14,15].122
They satisfy Lipschitz condition:

@)V (T1, ©) = (@)D (Tig, O] < (Ryz YD|Tyy — Tyl (M)t

I(bHDG,£) = (b)Y P(G, 1] < (K3 ) DG = G'[|le= M)Vt 123
124

125

With the Lipschitz condition, we place a restriction on the behavior of functions

(@)D (Tyy, ) and(a;) P (Tyy,t) . (T1,, t) and (Ty4, t) are points belonging to the interval [( ky3 )™, (M3 )P] . Itis to be
noted that (a;)(Ty4, t) is uniformly continuous. In the eventuality of the fact, that if ( M5 )™ = 1 then the function
(@)D (Ty,, t) , the first augmentation coefficient WOULD be absolutely continuous. .126

Definition of (M3 )™, (k3 )M :

(D) (M3 )D, (ki3 )D, are positive constants

@)® _pp®
(M13)D 7 (M3)D < L127
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Definition of ( P;3 )™, (0,3 )M :

(E) There exists two constants ( P; )@ and ( Q5 )™ which together with (M3 )@, (k13 )D, (4;3)@® and
(B3 )® and the constants (a,)®, (@)@, (b)D, (b)D, ()P, (1)D,i = 13,14,15,
satisfy the inequalities

[@)®+ @)+ (Az)D+ (P3)D (k)P <1

—(MI: NG [ (bl.)(l) + (bl.')(l) + (B3)D+ (0;5)® (];13 YD] < 1.128
129

130
131

—_r
(M13)®

132
Where we suppose.134
@), (a)?, (a)?, @, ), (6)? >0, i,j=161718135
The functions (a; )®, (b, )® are positive continuous increasing and bounded..136
Definition of (p)®, (r;)®:.137
(@) (T, 1) < )P < (Ays)™ 138
(b )P (Grg,t) < ()P < (b)) < (Bys )™ .139
limg, e, (a;’ )P (Ty7, 1) = (p)?.140
limg, (b1 )? ((Gro),t) = () 141
Definition of (A;4)®, (B )@ :
Where| (A16)D, (B )P, ()P, ()@ |are positive constants and [i = 16,17,18].142
They satisfy Lipschitz condition:.143
1@ )P(1)7,6) = (@)D (17, 0] < (kg )Ty — Ty le (M)t 144
16 )P ((G19)', 1) = (b )P ((G16), )] < (16 )P|(Gro) = (Gro)'[le~ (16?145
With the Lipschitz condition, we place a restriction on the behavior of functions (a; )® (T},,t) and(a; )?(T;,t) . (Ti;,t)
And (T}, t) are points belonging to the interval [( k5 )@, ( My )P] . Itis to be noted that (a; ) (Ty,, t) is uniformly
continuous. In the eventuality of the fact, that if ( M, ) = 1 then the function (a; )@ (Ty;,t) , the SECOND
augmentation coefficient would be absolutely continuous. .146
Definition of (M, )@, (ke )@ :.147
(F) (M )P, (k16 )@, are positive constants
@® _6)® 4448
(M16)® (M) '
Definition of (P;3)®, (03 )@ :
There exists two constants ( P, )@ and ( 04 )® which together with ( M, )@, (k14 )@, (A;4)Pand ( By )@ and the
constants (a;,)®, (a,)®, (b)@, )@, )P, )?P,i=16,17,18,
satisfy the inequalities .149
m [@)P + @)D + (A)P + (Pis)@ (kig)P] < 1.150
m[ B)P + 1)@+ (Bis)P + (Q16)@ (kys)®] < 1.151
Where we suppose.152
(G) (@)@, (@)®, (@), )P, (1), ()P >0, i,j=202122
The functions (a; )®, (b, )® are positive continuous increasing and bounded.
Definition of (p,)®, (r;)®:
(a; ) (T, 1) < )P < (Ay)®
(b )P (G, ) < (1) < (b)® < (B )®.153
limp, o (@ )® (Tyy, 1) = (p)®
limg e (b; )® (G3,8) = (1)@
Definition of ( A,y )@, (B, )@ :
Where|(,4i20 Y®),(By )P, )P, (1)@ | are positive constants and [i = 20,21,22].154
155

156
They satisfy Lipschitz condition:

" / " ~ ' _ 3)
[(a; )P (Tyy,t) — (@ )P (Ty1, )| < (kg )P |Toy — Torle (M0 )™t ,
1(b; Y® (Ga3 ) = (b, )P (Ga3, 0] < (o )P||Gos — Gos ' |le~ (200Dt 157
158

159
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With the Lipschitz condition, we place a restriction on the behavior of functions (a; )® (T,;,t) and(a; )® (T, t)

. (Ty1,t) And (Ty4, t) are points belonging to the interval [( k4o )®, (M5 )®] . Itis to be noted that (a; ) (T4, t) is
uniformly continuous. In the eventuality of the fact, that if ( M,, )® = 1 then the function (a; )®(T,;,t) , the THIRD
augmentation coefficient, would be absolutely continuous. .160

Definition of (M, )®), (ko )@ :

(H) (My0 )®, (kyo )®, are positive constants

NG b3
(gzzz)@) ’(;223 @ < 1.161
There exists two constants There exists two constants ( P,y ) and ( Q,, ) which together with
(M3 )®, (k0 )®, (A50)®and ( By, )® and the constants (a;)®, (a;)(3)' b)®, (bl)(”, @)®, r)®,i=20,21,22,
satisfy the inequalities

(@)@ + (@)® + (A )P+ (P )P (kpo )P < 1
B + B + (Byp)® + (Q20)® (ko )®] < 1.162

163
164
165
166

N
(M2)®) [

N
(M20)® [

167
Where we suppose.168
(1) (a)®, (@)™, (@)@, ), ()™, (b )® >0, i,j = 24,2526

) The functions (a; ), (b, )® are positive continuous increasing and bounded.

Definition of (p)®, (1,)®:
(a; )P (Tys,8) < )@ < (Ayy )P
®DP(@)8) < )P < (B < (B )® 169

(K) lime, o (a; )™ (Tys, ) = (p)™
limg_e, (b )® ((Gy7), 1) = (1)@

Definition of (A, )™, (B, )™ :
Where | (A)D, (B )P, )@, )W | are positive constants and [i = 24,25,26].170

They satisfy Lipschitz condition:
(@)D (Tys, ©) = (& )P (T, O] < (Ko )| Tps — Ty le ()t
(B YD (G27)', 8) = (b )P ((Gor), )] < (Rgy YPI(Ga) = (G |l eVt 171
With the Lipschitz condition, we place a restriction on the behavior of functions (a; ) (T,s,t) and(a; )® (T;s, t)
. (Ty5,t) And (T;s, t) are points belonging to the interval [( Ky, )@, (M, )®] . Itis to be noted that (a; )® (T;s, t) is
uniformly continuous. In the eventuality of the fact, that if ( #,, )® = 4 then the function (a; )®(T,s,t) , the FOURTH
augmentation coefficient WOULD be absolutely continuous. .172

173

Defil74nition of ( My, )@, (kyy )@ :
(L) (M, )1767°5®), (ky, )@, are positive constants
™) @ @)

(a) (by)

(M24)® 7 (M4 )(j) <1 '17i1

Definition of (P, )™, (Q,4 )™ :

(N) There exists two constants ( P,, )™ and ( 0, )™ which together with ( M, )®, (k4 )@, (A2)Pand ( By, )@
and the constants (a;)®, (@)@, (b)™®, (b)®, ()@, ()@, i = 24,2526,
satisfy the inequalities
(@)@ + (@)™ + (A)® + (P )@ (kg )W) < 1

1 ' ~ ~ ~

W[ )W + (B + (B )P+ (Q24)® (kp )P] < 1.175

Where we suppose.176
©  @,@)®, @), )P, B, (b)) >0, ij=282930

(P) The functions (a; )®, (b; )® are positive continuous increasing and bounded.

Definition of ®)®, )®: A

(a; )5 (T, 1) < () < (A )®

_r
(M4 )® [

WWW.ijmer.com 2252 | Page



(R)

(S)

International Journal of Modern Engineering Research (IJMER)
WWW.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2242-2286 ISSN: 2249-6645

B ((G3),t) £ (1) < (B < (Byg )®.177

Q) limy, o (a; ) (Tye, £) = (p))®
limg_e (b )® (G, 8) = (1)
Definition of (A,g ), (Byg )™ :
Where|(,ci28 YO, (Byg )®), (p)®, ()™ | are positive constants and [i = 28,29,30].178
They satisfy Lipschitz condition:
(@ ) (T30, 8) = (@] YO (T30, D] < (Rog YO Ty = Tpole™(M2s) ™
16 YO ((G51)', ) = (b YO ((Ga1), £)] < (kg )O1(Gar) = (G5, [Jle™ (st 179
With the Lipschitz condition, we place a restriction on the behavior of functions (a; ) (Tye,t) and(a; )® (Tye,t) . (Tyo,t)
and (Ty,, t) are points belonging to the interval [( &y )®, (M,g )] . Itis to be noted that (a; )™ (Tyo, t) is uniformly
continuous. In the eventuality of the fact, that if ( M, )® = 5 then the function (a; )® (T, t) , theFIFTH augmentation
coefficient attributable would be absolutely continuous. .180
Definition of ( M,g )®), (kg )™ :
(M5 )®), (kyg ), are positive constants

(a[)(s) (bl)(S)
(M2g)®) 7 (Mpg)®) <118l
Definition of ( P,g )®, (0,5 ) :

There exists two constants ( P,g )® and ( Q,g )® which together with ( M5 )®, (k5 ), (A,5)®and ( Byg )™ and
the constants (a,)®, (@), (6)®, (b)®, ()P, ()™, 1= 28,2930,  satisfy the inequalities

—1 ! N -~ ~

NG [(@)® + (@) + (Ayg)® + (Bg)® (k)] < 1

—1 ! = A~ -~

T 0P+ B+ (Bg)® + (Q26)® (ke )®] < 1.182

Where we suppose.183
(ai)(6)l (ai)(6)f (ai )(6)I (b,l,)((i), (bi”)(6)1 (bl )(6) > 01 l;] = 32;33;34
(T) The functions (a; )®, (b; ) are positive continuous increasing and bounded.
Definition of (p,)©, (;)®:
) (a; ) O (T33,8) < (p)© < (,A32 )© R
(b )O(G5), ) < (1)@ < (b)) < (B, )©.184

L) limg, o (a; )® (T33,0) = (p)©
limg_ (bg,)(G) ((035); t) = (Ti)(G)
Definition of (A3, )®, (B3, )© :
Where | (A3,)©,(B3,)®, ()@, )® | are positive constants and [i = 32,33,34].185
They satisfy Lipschitz condition:
1(a; YO (T33, ) = (@] )© (Ta3, )] < (kap )O|Ty3 — Tagle~ (M)
(57O (G35),0) = (B YO ((G35), £)I < (Rsz YOI(G35) = (Gs)' [le~M22) 186
With the Lipschitz condition, we place a restriction on the behavior of functions (a; ) (Ts3,t) and(a; )® (T3, t)
. (T33,t) and (Ty3, t) are points belonging to the interval [( ks, )©, (M3, )®] . Itis to be noted that (a; )©® (Ty3, t) is
uniformly continuous. In the eventuality of the fact, that if ( M5, ) = 6 then the function (a; )© (Ty,,t) , the SIXTH
augmentation coefficient would be absolutely continuous. .187
Definition of ( M3, )®, (ks, )© :
(M3, )®, (k3, )©, are positive constants

@)®  »n®
(M32)©®) 7 (M32)® <1188

Definition of ( P;, ), (03, )@ :
There exists two constants ( 25, )© and ( 05, ) which together with ( M5, )©), (k3, )©, (A3,) @ and (B3, )© and the
constants (a,)®, (a))®, (b)©®, (b)®, )@, )®,i=32,33,34,
satisfy the inequalities
1 ' A ~ ~
(@)@ + (@)@ + (A5) O+ (P )© (k3) @] <1

(M33)® [
(B)@ + B)® + (B3)® + (03,0 (k32)®]<1.189

;[
(M33)®
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.190
Theorem 1: if the conditions IN THE FOREGOING above are fulfilled, there exists a solution satisfying the conditions
Definition of G;(0),T;(0) :

G() s (P) VeV [6,(0) =67 > 0]
T,(t) < (Qp3 )e™)Pt  I1.(0) = T2 > 0].191
192

Definition of G;(0),T;(0)

G(£) < (Pg)@e™e)®t  G,(0) =60 >0
Ty(t) < (Q16)@e™e)®t 1 T7,(0) =T > 0,193
.194

G,(£) € (Pyy )Pem0)t  G.(0) =60 >0
T,(t) < (Qp)Pe ™00Vt T,(0) =T0 > 0,195
Definition of _G;(0),T;(0) :

G(®) < (B )Petm)®t [7G(0) =G0 > 0]

T,(t) < (Qpy )Pe(™)®t [T(0)=T0 >0 196

Definition of _G;(0), T;(0) :
G(6) < (P )Vetm)®t  [7G,(0) = G0 > 0]
T,(t) < (Qp)®e(™0)¥t  I71,(0) =10 > 0]197

198
Definition of _G;(0),T;(0) :

GO < (Py)Pem® G0y =67 > 0]

T,(6) < (Q3)@eM2)Pt [7,(0) = TP > 0].199

Proof: Consider operator A™) defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy
.200

G;(0) = Gio' T:(0) = Tio: GiO = (1313 » :Tio < (013 ), 201

0 <G,(t) — G? < (B3 )We(M3)Ve 202

0<T,(t) =T < (043 )PeMs)Vt 203

By

Gi3 () = Gis + fot [(a13)(1)614 (san) = ((a'13)(1) +ai3) P (T (s03)), 5(13))) Gis (5(13))] ds3) -204
Gia(8) = Giy + fot [(a14)(1)613 (san) - ((a'“)(l) +(a1) P (Ta (s013)), 5(13))) G14(5(13))] ds(i3) -205
Gis(8) = Gfs + fot [(als)(l)GH (sam) — ((ais)(l) + (a15)P(Tia (s13)), 5(13))) G15(5(13))] ds3y 206
T3 (6) =T + fot [(b13)(1)T14 (5(13)) - ((b;3)(1) = (1) (G(sam), 5(13))) T3 (5(13))] ds(i3) -207
T, () =T + fot [(b14)(1)T13 (5(13)) - ((b;4)(1) = (1) (G(sam), 5(13))) T14(5(13))] ds(13) -208

Tis (1) = T + fot [(b15)(1)T14 (5(13)) - ((bis)(l) - (bfs)(l)(G(s(B))' 5(13))) T15(5(13))] dss)
Where s(3y is the integrand that is integrated over an interval (0, t).209

210

Proof:

Consider operator A defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy
211

G,(0) =G, T,(0) =T?, GY < (Pg )P, TP < (0;5)®, 212

0 < G,(t) — G? < (Pg )Pe(Me) Pt 213

0<T,(t) =T < (01 )PetMe)®t 214

By

Gie () = G + fot [(a16)(2)Gl7 (sae) = ((0’16)(2) +a16) P (Ti7 (sa6)), 5(16))) Gie (5(16))] dse) -215
Gi7 () = Gy + fot [(a17)(2)Gl6 (sae)) = ((0’17)(2) + (a17)?(Ti7 (sae)), 5(17))) Gy (5(16))] dsqe) 216
Gig(t) = G + fot [(a18)(2)Gl7 (sae)) = ((0’18)(2) + (a18)?(Ty7 (sae)), 5(16))) Gig (5(16))] dsqey 217
T (t) = T + fot [(ble)(Z)Tn (sae) = ((bie)(z) — (b19)?(G(sa6)), 5(16))) T (5(16))] ds() -218
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T, () =T + fot [(b17)(2)Tl6 (5(16)) - ((bi7)(2) - (bI7)(2)(G(S(16))' 5(16))) T17(S(16))] ds(s) -219

e t ’ "

Tig(t) = T + fo [(b18)(2)Tl7 (5(16)) - ((b18)(2) - (b18)(2)(G(S(16)); 5(16))) Tig (5(16))] ds(1e)

Where 516 is the integrand that is integrated over an interval (0, t).220

Proof:

Consider operator A®) defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy 221

Gi(0) = Gio , Ti(0) = Tio , Gio = (1320 @ 'Tio < (on )@, 222

0<G,(t) = GY < (Pyy )Pe(M0)Pt 223

0<T(t) =T < ( 0y )Pe(M20)Pt 224

By

= t ’ "

Gy () = G + fo [(azo)(3)621 (5(20)) - ((azo)(S) + azo)(S)(Tm (5(20)); S(zo))) Gao (5(20))] ds(a0) -225
— t ’ "

Gy (1) =GPy + fo [(a21)(3)G20 (5(20)) - ((a21)(3) + (a3) @ (Ty (5(20)); 5(20))) 621(5(20))] ds(yo) 226
— t ’ "

Gy () = G2, + fo [(azz)(3)G21 (seoy) — ((azz)(3) + (a22)® (To1 (s20y), 5(20))) G2 (5(20))] ds(ag) -227

_ t ’ "

Ty (6) = Thp + fo [(bzo)(3)T21 (5(20)) - ((bzo)(3) — (b20)P(6(s0), 5(20))) T30 (5(20))] ds 20 -228

_ t ’ "

() =THh + fo [(b21)(3)T20 (5(20)) - ((b21)(3) - (b21)(3)(G(5(20))' 5(20))) Ty (5(20))] ds () -229

— t ’ "

T () = T3, + fo [(bzz)(B)Tm (5(20)) - ((bzz)(3) - (bzz)m(G(s(zo)), 5(20))) Ty (5(20))] ds (20

Where s,y is the integrand that is integrated over an interval (0, t).230

Consider operator A® defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy

231

G;(0)=G), T,(0) =T, G? < (P )V, T < (Q2a )™, 232

0 < G,(£) — G? < (Pyy YWe(M2)Vt 233

0 = Ti (t) - Tio < (024 )(4)9(M24 )(4)t 234

By

G () = 63y + [ [(az4)(4)G25 G ((a'z4)(4) +az4) P (Tas (s2)), 5(24))) Goy (5(24))] d5(oay 235

525 (t) = GzOS + fot [(azs)(4)G24 (5(24)) - ((alzs)(‘*) + (a,z,s)(4) (TZS (5(24)). 5(24))) 625(5(24))] ds(24) 236

Gy () = G + fot [(azs)(4) Gas (520) — ((a'za)(‘*) + (az6)® (Tys (5(24)).5(24))) Gas (5(24))] ds(pqy 237

T (O = Tiy + fOt [(b24)(4)T25 (sea) — ((bé4)(4) — (b2)P(G(sm), 5(24))) T (5(24))] dsz4) .238
7_’25 () = T205 + fot [(bzs)(4)Tz4 (5(24)) - ((blzs)m - (blzls)(4)(G(S(z4)), 5(24))) T25(5(24))] d5(24) .239

— t ' "
Ty6(t) = T + fo [(bzs)(4)T25 (5(24)) - ((bze)(4) — (bze)® (6(5(24)), 5(24))) T2 (5(24))] ds (24
Where s (54 is the integrand that is integrated over an interval (0, t).240
Consider operator A®) defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy

241
242
G:(0) =G, T,(0) =T, G? < (Pyg )®,T? < (Qp5)®, .243
0 < G,(t) — G? < (P )®eM26)™t 244
0< T; (t) — Tio < (028 )(S)e(MZS YBe 245
By
Gyg (t) = G5 + fof [(azs)(S)ng (5(28)) - ((a’zs)(S) + alzlg)(s)(ng (S(zg)). 5(28))) Gag (5(28))] ds zg) .246
G0 =G+ [(azg)(S)GZB (sew) - ((a’29)(5) +(a20)®(T29(528)), S(zs))) Gao (S(zs))] dszg) 247
o® =G +y [(aBO)(S)ng (sew) - ((a’30)(5) +(a30)®(To9 (s2s))» S(zs))) G3o (S(zs))] ds(zg) -248
Tyg(t) =T% + fot [(bZB)(5)T29 (5(28)) - ((b,28)(5) — (byg)® (G(S(zg)), 5(28))) Tyg (5(28))] ds(ag) -249
Tz9 ) = Tzog + fot [(b29)(5)T28 (5(28)) - ((blzg)(s) — (blzlg)(s) (G(S(zg)), 5(28))) Ty9 (5(28))] ds(28) 250

— t ' "
T3 (t) =TS, + fo [(b3o)(5)T29 (5(28)) - ((b30)(5) - (b30)(5)(G(S(28)): 5(28))) T3 (5(28))] ds(2g)
Where s(,g) is the integrand that is integrated over an interval (0, t).251

Consider operator A defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy .252
G;(0) =G, T,(0) =T, G? < (P)®,T? < (Q:,)®, .253

0 < G,(t) — G? < (Pyy )©eM32)t 254

0<T,(t) = TP < (05, )@eM32)®t 255
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By

Gsp () = G, + fot [(032)(6)633 (se2) — ((‘1’32)(6) +a3) (T35 (532))s 5(32))) Gs, (5(32))] ds 32) 256
G33(t) = G5 + fot [(033)(6)632 (s@2)) = ((a;3)(6) + (a33) @ (T3 (sa2))s 5(32))) Gs3 (5(32))] ds(zg) 257
G3q(t) = G + fot [(‘134)(6)633 (5(32)) - ((a’34)(6) + (a;4)(6)(T33 (5(32))'5(32))) G34(5(32))] ds(sz) -258
T32 ) = T302 + fot [(b32)(6)T33 (5(32)) - ((béz)(()) - (bgz)(ﬁ)(G(Sez))' 5(32))) T3, (5(32))] d5(32) 259
T33 ) = T303 + fot [(b33)(6)T32 (5(32)) - ((bé3)(6) - (b’3’3)(6)(G(5(32))' 5(32))) T35 (5(32))] d5(32) .260

= t ’ "
T34 () = T3y + fo [(b34)(6)T33 (5(32)) - ((b34)(6) - (b34)(6)(G(5(32))' 5(32))) T34(5(32))] ds(3z)
Where s (35 is the integrand that is integrated over an interval (0, t).261
262
(@) The operator A™ maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that
Gi53(t) < G% + fot [(a13)(1) (Glo4 +(Pys )(1)9(M13 )(1)5(13))] dsqz) =
(a13)M(Py3)D ®
(14 (@) Ve)GE, + 2= (M)t — 1) 263
From which it follows that
(P13)M+6Y,

. ol . @—7—9 _
(Gy3(8) — G )e= (M) < LI {((p YD 4 G,)e 6 +(Pw)ﬂﬂ

(My3)D

(GY) is as defined in the statement of theorem 1.264
Analogous inequalities hold also for G4 , Gys, Ti3, Ti4, T15.265
The operator A4 ®?) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that.266

t 5 @ (@16) B (P1s)P @
Gie(®) < 6fs + [§ [@10)® (654 Pig )V ™M 00| dsig) = (1 + (@) D)6l +HLC— ()P —1)

.267
From which it follows that

(P16)P+6Y;

() ~ - ~
(G () — G106)e_(M16 Pt < La16) ™ (( Pg)® + G107)e< ¢, ) + (P )| .268

(M16)@

Analogous inequalities hold also for G;; , Gig, T16, T17, Tig-269
(@) The operator A®) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that
t PN 3)
Gao () < G2 + [, [(azo)(3) (0201 +( Py )PeM20) 5(20))] ds o) =
(a20)®(P20)® ®
(1+ (a20)®t) 63 + aZO(MZO )(230) (E(MZO) ‘- 1) 270
From which it follows that
(P20)®+68;

® (Pa0) 6o R
(Gyo (B) — Gzo)e—(Mzo @ < ((;;20) [ (P )® +GY )e< 6% > + (B, )(3)l 271

3)

Analogous inequalities hold also for G,q , G2z, Tag, Ta1, Ty 272
(b) The operator A™ maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that

t A~ 4)
Goa () < G2y + [ [(a24)(4) (Gzos +( Py YD M2t 5(24))] ds(4) =
(@2)P(P)D (. ®
(1+ (@) @) 6% + )T (om0 1) 273
From which it follows that

(P24)®+6Ys

- (P )® + G )e 25 +(Py)
(a24) ) ( 69 ) I C)!

_ )
(G (£) — GFy)e~ (M)t < (Fpy)®

(G?) is as defined in the statement of theorem 1.274

(c) The operator A maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that
t ~ (5)

Gag () < Gl + [, [(‘128)(5) (6209+(P28 )®eM20) 3(28))] dszg) =

(a28) ™) (Pog)® ®)
(1 + (az)®t) G +%(em28) ‘1) .215

From which it follows that

a -~ PN

Lol | (PO +68)el ™ B )4 (P )®

(G?) is as defined in the statement of theorem 1.276
(d) The operator A maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that

(G (t) — st)e_ng)(S)t <
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t 5 ©)
G32 (t) < G, + [ [(‘132)(6) (6303 +( Py ) O Ms2) 5(32))] ds@z) =

(6) 6)
(1 + (a3) @) 6 + L2 (o (M)t _ 1) 277

(M32)®)
From which it follows that
_(P32)®)+6%3

ol ESTEA
(G3, () — G)e~(M32 YO o La32) (( Py )© + G3°3)e 633 + (P )(é)l

= (M32)®

(G?) is as defined in the statement of theorem 6
Analogous inequalities hold also for G5 , Gyg, Tos, Tas, Tog-278
279
.280

. . Ne) NeY
It is now sufficient to take 2 b))

sy ® ' (i1,)® < 1 andto choose
(P13 )(1) and ( Q13 )(1) Iarge tO haV6281

282
[ (P13 )(1)+G]°
% (Pi3)® + ((P3)® + Gjo)e_(—c]‘?—> < (P3)™ 283
[ ( (013 )(1)+Tj(-)>
(g]l;;iJ ((Quz)® +T0)e T ) 40D < (Qus)® 284

In order that the operator A™ transforms the space of sextuples of functions G, , T; satisfying GLOBAL EQUATIONS into
itself.285
The operator A™) is a contraction with respect to the metric

d ((Gm,T(n), (G<2>,T<2))) =
sup(max |6V (©) = 6P @)]e ™DV, max [TV (0) — T2 (0)]e ™} 286
i teER4 teER4

Indeed if we denote
Definition of G, T :

(G,T)=ADG,T)
It results
|(';'1(31) _ G-i(z)| < fot(a13)(1) |Gl(i) _ Gl(i)|e‘m13)(1)5(13)em13)(1)5<13) d5(13) +
f@)®1615 = 6o Prane= M 4
(@) O (1 5|6l = 6| ™90 e s

2 " 1 " 2 _ ® @
G1(3)|(a13)(1)(T1(4)'5(13)) _(a13)(1)(T1(4)'S(13))| e~ (M13)7sa3) g (M13) U}ds (3
Where s (43 represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows.287

— 1) 1 ' ~ -~ -~
|60 = ¢@le= MYt < =5 (@)D + (@)D + (A1) D + (Pi)V (Ray) D) (60, 7V; 6D, 7))

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows.288

Remark 1: The fact that we supposed (a;3)® and (b;3)® depending also on t can be considered as not conformal with the
reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of
the solution bounded by (P;3) e ™Dt qnd (Qy5)M eVt respectively of R, .

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to consider
that (a; ) and (b; )V, i = 13,14,15 depend only on T, and respectively on G (and not on t) and hypothesis can
replaced by a usual Lipschitz condition..289

Remark 2: There does not exist any t where G; (t) = 0and T; (t) =0

From 19 to 24 it results

G, (t) = Gioe[—fot{(a;)(l)—(a; YD(T14(s13))513))}ds 1) >0
T, (t) > TPe(-DP) > 0 for t > 0.290

291

Definition of ((M3)®),, and ((M;3)®), :

Remark 3: if G;5 is bounded, the same property have also G;4, and G5 . indeed if
Gy3 < (My3)@ it follows d(% < ((M13)®), = (a14)VGy4 and by integrating
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G < ((MB)(D)Z =Gy + 2(“14)(1)((’Mm)(l))l/(a’m)(l)

In the same way , one can obtain
Gis < ((ﬂ13)(1))3 =G5 + 2(“15)(1)((’Mm)(l))z/(a;s)(l)

If Gi4 or G;5 1s bounded, the same property follows for G5, Gi5 and Gz, Gy, respectively..292
Remark 4: If G;5 is bounded, from below, the same property holds for G,, and G5 . The proof is analogous with the
preceding one. An analogous property is true if G, is bounded from below..293
Remark 5: If T5 is bounded from below and lim,_,., ((b; )V’ (G(t),t)) = (by4)® then T}, — co.
Definition of (m)™® and ¢; :

Indeed let t; besothatfort >t
(b1)® — (b D (G(1), 1) <&, Tiz (8) > (M)D 294
Then =2 > (a3,)® (m)® — &, Ty, which leads to

@)D .
Ty, = (M) (1 —e51t) + TS e 51t If we take t such that e~¢1t = % it results
1

((a14)(12)(m)(1))

T, = , t= logi By taking now &; sufficiently small one sees that Ty, is unbounded. The same property
holds for Tys iflim,_,, (b5)® (G(t),t) = (b5) P
We now state a more precise theorem about the behaviors at infinity of the solutions .295

.296
i i @® _p®
It is now sufficient to take 1@ ) D

(P )@ and ( Q4 )@ large to have.297

< 1 and to choose

(P16 )(2)+G]°
@® | % 5 " R
(1;16)(2) (P16)(2) + (( Pig)® + Gjo)e g < (P )@ 298
[ (Q16 )(2)+TJQ
©® |5 ‘( v > A ~
(M16)@ (( Q16 )(2) + 7}0)3 j + (06 )(2) < (0 )(2) 299

In order that the operator A@ transforms the space of sextuples of functions G, , T; satisfying .300
The operator A®) is a contraction with respect to the metric

d (((6:)D, (1)), ((619)@, (T1)P)) =
suplgx |60 = 60 @l max [T - TO e~y 30

Indeed if we denote

Definition of Gyg, Tig : ( Gro, Tig ) = AP (Gyo, Tro).302

It results

|(';~1(é) _ Gi(2)| < fot(aw)(z) |Gl(;) _ Gl(g)|e—mls)(z)g(ls)e(mlﬁ)(z)s(lﬁ) ds(16) +

[ @e@16L5 — 63 oMo Pave= (Mo Psao

(@) P (T, 500|655’ = 613 =M1V 500)¢ (16 Psae) 1

G211, s06) = (@)D (T, s06)| €™M0 P500e M0 Psu01ds ) 303
Where s (44 represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows.304

|(G1e)® — (619)(2)|e_(ﬂ“’)(2)t =

m ((@16)® + (@16)® + (A1) + (P16) P (1) )d (((Gw)(l). (T1)™; (G19)@, (T19)(2))) 305

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows.306

Remark 1: The fact that we supposed (a;js)@® and (b;)@ depending also on t can be considered as not conformal with the
reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of
the solution bounded by (B,s)@eM16®t and (Q;4)@eM10)®t respectively of R,

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to consider
that (a; )® and (b; )@, i = 16,17,18 depend only on T, and respectively on (G,4)(and not on t) and hypothesis can
replaced by a usual Lipschitz condition..307

Remark 2: There does not exist any t where G; (t) = 0and T; (t) =0

From 19 to 24 it results

G, (O = Goe[—fé{(ag)(z)—(a; B (T17(s16))516))}d516)] > 0
= G; >
T, () > T2eC-CO®) > 0 for t > 0.308

WWW.ijmer.com 2258 | Page



International Journal of Modern Engineering Research (IJMER)
WWW.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2242-2286 ISSN: 2249-6645

Definition of ((mm)(z))l' ((mw)(z))z and ((m16)(2))3 :
Remark 3: if G;4 is bounded, the same property have also G;; and G;g . indeed if
Gy < (M;)@ it follows d(‘% < ((My6)@), = (a17)@Gy; and by integrating
Gy7 = ((ﬂm)(z))z =Gy + 2(a17)(2)((ﬁlﬁ)(z))l/(a’17)(2)
In the same way , one can obtain
Gig = ((,M16)(2))3 = Gig + 2(alg)(z)((’1\7[16)(2))2/((1’18)(2)
If G;; or G5 is bounded, the same property follows for G, , G153 and Gy, G5 respectively..309

310

Remark 4: If G, is bounded, from below, the same property holds for G;; and G,5 . The proof is analogous with the
preceding one. An analogous property is true if G, is bounded from below..311

Remark 5: If T, is bounded from below and lim,_,., ((b; )® ((G15)(1),t)) = (by;)® then Ty, — oo,

Definition of (m)® ande, :

Indeed let t, be so that fort > t,

(b17)@ — (b )P ((G19)(©), 1) < &, Ty () > (M)P 312

Then L2 > (a,,)® (m)@ — &,T,, which leads to
@ ()@ .
Ty = (M) (1 —e2%) + TYe~#2t If we take t such that e*2t = % it results .313
2
(a17)P )@ 2 , - .
Ty, = (f) t= logs— By taking now e, sufficiently small one sees that T;, is unbounded. The same property
2

holds for Tyg iflim,_,, (b1g)@ ((G19)(t),t) = (b1p)@
We now state a more precise theorem about the behaviors at infinity of the solutions .314

315
. . @®  _e®
It is now sufficient to take (M0 @ (M39)®

(P )® and (Qy )@ large to have.316

< 1 and to choose

(P20 )(3)+G]Q
% (Py)® + ((Py)® +Gj0)e_( ¢! > < (P )® 317
[ ( (220 )(3)+TJQ>
% (( 050)® + 7}0)3 7 +(0,0)®| < (0,0)® 318

In order that the operator A®) transforms the space of sextuples of functions G, ,T; into itself.319
The operator A®) is a contraction with respect to the metric

d (((62)®, (1:)D), ((6:), (Ty3)) ) =
suplgx |60 = 6P e~ max [0 - TO e~y 320

Indeed if we denote
Definition of Gy3, T3 :( (G3), (Tr3) ) = AP ((Gy3), (Tys)).321
It results
|G’ - 67| < fot(azo)(g) |65 - Gz(f)|6_(%0)(3)5(20)6(MZO)G)S(ZO) dsz0) +
Jy @) ]G3’ = G5 oM P (Fao) P
(@30) (T3, 50|30 = G35 le™ P00 Vs

@)y, (€] " ) ()@ 1) 3)
G’ 1(a20)P (Ty1”s 520)) = (a20) (T, 20y | €™ (M2007 5000 (M0 5000 Yl 5
Where s,y represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows.322

323
|6 — ¢@]e~M20)Pt <
1 ' —~ ~ -
—(3)((‘120)(3) + (a20)® + (4200 + (Pye) @ (20)®)d (((G23)D, (T23)D; (613) P, (Ty3)P)
(M)
And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows.324

Remark 1: The fact that we supposed (a,)® and (b,,)® depending also on t can be considered as not conformal with the
reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of

the solution bounded by ( Py)®e ™20t and (,)Pe ™20t respectively of R, .
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If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to consider
that (a; )® and (b; )®,i = 20,21,22 depend only on T,; and respectively on (G,3)(and not on t) and hypothesis can
replaced by a usual Lipschitz condition..325

Remark 2: There does not existany t where G; (t) =0and T;(t) =0

From 19 to 24 it results

G, (t) > Gioe[—fot{(aé)(”—(a;’ (721 (520))520))}520) | >0

T, (t) = T2e00P) > 0 fort > 0.326

Definition of ((,Mzo)m)l' ((’1\7[20)(3))2 and ((ﬁzo)(3))3 :

Remark 3: if G,, is bounded, the same property have also G,; and G,, . indeed if
Gyo < (M,)® it follows dl% < ((My0)®), = (a21)®G,; and by integrating

Gy < ((,1\7120)(3))2 =G} + 2(a21)(3)((’1\7[20)(3))1/((1'21)(3)
In the same way , one can obtain
Gy < ((/Mzo)(3))3 =G3p + Z(azz)(g)((ﬁzo)(3))2/(a’22)(3)
If G,; or G, isbounded, the same property follows for G,, , G,, and G, , G, respectively..327
Remark 4: If G,, is bounded, from below, the same property holds for G,, and G,, . The proof is analogous with the
preceding one. An analogous property is true if G,; is bounded from below..328
Remark 5: If T,, is bounded from below and lim,_,, ((b; )® ((G3)(£),t)) = (by;)® then T,; — oo.
Definition of (m)® and &5 :
Indeed let t; be so that for t > ¢,
(b)® — (b;I)G)((st)(t)' t) < &3, Ty (1) > (M)® 329

330
Then £2L > (a,,)® (m)® — £,T,, which leads to
Bm)®
T,y = (M) (1—e53t) + THe et If we take t such that e~#3¢ = % it results
3
(a2 (m)® 2 . .. .
T, = (T) t =log — By taking now &5 sufficiently small one sees that T,; is unbounded. The same property
3

holds for Ty, if lim,_., (b22)® ((G3)(t), t) = (b)®
We now state a more precise theorem about the behaviors at infinity of the solutions .331

.332
- - @® ™
It is now sufficient to take )@ i) ®

(P )® and (Q,, )@ large to have.333

< 1 and to choose

(P24 )D+5?
(fwzj;; (P)® +((Po)® + G}O)G_(—Gfo—> < (Pyy )™ 334
: ( (O )<4)+Tjo>
(I(Y;)zlji‘)” (( Q24 ) + 7}0)6 T +(Q2)P|[ < (024 )® 335

In order that the operator A™ transforms the space of sextuples of functions G, , T; satisfying IN to itself.336
The operator A® is a contraction with respect to the metric

d (((627)(1); () ), (6, (T27)(2))) =
sup{max |Gi(1)(t) - Gi(z)(t)le_(M24)(4)t,max |Ti(1)(t) - E(Z)(t)|e_(M24)(4)f}
. teRy teERy

Indeed if we denote

Definition of (G;,), (Ty;) : ( (G, (Ty7) ) = AD((Gy7), (Ty7))

It results
|52(1) _ G~i(2)| < fot(a24)(4) |G2(;) _ GZ(?|e'm24)(4)5(24)em24)(4)s(24) ds(24) +
[ {@) @165} = 65 |0 V= (Ma Ve 4

(@3) O (T35, 500)|G33” = G5 le™ e Vsame M) san

@)yr,"” (€] " 2) (M) @ Mo )@
GZ4 |(a24)(4)(T25 ,5(24))—((124)(4)(T25 '5(24))| e (M) 5(24)6( 2) 3(24)}‘15(24)
Where s (4, represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows.337
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338
—(Fy)®
|(G27)® = (6,7)@|e= () <

o (@D + (@)@ + (A)® + (PP (e)®)d (62D, (T D; (62)P, (1))

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows.339

Remark 1: The fact that we supposed (a,4)™ and (b,,)™ depending also on t can be considered as not conformal with the
reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of
the solution bounded by (P,,)®e ™20t and (0,,)®@e ™20t respectively of R,.

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to consider
that (a; )® and (b; )®, i = 24,25,26 depend only on T, and respectively on (G,,)(and not on t) and hypothesis can
replaced by a usual Lipschitz condition..340

Remark 2: There does not exist any t where G; (t) =0and T; (t) =0

From 19 to 24 it results

G, (t) > Gioe[—fot{(a;)(‘*)—(a;’ )(4)(T25(5(24))'5(24))}‘15(24)] >0

T, () = TPt > 0 fort > 0.341

Definition of ((M,4)®),, (M2)®), and ((M,4)®), :

Remark 3: if G, is bounded, the same property have also G,5 and G, . indeed if
Gyy < (M,)™ it follows d(% < ((My)®), = (a5)™® G5 and by integrating

Gas < (My)™), = G5 + 2(azs) P (M) ™), /(a5)®

In the same way , one can obtain
Gy < ((/M24)(4))3 =G + 2(a26)(4)((/M24)(4))2/(a,26)(4)

If G55 or Gy s bounded, the same property follows for G,, , G,4 and G4, G5 respectively..342
Remark 4: If G,, is bounded, from below, the same property holds for G,5 and G, . The proof is analogous with the
preceding one. An analogous property is true if G,5 is bounded from below..343
Remark 5: If T,, is bounded from below and lim,_,., ((b; )™ ((G;)(t),t)) = (by5)™® then Tys — oo,
Definition of (m)® and ¢, :

Indeed let t, be sothatfort >t,
(b25)™® — (b )P ((Go7) (D), 1) < &4, T (1) > (M) 344
Then L2 > (a,:)® (m)® — &, T, which leads to

@) ()@ )
Tys = (M) (1 —e~*4t) + T e 54t If we take t such that e =54t = % it results

Tys = (M) t= logi By taking now ¢, sufficiently small one sees that T,5 is unbounded. The same property

holds for Tyg if lim,_e, (b2g)® ((G27)(t), t) = (b3e)®

We now state a more precise theorem about the behaviors at infinity of the solutions ANALOGOUS inequalities hold also

for G,g ,Gso, Tog, Tog, T30.345

.346

(al) D _60®
(F125)® 7 (f125)®

(P )® and (Q,5 )® large to have

It is now sufficient to take < 1 and to choose

347
(P2g )(5)+a;?
% (P)® + (P ) + @0)3_<T> < (P ) 348
( (028)3)+1) >
(1(;21;;2) ((Q2)® + To)e B 4+ (Q25)P[ < (025)® .349

In order that the operator A®) transforms the space of sextuples of functions G, ,T; into itself.350
The operator A®) is a contraction with respect to the metric

d (((G:)®, T:)D), ((6:), (T3)?)) =
sup{max |Gl.(1)(t) - Gi(z)(t)le'(MZS)(S)t.max |Ti(1)(t) - E(Z)(t)|e‘(M28)(5)t}
i teRy tER4

Indeed if we denote

Definition of (Gs;), (T5;) ( (Gs1), (T51) ) = A®((Gs1), (T51))
It results

~ 5 5
|Gz(1) G(Z)| = f (a28)® |G(1) G§§)|e‘(7‘728)( st ¢ (Maw) P ds(zg) +
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f{(azg)(5)|G(1) (2)| ~(M28) s 28) o ~(M28) P28y 4

(azs)(s)(Tz(g) 5(28))|G(1) - G(2)| ~(F26) Vs (2 o (M2) sy
(2) (M) o))
Gys'l(a 28)(5)(T29 ,S(28)) _(azs)(s)(ng ,Sasy)| @”(M28) 7 5@ e (M2e) ™52} s g

Where S(28) represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows.351

352
|(031)(1) _ (631)(2)|e—(ﬂzs)(5)t <

1 ’ —~ ~ -
W((azs)(s) + (a29)® + (Az)® + (Pyg) P (kpg)™)d (((G31)(1), (T5)D; (G3)P, (T31)(2)))
And analogous inequalities for G; and T;. Taking into account the hypothesis (35,35,36) the result follows.353
Remark 1: The fact that we supposed (azg)® and (byg)® depending also on t can be considered as not conformal with the
reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of
the solution bounded by (Pyg)®e ™28t and (ye)® e ™28)™¢ respectively of R,.
If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to consider
that (a; )™ and (b; )™, i = 28,29,30 depend only on T,q and respectively on (Gs;)(and not on t) and hypothesis can
replaced by a usual Lipschitz condition..354
Remark 2: There does not exist any t where G; (t) =0and T; (t) =0
From GLOBAL EQUATIONS it results

G, (t) = Gioe[—fot{(a;)(s)—(a;’ )(5)(7'29(5(28))v5(28))}d5(28)] >0

T, () = TPt > 0 for t > 0.355

Definition of ((M5)®),, (M25)®), and ((M5)®), :

Remark 3: if G,5 is bounded, the same property have also G, and G, . indeed if

Grg < (M,g)®™ it follows d(% < (Mp)®), — (a20)® Goo and by integrating

a9 < ((/Mzs)(s))z = Gjo + 2(“29)(5)((/Mzs)(s))l/(a’m)(s)

In the same way , one can obtain

Gzo < (( MZB)(S))3 = Gy +2(az0)®(( Mzs)(s))z/(a3o)(s)

If G,9 or G is bounded, the same property follows for G,g, G35 and G,g, G,q respectively..356

Remark 4: If G,g is bounded, from below, the same property holds for G,q and G5, . The proof is analogous with the
preceding one. An analogous property is true if G,4 is bounded from below..357

Remark 5: If T,g is bounded from below and lim,_,., ((b; )® ((G31) (), t)) = (b39)® then Tpq — oo.
Definition of (m)® and & :
Indeed let t; be so that for t > ¢

(b29)® = (b YO ((G31)(0), 1) < &5, Tg (£) > (m)©),358

359
Then L2 > (2,0)® (m)® — £ Ty, which leads to
E(m)®
Ty = (M) (1—e~s5t) + The st If we take t such that e 65t = % it results
(a29)(5)(TH)(5) 2 . .. .
T = (f) = logg— By taking now &5 sufficiently small one sees that T,q is unbounded. The same property
5

holds for T3, if lim,_,e, (b30)® ((G31)(t), t) = (b30)®

We now state a more precise theorem about the behaviors at infinity of the solutions
Analogous inequalities hold also for Gss , Gs4, Tz, Tz3, T54.360

.361

It is now sufficient to take % ,(f;i—)(j()é)
(P;, )(6) and (Q3, )® large to have.362

< 1 and to choose

(P32)(©)+6?
(573;2) (P)@ + ((P2)@ +G)e <—Glo—> < (Py,)© 363
( (032)©)+1) )
(1(;312)22) ((Qs2)@ + To)e B +(052)@ < (05,)® .364

In order that the operator A® transforms the space of sextuples of functions G; ,T; into itself.365
The operator A (®) is a contraction with respect to the metric
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d (((635)(1), (T35)@), ((G35)®, (T35)(2))) =
sup{max |Gi(1)(t) - Gi(Z)(t)le_(M”)(é)t.max |Ti(1)(t) - E(Z)(f)le_mm(é)t}
. CteR) teR}

Indeed if we denote

Definition of (Gss), (T3s) 1 ((Gss), (Tss) ) = A ((G3s), (T35))

It results

|G(1) G(z)| <f (az,)® |G(1) G(z)l ~(M32)Ps(32) 0 (M32)©s32) dsey) +
f{( 32)(6)|G(1) G(Z)|e—(msz)(6)5(32)e—(ﬂsz)( )s@32) +

(@52) O (T, 562)) |65 = G |le™Ms2) s (Fa) Vs 4

2 ” 2 _ ® ®
G( ?la 32)(6)(T33 /S(32)) —(a32)(6)(T3(3),s(32))| e~ (Ma2) Vs 2) (M) 532 Y5 55
Where S(32) represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows.366

367
|(G35)® = (G5)@ e~ (M)t <

@ (@)@ + (@)@ + (A5)@ + (P) @ (i) @)d (((G35) D, (Ts5) Vs (63)@, (T35)P) )

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows.368

Remark 1: The fact that we supposed (as,)® and (b3,)® depending also on t can be considered as not conformal with the
reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of
the solution bounded by (Ps,)©e ™32Vt and (s,)®@eM3s2)®¢ respectively of R,.

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to consider
that (a; )® and (b, )®,i = 32,33,34 depend only on T3 and respectively on (Gs5)(and not on t) and hypothesis can
replaced by a usual Lipschitz condition..369

Remark 2: There does not exist any t where G; (t) =0and T; (t) =0

From 69 to 32 it results

G (t) = Gioe[—fé{(aé)("’)—(a;’ )O(T33(532))532)) M5 32) | >0

T, (¢) > T0e ¢ > 0 for t > 0.370

Definition of ((/M32)(6))1' ((/M32)(6))2 and ((/M32)(6))3 :

Remark 3: if G5, is bounded, the same property have also Gs; and Gs, . indeed if
Gy, < (M3,)® it follows dg% < ((M3)©), — (as3)®Gs3 and by integrating
33 < ((ﬂ32)(6))2 = Ggs + 2(“33)(6)((7‘7[32)(6))1/(“’33)(6)

In the same way , one can obtain
G3q < (( M32)(6))3 =G4, + 2(“34)(6)(( M32)(6))2/(a34)(6)

If G35 or G, is bounded, the same property follows for G;, , G4 and Gs, , G35 respectively..371
Remark 4: If G;, is bounded, from below, the same property holds for G55 and G;, . The proof is analogous with the
preceding one. An analogous property is true if Gs5 is bounded from below..372
Remark 5: If T;, is bounded from below and lim,_,,, ((b; )® ((G35)(t),t)) = (b33)® then T33 — oo.
Definition of (m)® and & :

Indeed let t, be sothat for t > t,

(b33)©@ = (b )O((G35)(0), ) < &6, T3 (£) > (m)© 373

374
Then 222 > (a43)® (m)©® — &, Ty3 which leads to
(6)(m)(®)
T = (M) (1 —e~*6t) + T e6¢ If we take t such that e 66t = % it results
(a33)<6>(m)<6) 2 , - )
T3z = (f) t= log; By taking now ¢, sufficiently small one sees that Ty5 is unbounded. The same property

holds for Ty, iflim,_,,, (b34)® ((G35)(E), t(t), t) = (b34)®

We now state a more precise theorem about the behaviors at infinity of the solutions .375
376

Behavior of the solutions

_If we denote and define

Definition of (o), (6,)V, ()P, (r,)@ :

@ o), (0)DV, (@)D, (7)™ four constants satisfying
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—(0)P < —(a13)P + (@12)P = (a13) PV (Tia , 1) + (a1) P (T4, 1) < = (o)
—(12)® < =(b13)® + (b1)P = (b13) V(G 1) — (b1) V(G 1) < —(7)P 377
Definition of (v;)®, (v)®, (uy)@, (up)®,v®,u® :
By (v )® >0,(1,)® <0and respectivelyz(ul)(l) >0, (uy)® < 0theroots of the equations (a;4)™ (v(l))2 +
(0) v — (a33)® = 0 and (b14)(1)(u(1)) + () Pu® — (by3)™ = 0,378
Definition of (,)@,, (1,)®, (i1,)®, (i1,) @ :
By (v))® >0, (#,)® < 0 and respectivelyz(ﬁl)“) >0, (1,)P < 0 the roots of the equations (a“,)(l)(v(l))2 +
(02) PV — (ag3)® =0 and (b)) (u®)” + (1) Pu® — (by3)® = 0.379
Definition of (m;)®, (m)®, (u)®, (u2)®, (vp)® :-
(b) If we define (m)™®, (m)®, (u)®, ()™ by
(mz)(l) = (Vo)(l): (m1)(1) = (V1)(1)' if (Vo)(l) < (V1)(1)
(m)® = ()D, (D = H)D,if (D < vV < 7)Y,

0
and |(vy)® = %
1

(mp)® = (w)®, (m)® = (D, if TP < (v))™ .380
and analogously

(Hz)(l) = (uo)(l): (Hl)(l) = (u1)(1), if (uo)(l) < (u1)(1)
)V = (w)D, (u)® = @)Y, if w)® < (u)® < @)™,

0
and|(uy)® = :1—03
14

()P = w)®, @)™ = (ue)®, if @)® < (ue)™® where (u)®, ()™
are defined respectively.381

'S

382
Then the solution satisfies the inequalities

0939((51)(1)_(p13)(1))t SG) < G1O3e(51)(1)t
where ()W is defined
(V-1 < G (1) <-

(m )(1) Gyt 383

(a15)M605 Q= (p13)(1))t — o—(5)We 0 ,—(S) Dt (a15) V6 D¢ _
((ml)“)((51)<1>—(p13)<1>—(Sz)<1>) [e ¢ ] +Gise < Gis(0) < m2)D (5D —(a15)D) le

e~@)Dt] 4 G o=@ Pty 384
T° ROV < T (1) < T1°e(<R1>(”+<r13>(”)f 385
T e(RDV+01)D)e 386

)(1) Gl3

—L_70e®Vt <7 (6) S oom

(1 )<1> <1>
(b15) VTl (Rl)(l)t _ =(hy5) Dt 0 ,—(b15) Dt
(ﬂl)(l)((Rl)(l)_(b'ls)(l)) [e e s ] + T15 e s = TlS (t) <
(ay5) D1y (RDD+13) D)t _ p=R)Dt| L 70 o R Dt
@D (R D+(r13) D+ RHD) E e |+ The
.387

Definition of ($,), (S)@V, (R)®, (R,)W:-
Where (S)® = (a;3)® (my)® — (aj3)®
(52)(1) = (a15)(1) - (P15)(1)
(R1)(1) = (b13)(1)(#2)(1) - (b;3)(1)
(R)® = (by5)® — (115)™ .388
Behavior of the solutions
_If we denote and define.389

Definition of (6,)@®, (6,)®,(t))?, (1,)@ :

61)?,(0,)?, (1))@, (1,)® four constants satisfying.390

—(02)@® < —(a16)® + (a17)® — (a16) P (Ty7, 1) + (a17) P (Ty7, 1) < —(0,)@ 301
—(1)® < =(01e)® + (1)@ = (b1e)P((Gro), t) = B P ((Gro), 1) < — (1)@ 392
Definition of (v;)®, (v,)®, ()@, (u,)® :.393

By (1)@ >0, (v,)® < 0 and respectively (1)@ > 0, (u,)® < 0 the roots.394

of the equations (a17)(2)(v(2))2 + (0)Pv® — (a;)® = 0.395

and (1)@ ()’ + (1)@u® — (by)@ = 0 and.396

Definition of (#,)®,, (#,)®, (1)@, (i1,)® :.397

By (1)® >0, (¥,)® < 0and respectively (i1;)® > 0, (i1,)® < 0 the.398

roots of the equations (a17)(2)(v(2))2 + (o) Pv® — (a;6)@ = 0.399
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and (b1,)@ ) + (1) Pu® — (b1s)@ = 0.400

Definition of (m;)®, (m,)®, (u)@, (up)® :-.401

If we define (m)®, (my)®, (u))®, (1)@  by.402

(My)® = ()@, ()P = (v)®, if ()@ < (v)@ .403
(Mm@ = )@, (m)@ = @)P,if )P < ()P < ()P,

and | (vy)® = e | 404

GY;
(m)® = ()@, (m)P = (v))@, if )P < (v)@ 405
and analogously

(ﬂz)(z) = (uo)(z)' (ﬂl)(z) = (u1)(2)' if (uo)(z) < (u1)(2)

1)@ = W)@, ()P = @)P ,if W)® < (ue)® < (@)@,

0
and | (u)@ = =i¢ 406
Ti7

(”2)(2) — (u1)(2).(ﬂ1)(2) — (uo)(z)’ if (ﬁ1)(2) < (uo)(Z) 407
Then the solution satisfies the inequalities
5elEDP-010P) < G (¢) < GP5e®408
(pl)(z) is defined.409
GNP =010 < 6, () <—

G eGPt 410

(ml)(z) (2)

(@18)P6 s (D@— (P16)(2))t_ EON 0 = (S)Pt (@18)®6%s NG
((ml)(z)((51)(2)—@16)(2)—(52)(2)) € € ] + Gige < Ge(®) < m2)@((51)P~(a)g)@) le

e @)® 4 e~ @@ty 411
To ®R)Pt < T (1) < T, e((Rl)(2)+(r16)(2))t 412

= )(z) ——The®DPt < Ty (1) < 5 The (®R)D+r10)D)e 213
(b13) P16 R{)@ —(by)@ 0 —(hra)@
(ﬂl)(z)((Rl)(Z)_(b'lg)(Z)) [e( D — e 18) t] + T18e ( 18) ‘< Tls(t) <
(@18)@196 R)@ @ —(Ry® 0 —(R)D
PP s Oy £ ) = e o+ The @ 414

Definition of ($,)®, (S,)®, (R))®, (R,)?:-.415
Where ($,)@ = (a;6)@ (m)® — (a;6)@
(S2)@ = (a15)® — (p15)® 416

(R1,)(2) = (blﬁ)(z)(ﬂz)(l) - (b16)(2)

(R)® = (b1g)® — (115) @417

418

Behavior of the solutions

_If we denote and define

Definition of (0,)®,(6,)®, (1)®, (1,)® :
(@) 0))®,(0,)®, ()P, (1)@ four constants satisfying
—(02)® < —(a20)® + (a31)® = (a0)® (T, 1) + (a2) P Ty, 1) < —(6)®
~(@)® < =(b2)P + (030 = (b3)P (G, 6) = B3P ((Gr),8) < (1) 419
Definition of (v;})®, (v,)®, (u)®, (uy)® :
(b) By (v))® >0,(v,)® < 0and respectively (u;)® > 0, (u,)® < 0 the roots of the equations (a21)(3)(v(3))2 +
(@)®V® — (az)® =0
and (b,1)®U®)” + (1)®u® — (by0)® = 0 and
By (,)® >0, (#,)® < 0 and respectively (;)® >0, (@,)® < 0the
roots of the equations ((121)(3)(1/(3))2 + (0)Pv® — (a,0)® =0
and (b1)®W®)” + (1)Pu® — (b)) = 0,420
Definition of (m;)®, (m,)®, (1)@, (ux)® :-
() If we define (m)®, (m)®, (u)®, (u)® by
(mz)(3) = (Vo)(B): (m1)(3) = (V1)(3)' if (Vo)(3) <(m)®
(m)® = )P, (m)® = @)D, if )@ < (W)® < (@),

GO
and [(v))® = ﬁ

(mz)m = (Vl)(g): (ml)(g) = (Vo)(g): if (171)(3) < (Vo)(3) 421
and analogously
(Mz)m = (uo)(g): (#1)(3) = (u1)(3): if (uo)(3) < (u1)(3)
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— . _ 5
1)@ = @)@, )@ = @)@, if @W)® < @)@ < @)@, and|(ue)® =13

(12)® = w)®, (@)@ = (W)@, if @)D < (u)®
Then the solution satisfies the inequalities

G e(EDP=020D)t < G, (1) < G eV

(p,)® is defined .422

423
WGZOQ((S”G) #20)P)e < Gy1 (1) < )(3) Gzoe(sl)mt 424

(a22)®6 [ (5@~ (pzo)(z))t _ —(52)(3%] 0 (5Pt (a22)63 sH®¢ _
((ml)@((51)@)—(pzo)@)—(sZ)@)) € ¢ + e < Gn() < )@ (DB —(az)®) le

e~@2)®t] 1 Y o=@ty 425
TO R)®¢ < Th(t) < TO e((R1)(3)+(T20)(3))t 426
—L_10e®Pr <1 (1) <

79 e (ROP+20)P)e 427

(1 )<3> <3>
(bZZ)(3)TZO (R (3)t —(bap)®t 0 —(b B¢
O (RO (b @) [e Dt _ e 22) ] + T e~ (22 <T(t) <
(aZZ)(3)TZOO (R (3)+(T 3) t —(R (3)t 0 .—(R )(3)t
2B (R P +(r20) B +(R2)B)) e( v )" e () ] + e (2 428

Definition of (5,)®, (5,)®, (R)®, (R,)®:-
Where (51)(3) = (azo)(3)(m2)(3) - (alzo)(”
(52)(3) = (azz)(3) - (pzz)(3)
(Rl)(3) = (bzo)@)(liz)@) - (blzo)(”
(Rz)(3) = (béz)(3) - (Tzz)(3)-429

.430
431
Behavior of the solutions 432
1f we denote and define

Definition of (0,)®, (6,)® , (1)@, (1,)@ :

d) ()@, (0)®,(tW, (1,)® four constants satisfying

—(0)™ < —(@2)™ + (a35)™ — (a24) P (Tis, 1) + (A35) P (Ts,t) < —(07) P

—(0)® < =(020) W + (b25)® = (030 ((G27), 1) = (b25) P ((G27), 1) < —(x)®

Definition of (v;)®, (v))®, ()@, (up)®,v®,u® : 433

(e) By (v)® >0, (,)® < 0and respectively (u;)® >0, (u,)® < 0 theroots of the equations
(@) (V)" + @) v — (@)@ = 0
and (bys)@(u®)” + (1) @u® — (by)® = 0 and

Definition of (7,)®,, (#,)®, (1))@, (i1,)® : 434
435

By (7)™ >0, (#,)® < 0 and respectively (;)® >0, (#@,)® < 0the
roots of the equations (a,s)® (v®)” + () @v® — (@)@ = 0
and (b,5)™ (u(4))2 + (1) Pu® — (b)) = 0 436
Definition of (m)®, (my)®, (1)@, (u2)®, (vo)™® :-

() Ifwe define (m)®@ , (m)@, ()@, (u)® by
(m)® = ()@, (M@ = W)@, if (W)™ < (n)®

(m)® = ()W, (m)® = @)W, if W)@ < ()@ < (T)®,

and [(v))® = Z:

(mp)® = (W)@, (M)W = (v)®, if TP < (v))™®
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and analogously 437
438
1)@ = o)™, (u)® = W)@, if (ug)™® < (u)®
)™ = W)™, ()™ = @)W ,if W)™ < (W)™ < @)W,
TO
and|(uo)® = ﬁ
()@ = )@, ()™ = ()W, if @)™ < (ue)™ where (u)®, ()@
are defined by 59 and 64 respectively
Then the solution satisfies the inequalities 439
440
G eV 020N < Gy, (1) < G eVt 441
442
where (p,)® is defined 443
) 444
445
1 0 ,((sH®- () 1 0 (5@ 446
D G9,e(EM =20 < 6, (1) < —® GY, eDMt Py
) B _(p,)® —(5,)® (5@ 448
((m1)<4>((Sf)i:)ﬁz(pzf;(‘*)—(52)<4>) (0020 — =6t | 4 h om0 < Gy (0) <
(226)4G240(m2)4(S1)4—(a26")4e(S1) 4 —e—(a26") 4+ G260e—(a26")4t
T204e(R1)(4)t <Tu(t) < Tz(zle((R1)(4)+(Vz4)(4))t 449
1 @ 1 @ ®
m’]‘204@(131) t < Ty (t) < m’[‘&g((&) +(rz4) M)t 450
(b26) TS, @ AN NG 451
(Ml)(4)((2?)(4)_2(1'26)(4)) [e(R1) t _ o—(b2e) t] + TZOGe (b26)*"t < Ty (t) <
(a26) 78y RO+ D) _ p-R)De] 4 70 o—(R)@e
WD B (RO® +r2) D+ (R ) [l P20 — o=@ 4 7=
Definition of (5))™, (5,)®, (R)®, (R,)®:- 452
Where (S,)® = (a0)® (m)™® — (a24)®
(Sz)(4) = (aze)(4) - (Pze)m
(R1)(4) = (b24)(4) (/12)(4) - (b’24)(4)
453

(Rz)(4) = (blze)m - (7"26)(4)

Behavior of the solutions 454
If we denote and define

Definition of (0,)®,(6,)®, (1)®, (1,)® :

@) (@), (0)®,(x)®,(r,)® four constants satisfying

—(0)® < —(a29)® + (a29)® = (a28) ™ (Tp9 , 1) + (a29)® (Tyo , £) < —(37)®
—(12)® < =(b2e)® + (b29)® = (b2)® ((G31), £) = (b2)P((G31),8) < =(x)®

Definition of (v;)®, (v,)®, (u)®, (uy)®,v®,u® : 455
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(h) By (v{)® >0, (1,)® < 0and respectively (u;)® >0, (u,)® < 0 theroots of the equations
(aze)(s)(V(S))z + (o) v — (a5)® =0
and (b)) (u®)” + (1,)®u® — (byg)® = 0 and

Definition of (¥,)®,, (1#,)®, (i1,)®, (i1,)® : 456

By (7)® >0, (#,)® < 0and respectively (7,)® >0, (@i;)® < 0 the
roots of the equations (a,6)® (v®)” + (6,)v® — (a5)® =0
and (b20)®(u®)" + (£)Ou® — (by)® = 0
Definition of (m,)® , (m,)®, (1)®, (1,)®, (vp)® :-

(i) If we define (m;)®, (M), (u)®, (1) by
(mz)(s) = (Vo)(s): (m1)(5) = (V1)(S)' if (Vo)(s) < (V1)(5)

(mz)(s) = (Vl)(s)' (m1)(5) = (‘71)(5) if (V1)(5) < (Vo)(S) < (171)(5);

and |(vy)® =2

(mz)(s) = (Vl)(s)' (ml)(s) = (Vo)(s)' if (171)(5) < (Vo)(s)
and analogously 457
(.“2)(5) = (uo)(s)' (#1)(5) = (ul)(s): if (uo)(s) < (u1)(5)

1)® = w)®, ()™ = @) ,if W)™ < @w)® < @)™,
TO
and|(u)® = %

(12)® = @)®, (1) = ()@, if @) < (up)® where (u)®, (@)
are defined respectively

Then the solution satisfies the inequalities 458
GO e(EDO-0))t < .. (1) < (YDt

where (p,)® is defined

G)_ ) 1 ®)
i GV < g (8) S 5 Gle D 459
460
(a30)%) 6% SO ()Nt — (5Ot 0 —(s)®¢ 461
((ml)“)((sl)@—(pzs)<5>—<82)<5>) [ — =60 [ 4 G0 < G0 (0) <
(@30)56280(m2)5(51)5—(a30)5e(51)5t—e—(a30")5¢t+ G300e—(a30")5¢
T e®t < Tho (1) < TG e(RDP+020))e 462
1 ® 1 5) 4 (r05) )
mTzoge(Rl) E < Tye(t) < mTzose((Rl) +(ra8)))t 463
(b30) )15, ®) ARG (b)) 464
TGO [t — e t| 4 e < Ty (1) <
(a30)®)1dy (RO +r2e) )t _ ,—(R)Ot 0 (ROt
12) (RO +(r28) D) +(R2) ) [e ' ? e ] + Tsoe
Definition of (5))®, (5,)®, (R))®, (R,)®:- 465

Where (51)® = (azg)® (m,)® — (az5)®

WWW.ijmer.com 2268 | Page



International Journal of Modern Engineering Research (IJMER)
WWW.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2242-2286 ISSN: 2249-6645

(52)(5) = (‘130)(5) - (p3o)(5)
(R1)(5) = (bzs)(s)(#z)(s) - (bés)(S)
(R)® = (b30)® — (130)®

Behavior of the solutions 466
_If we denote and define

Definition of (a,)©, (6,)®, (1))@, (,)© :

() (@)@, ()@, (t)®, ()@ four constants satisfying

—(0)© < —(a3)® + (a33)® — (a3)@ (T35, t) + (a33)@ (T33,t) < —()©@

—(1)® < =(b32) @ + (b33)© = (b32) @ ((G35), t) = (b33)©((G35),t) < — (1)@

Definition of (v;)©, (v,)®, (u,)©, (uy)©®,v©®,u® 467

(k) By (v)® >0,(1,)® < 0and respectively (u;)® >0, (u,)® < 0 theroots of the equations
(@35)© (v®)’ + (6)Ov® — (a5,)® =0
and (b53)©u®)” + (1)©u® — (b3,)© = 0 and

Definition of (¥,)©,, (1,)©, (i1,)®, (i1,)© : 468

By (#,)® >0, (#,)©® < 0 and respectively (u1;)©® >0, (%i,)® < 0 the
roots of the equations (az3)® (v(6))2 + (0)Ov© — (az)©® =0
and (b53)© (@)’ + (@) Ou® — (b3)® = 0
Definition of (m)©, (m;)®, (11)®, (1)@, (v)® :-

() 1f we define (my)® , (my)®, (u)®, (1)@ by

(m)® = ()@, (m)® = ()®@, if (v)® < (v)®

470
(my)© = ()@, (m)® = @)@, if )@ < w)® < @)@,
GO
and |(vy)® = o
33
(mz)(6) = (Vl)(G): (m1)(6) = (Vo)(ﬁ): if (171)(6) < (Vo)(6)
and analogously 471
012)(6) = (uo)(G): (M1)(6) = (u1)(6)» if (uo)(G) < (u1)(6)
U2)® = W)®, ()@ = @)@, if w)® < (u)®@ < @),
TO
and|(up)©® = %
(Mz)_(6) = (u1)(6_); (u)® = ()@, if (@)@ < (u)® where (uy)®, (,)®
are defined respectively
Then the solution satisfies the inequalities 472
G e(EVO-02) ) < ¢ (1) < 68Dt
where (p;)® is defined
LG9, e(6D@-03)) < . (1) < ——— (e 473

(m)(® (m2)©®
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(a30)©65, [ (DO -3 @)t _ —(5) Ot ] 0 —(5)©)¢
((ml)(6)((51)(6)_(p32)(6)_(52)(6)) € e + G34e < G34(t) <

(234)6G320(m2)6(S1)6—(a34)6e(S1)6t—e—(a34)6t+ G340e—(a34))6t

T3 et < Ty (t) <T5) (RO +(r3) @)t

(1 )(6) T32€(R1)( & < T5, (1) < (6) nge((R1)(6)+(r32)(6))t

Gsn) e [e®0®t —e—wéu@t] + T e~ @50t < Ty, () <

u)® (RO —(b34)®)

(a3)Ory (@)t _ =) O] 4 7Y, () Ot

W)@ (RO +(r32) @ +(R)®)
Definition of (5)®, (5,)©, (R))®, (R,)®:-
Where (5)© = (a3;)® (m)® — (az)®
(5)© = (az)® — (p3)®
(Rl)(6) = (b32)(6) () — (bl32)(6)
(R)© = (b3)® — (134)®

Proof : From GLOBAL EQUATIONS we obtain

o
= () - ((a13)(1) - (a14)(1) + (ay3) P (Tyy, t)) = (@)D (Ty,, OVD — (ay,)Dv®
Deflnltlon of v - y@ = 3
G14
It follows

dv(l)

((a 4)(1)(V(1)) + (0,) D — (g )(1))s

From which one obtains
Definition of (#,)™®, (vy)® :-

(a) For 0 <|(v)® = —0 < (@ < (@)@
G1g

- ((a14)(1)(v(1))2 + (o) v — (a13)(1))

D+ Dy Wel~ @D (DD -0 ®) ]

vA() =

, (C)(l) =

Y- ®
)V -

1+(0)Wel"@D(GDD-00D)]

it follows (vy)® < v () < (v))®

In the same manner , we get

V(l)(t) < (71)(1)+(6)(1)(72)(1)e[7(1114)(1)((71)(1)7@2)(1))t] (C)(l) T D@
B 14O We@D(EDO -2 D) ] ' o)D)
From which we deduce (vo)™® < v (t) < (9,)W
(b) If 0< (v)D < (v =-12 < (¥,)® we find like in the previous case,
1D (D —wp®
(Vl)(l) < (V1)(1)+(C)(1)(v2)(1)e[ @O (D=0 D)] < v <

140 Wel~@1D (DD -2 D) <]
FD+OD @y We @D (D=2 D) ]
11O Wl @D (DD D) ]

< (@)W

0

© If 0< )P < @)D <|(v)® = G# , We obtain
14
@D +OD @y Del- @D (TDD-2)D) ]

11O Wl @D (DD - D) ]

(v)® < vD(@) <

WWW.ijmer.com
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And so with the notation of the first part of condition (c) , we have
Definition of vV (¢t) :-

(my)® < vO(®) < (m)®, [vO () = 2T
G14(¢)

In a completely analogous way, we obtain
Definition of u™®(¢t) :-

1)V < uD©) < @)®, | @ =3 485
Now, using this result and replacing it in GLOBAL E486QUATIONS we get easily the result stated in the
theorem.

Particular case :

If (a13)® = (aj)®, then (6))® = (0,)® and in this case (v; )P = @)D if in addition (v)® = (v;)®
then v (t) = (v,)™® and as a consequence G5 (t) = (Vo) G4 (t) this also defines (v,)™ for the special case
Analogously if (b13)® = (b1,)D, then (t,)® = (1,)® and then

(u)® = () Pif in addition (ug)® = (uy)@® then Ty5(t) = (uy) P T, (t) This is an important consequence
of the relation between (v;)™® and (v,)®, and definition of (uy)™.

486
we obtain 487
dv® , / " "
Zt = (a6)? — ((am)(z) —(@7)® + (a16)(2)(T17't)) = (a17) @ (Ty7, v @ — (ay,)Pv@
Definition of v® :- v@ = gﬁ 488
17
It follows 489
2 dv(®@ 2
~ (@@ (@) + (6)Pv® - (0,)?) < 2= < = (@D (D) + (6)PV® = (1))
From which one obtains 490

Definition of (#,)®, (1{)0)(2) -
G —_
(d) For0< (ve)@® = ﬁ < ()? < 7)?

)@ +(0)D (vy) @[~ @NP (DD -0 @) ]
1+ @@ B (EDP-00 @)

it follows (v)® < v@(t) < (v))®

In the same manner , we get 491

TP+ QD @@l @ (@D D) (] (©® = WP-e0®
1+ @@l P P-GO) ] | 00®-0®

From which we deduce (vy)® < v®@(t) < ()P 492

)@@
v0)@-()@

|©® =

v () =

vA(t) <

0
() If 0< ()P < (v)® = 2% < (1)@ we find like in the previous case, 493
17
—@1) @ ()P -wy)@
)@ < 01D+ Oy @el- @D (EDP-02@) ] <D0 <
D S 0@ L@ Pen®@w®) ] = =
_ —@1 D (D -ap)@
TN +OD @@ e[ @1 P (EDD-2@) ] < @)
OO PP ] =
0
M 1F0< @)@ < @) < ()@ =3¢, we obtain 494
17
@) (V@) (51 @D |- @1 P (TP =T ¢]
@) < 4@ (p) < TVHO @) e < @)
(Vl) sV (t) = 1+(E)(2)e[_(a17)(2)(@1)(2)_@2)(2)) t] = (VO)
And so with the notation of the first part of condition (c) , we have
Definition of v® (¢t) :- 495
m)@ < v () < m)@, |vO(r) = 23
17
In a completely analogous way, we obtain 496
Definition of u®@(t) :-
1)@ < u® (@) < @)D, |u®(@) =145
Ty7(t)
. 497
Particular case : 498

If (a16)@® = (aj;)®, then (6,)?® = (6,)@ and in this case (v;)?® = (#,)@ if in addition (vy)?® = (v;)@
then v@(t) = (v,)@ and as a consequence G4 (t) = (V)@ Gy, (t)
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Analogously if (b1s)® = (b1;)@, then (1,)® = (1,)@ and then
(u)@® = () @if in addition (ug)@® = (u)@ then T4 (t) = (uy)P Ty, () This is an important consequence
of the relation between (v;)® and (v,)®

499
From GLOBAL EQUATIONS we obtain 500
dv® , ' " "
;t = (az)® — ((azo)(g) — (@31)® + (a30)® (Ts, t)) = (a3)® (Tyy, OV — (ay) v
Definition of v® :- v® = gﬂ 501
21
It follows
_ 3)((3))? 3)y(3) _ @) <« ® o _ 3)((3))? (3),(3) _ ®)
(az1) (V ) + (02)v (az) < < —l(az) (V ) + (01)™v (az)
502

From which one obtains
GY, _
(@) For0 < (v)® = ﬁ <(v)® < (@)@

P+ @y @@ (DD -0 @) ]
1+(0)®e [@2® (v -we))¢]

it follows (v)® < v® () < (v)®

In the same manner , we get 503

O+ OO @[ @20 P (EP-eP)¢] O = WO-00®
1+(C—)(3)e[—(an)(3)((71)(3)—(72)(3)) t] ! wo®—-w®

Definition of (¥,)® :-

From which we deduce (vy)® < v®(t) < (#)®

_ v)®-®
T w)®-()®

v (t) = o®

v®(t) <

0

() If 0<()® < )® = % < (1)@ we find like in the previous case, 504

)@ < EDOHOD@el )P (EDP-02P)e] YO <

YT @@ en®(en®-02®)] T -
T HO® @@~ 2P (DD -2P) ] < @)@
14O @~ @2DP(EDE-T2)P)) ]
0
© 1f 0< )P < @)@ < ) =2, we obtain 505
1B 4 (Y (7B |~ @2DO(TDE -2 D) ¢]
®3) < 4,3 < T +OW @) e < @3)

()™ < v < 1+(O@e T2 (EDO-e)®) ] (o)

And so with the notation of the first part of condition (c) , we have

Definition of v® (¢) :-

(m)® < VO < m)®, [vO©) = 2

21

In a completely analogous way, we obtain

Definition of u®(¢t) :-

(12)® < u®(®) < u)®, |u® () = ;ZO_Z;

21

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem.
Particular case :

If (a0)® = (ay;)®, then (6,)® = (0,)® and in this case (v;)® = (#,)® if in addition (v))® = (v;)®

then v®(t) = (VO,,)(3) and as a consequence Gy (t) = (Vo) ®Gyy (1)

Analogously if (byo)® = (by)®, then (1,)® = (1,)® and then

(u)® = (@)®ifin additi(cg)? (ug)® (=3)(u1)(3) then Ty, (t) = (up)® Ty, (t) This is an important consequence

of the relation between (v;)"’ and (v;)

506

: From GLOBAL EQUATIONS we obtain 507
dv@® , , " "

Zz: = (@)™ - ((‘124)(4) — (az5)® + (a2)® (Tys, t)) = (az5)® (Tys, OV — (ag5) v

508
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Definition of v(* :- y@® = Gz
Gzs
It follows

dv®

(@)D @) + @)V = (@:)®) < Z= < = (@)D (V®)" + @)DV — (0:)®)

From which one obtains

Definition of (¥,)®, (v)® :-

0
(d) For0 < |(vp)® =2t < (1)@ < (7))@

G9s
vO(t) > DO+O @y @el @25V (DD-C0P) €)@ = P =0)®
- 4+(C)(4)e[—(azs)(4)((1/1)(4)—(1/0)(4)) ] ' )W -)®
it follows (v)® < v® () < (v)@
In the same manner , we get
MO ) < (Vl)(4)+(€)(4)(vz)(4)e[_(azs)(4)((71)(4)—(172)(4))t] (5)(4) _ M
- 440 @De [-@z2)® (DB -] ' o) B —@H®

From which we deduce (vy)® < v®(t) < ()@

0

) If 0< (V)W < (v)® = g% < (1)@ we find like in the previous case,
25

(v1)(4)+(C)(4)(v2)(4)e[_(azs)(4)((V1)(4)_(V2)(4))t]

< v®) <
e s S ) 1 I 0=

()™ <

TP HO® @2 (EDD -2 )]

< (v.)®
1+(OWe @2V (EDD - ®)e] T )

0
(M If 0< @)® < @)@ <|(w)® =Z , we obtain
25

FODHOD @2 (ED-2®) ]
11O @l ~@2) (D -T2 ®) (]

v)® < v < < (v))@W

And so with the notation of the first part of condition (c) , we have
Definition of v®(¢t) :-

(m)® < V() < m)®, |vO () = 23
25

In a completely analogous way, we obtain
Definition of u™®(¢t) :-

D < u®@ < (1)@, |u®(@) =25
25

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem.

Particular case :

If (az4)® = (ay5) @, then (6,)® = (6,)™ andin this case (v;)® = (¥,)® if in addition (v)® = (v;)®
then v (t) = (v,)® and as a consequence G,, (t) = (Vo)™ G5 (¢) this also defines (vy)® for the special
case .

Analogously if (by)® = (bys)®, then (1)@ = (1,)® and then
WWW.ijmer.com
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(u)® = () @if in addition (uy)® = (u)® then T4 (t) = (ug) @ T,5(t) This is an important consequence
of the relation between (v;)™ and (v,)®, and definition of (uy)®.

514
From GLOBAL EQUATIONS we obtain 515
dv® ®) YO — (S 4 () ") ®) )y
o = (az) _((azs) — (az9)™’ + (azg) (T29't))_(a29) (To9, )V = (a9)™v
Definition of v® :- v® =28
- G29
It follows
) () (5)1)(5) ®) <« ® ) (1)) ) (5) ®)
~ (@)@ (V)" + (@) OV = (a25)®) < == < = ((a2) P (V)" + () vE — (aze)
From which one obtains
Definition of (¥,)®, (vy)® :-
G _
(@) For0<|(v)® = ﬁ <)® < @)®
VO () > 1O+ )@l (EDO-00)) v P oa®
- 5+(C)(5)e[—(az«a)(s)((v1)(5)—(v0)(5))t] ' V)OO =) ®
it follows (v)® < vO(t) < (v))®
In the same manner , we get 516
) (p) < TIHOO P02V EE-C2O) ] ® = O-00®
RO w o) CRR )T R O QA
From which we deduce (vy)® < v®(t) < (15)®
0
(h) If 0< (1) < (V)® = % < (1)® we find like in the previous case, 517
a29)) (v ) — ()
v)® < 01O+ vy O~ @2 (DO -02®) ] < O <
Yoo 140 @@ (0O -02®) ] B B
. ar9) S (1)) )
OO el P TEVD T )
14Ol @29O(TDO-2®) ] =
. 9 . 518
(i) F0o<()®<@)® <|(v)® = % , We obtain
29
. EPNG YOING IRSIN G\
v)® < vO () < TO+OO @O [~@2D (O -2)) ] < (v)®
Yoo - 1408~ @29P (DO -T2 ®)) (] -0 519

And so with the notation of the first part of condition (c) , we have
Definition of v (¢) :-

m)® < vO©) < (m)®, |vO() = 25
29

In a completely analogous way, we obtain
Definition of u®(t) :-

Tog(t)
1)@ = uO® < @), (1) =20
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Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem.
Particular case :

If (ay8)® = (a39)®, then (6,)® = (5,)® and in this case (v;)® = (¥,)® if in addition (vy)® = (v5)®
then v (t) = (v,)® and as a consequence G,g (t) = (Vo) G,o (t) this also defines (v,)® for the special
case .

Analogously if (byg)® = (byo)®, then (1,)® = (1,)® and then
(u)® = () ®if in addition (ug)® = (u)® then Tog(t) = (uy) > Ty (t) This is an important consequence
of the relation between (v;)® and (#,)®, and definition of (u,)®.

520
we obtain 521

dv(©) / / " "
pra (az)® — ((a32)(6) — (a33)© + (a3,)© (T3, t)) — (a33) @ (T3, )v(® — (az3)©v®

Definition of v©® :- p® = G2
G33

It follows

2 dv©)
—((a33)<6)(v(6)) + (0,)©v® —(a32)<6)) <

=- ((ass)(6)(v(6))2 + (o) Ov® — (‘132)(6))

From which one obtains

Definition of (#,)®, (v)® :-

. GY _
() For0 <|(v))® =$ <)@ < @)@

w

(D
) ©-()®

W) O+(0) O () ©e [~ @33) O (DO -0 @) ]

. (0)® =
14+(0)©)e["@3) (0 DO-00®)] ©

v () >

it follows (v4)©® < v©®(t) < (v)©®

In the same manner , we get 522

TDO+(0) O ) ©[~@3)(TDO-2®) ] 523

140 ["@ (DO -T2 )]

_ 0)©-®
— v)®-)®

V(6) (t) S ' (C—.,) (6)

From which we deduce (v)©® <v©®(t) < (¥,)®

9

(k) If 0< ()@ < (v)® = % < (#,)® we find like in the previous case, -

DO +(0) O )@ -3 (D O-02) @) ]
1+(c)(6)e[—(a33)(6)((v1)(6)_(v2)(5)) ]

v)® < < vO®O@) <

TO+(O)O @y ©e @3 (TDO-2)®) ]
14(0)®)|~@3) O (DO -T2 @) ¢]

< @)@

9 . 525
) I1f 0<)® < @) <|(v)©® = 22|  we obtain
1 1 0 o0
3

[

T O+ O @) Oe [~(@3)® (@) O-@2)®) ]
14(0)®)|~@3) (DO -T2 () (]

(v)® < vO () < < (v)®@
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And so with the notation of the first part of condition (c) , we have
Definition of v©(t) :-

Gz (t)
(m)© < vO© < (m)©, |vO @) = 220

In a completely analogous way, we obtain
Definition of u©(¢t) :-

(6) < 4,(6) < (6) 6) =T32(t)
U)® < u'®(t) < (u)', [u®@®) =5

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem.
Particular case :

If (a35)© = (a33)®, then (6,)© = (0,)® and in this case (v;)©® = (#,)© if in addition (v,)©® = (v;)©®
then v®(t) = (v,)©® and as a consequence G, (t) = (vy)©® G35 (t) this also defines (v,)© for the special
case .

Analogously if (b3,)® = (b33)®,then (1,)© = (1,)© and then

(u)® = (;)@if in addition (u)® = (uy)® then Ty, (t) = (uy)®Ts5 (t) This is an important consequence
of the relation between (v;)® and (v,)(®, and definition of (u,)®.

527
We can prove the following
Theorem 3: If (a; )Pand (b, ) are independent on t , and the conditions
(a13)P(a1)® — (a13)P(a;)® < 0
(a,13)(1)(a,14)(1) — (a13) P (a1)D + (a13) P @13)D + (a1) P P1)P + (P13) P (1) P > 0
(b13) P (b1) P — (by3) P (b )V >0,
(b13)(1)(b14)(1) - (b13)(1)(b14)(1) - (b13)(1)(7"14)(1) - (b14)(1)(7”14)(1) + (7”13)(1)(7”14)(1) <0
with (p;3)D, (1) as defined, then the system

If (a; )Pand (b; )® are independent on t , and the conditions

(a,16)(2)(a,17)(2) — (a16)P(a;,)® < 0 ,

(a,m)(z)(a,”)(z) — (016)P(@17)@ + (016) P 16)® + (@) P P17)P + (P16)P (017)P >0
(b16) @ (b17)@ = (b16) P (by7)® >0,

(b16)(2)(b17)(2) - (b16)(2)(b17)(2) - (bw)(z)(r”)(z) - (b17)(2)(7”17)(2) + (7”16)(2)(7”17)(2) <0
with (pys) @, (1;,)@ as defined are satisfied , then the system

If (a; )P and (b; )® are independent on ¢ , and the conditions

(a;o)(3)(ag1)(3) — (az0)®(az))® <0 ,

(a;o)(3)(ag1)(3) — (a20)® (2210 + (a20)® (P20)® + (@21)® @21)® + 20)® (P21)® > 0
(b20)® (b)) = (b20)® (b)) >0,

(bzo)(3)(b21)(3) - (bzo)(g)(bm)(g) - (bzo)(3)(rz1)(3) - (b21)(3)(r21)(3) + (Tzo)(3)(7”21)(3) <0
with ()@, (151 as defined are satisfied , then the system

If (a; )P and (b; )™ are independent on ¢ , and the conditions

(034)(4) (ags)(4) — (az24)®(azs)™® <0 ,

(ag4)(4) (ags)(4) — (a20)® (a25)® + (@20)® P2)® + (a25) @ (25)® + 20)P (25)*® > 0
(b2)® (by5)® — (b24)® (by5)™® > 0,

(b2)® (bys) ™ — (b24) ™ (b25)™ — (b3)® (r25)™ — (b35) P (135)® + (r34) @ (15)® < 0
with ()@, (15)@ as defined are satisfied , then the system

If (a; )®and (b; )©® are independent on ¢ , and the conditions

(aés)(s)(a:zg)(s) — (a28)®(az0)®™ < 0 ,

(ags)(s)(agg)(s) — (a28)® (a29)™ + (a28)® 026) + (a290)® 020)® + (026)® (920)® > 0
(b38) ) (b29)®) — (b28) ™) (b)) >0,

(b28)® (b29) = (b)) (529)® = (b2g) ™ (139)® — (b29) ™ (129)® + (r26) ™ (1r29)® < 0
with (28)®, (rgg)(*") as defined satisfied , then the system

If (a; )®and (b; )® are independent on t , and the conditions

(a3) @ (a33)® = (a32)®(a33)® <0

(a32)®(a33)®@ — (a32) @ (a33)®@ + (a32) @ (P32)® + (a33) @ (P33)© + (032) @ (P33)® > 0
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(b32)® (b33)® — (b3,)® (b33)® >0,

(béz)(6) (bé3)(6) - (b32)(6) (b33)(6) - (béz)(()) (r33)(6) - (bé3)(6) (7'33)(6) + (7'32)(6) (7'33)(6) <0
with (ps3,)®, (133)(©® as defined are satisfied , then the system

(a13) PGy — [(@13)D + (ag3) P (T19)]Gi3 = 0

(a1)MGy3 — [(a'14)(1) + (a’1’4)(1)(T14)]G14 =0

(a15) Gy — [(ais)(l) + (ags)(l)(TM)]Gm =0

(b13)(1)T14 - [(b,13)(1) - (b;3)(1)(6) ITi3=0

(b14) VT3 = [(b1) P = (b)) P (G) T4 = 0

(b15)(1)T14 - [(bis)(l) - (bgs)(l)(G) ITis =0

has a unique positive solution , which is an equilibrium solution for the system

(a16) @617 — [(@16)@ + (a16) P (T17)]Gis = 0

(a17) PGy — [(a’17)(2) + (a’1’7)(2)(T17)]G17 =0

(a19)PGy7 — [(alls)(z) + (als)(z)(Tn)]Gw =0

(b16)(2)T17 - [(b,16)(2) - (b,1,6)(2)(G19) 1Te =
(b17)(2)T16 - [(b,17)(2) - (bi,7)(2)(G19) 177 =
(b18)(2)T17 - [(bis)(z) - (bils)(z)(Gw) Tig =0

has a unique positive solution , which is an equilibrium solution for
(a20)®6y1 = [(a20)® + (a20)®(T21)] G0 = 0

(az)® Gy — [(a’21)(3) + (a;1)(3)(T21)]G21 =0

(a2)® Gy — [(aéz)(3) + (agz)G)(Tm)]Gzz =
(bzo)(3)T21 - [(béo)(3) - (bgo)(3)(G23) 1Ty =
(b21)(3)T20 - [(b,21)(3) - (bg1)(3)(G23) 1T =
(bzz)(3)T21 - [(béz)(3) - (bgz)(3)(G23) 1T, = 0

has a unique positive solution , which is an equilibrium solution
(024) P Gos — [(@2)® + (a24)® (T35)]Gos = 0

o o

I
oo o

|
o

(a25) M Gy — [(az5)™ + (az5) P (T25)] G5 =
(a26)® G5 — [(a6)™ + (a26) ™ (T35)] G =

|
o

|
o

(b24)PTys — [(b2)® — (b34)P((G27)) 1T =

|
o

(b25) P Tyy = [(b25)® = (b5) P ((Gy7)) 1Tps =

0

(b6) P Tos — [(b26)® — (b26) P ((G27)) 1T26

has a unique positive solution , which is an equilibrium solution for the system
(a28) 6o — [(a28)® + (a26) ) (T29)]Gg = 0

(a20)® Gog — [(a29)® + (a9)® (Ty9)|Gpo = 0

(a30) P Gzo = [(a30)® + (a30) (Tp9)] G0 = 0
(bzs)(S)T29 - [(bés)(s) - (bgs)(s)(G31) IT,¢ = 0
(b29)(5)T28 - [(bé9)(5) - (bg9)(5)(631) [T, = 0
(b30)®Tzo — [(h30)® — (b30)®(G31) 1Tz = 0

has a unique positive solution , which is an equilibrium solution for the system
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(a32) @Gs35 — [(a52)© + (a32) @ (T33)]Gs, = 0 576
(a33)©Gsy — [(a33) @ + (a33)© (T33)]Ga3 = 0 577
(a34)©Gs3 — [(a§4)(6) + (az,)® (T33)]G34 =0 578
(b32)(6)T33 - [(béz)(@ - (bgz)(@ (635) ]T32 =0 579
(b33)(6)T32 - [(bé3)(6) - (b§3)(6) (635) ]T33 =0 580
(b34)(6)T33 - [(b,34)(6) - (b§4)(6) (Gas) 134 =0 584
has a unique positive solution , which is an equilibrium solution for the system 582
583
584
(@) Indeed the first two equations have a nontrivial solution G5, Gy, if
F(T) =
(a:1,3)(1)(a’14)(1)”— (a13)P(a1)® + (a13) P (a1) P (T1) + (a1) P (ar3) P (1) +
(ay3) P (T1y) (a1) P (Tyy) = 0
585
(@) Indeed the first two equations have a nontrivial solution G;¢, G;7 if
F(T]_g) = 586
(a,1,6)(2)(a17)(2)”_ (a16)P(a17)@ + (a16) P (a17) P (T17) + (a17) P (a16) P (Ty7) +
(a16) @ (Ty7) (a17) P (Ty;) = 0
587
(a) Indeed the first two equations have a nontrivial solution G,, G,; if
F(,T23) = , ) , .
(a%o)(3)(a21)(3)”— (a20)®(a21)® + (a20)® (a31) @ (T1) + (a1)® (az0)® (Tyy) +
(a20)® (Ty1)(a31) ) (Ty1) = 0
588
(a) Indeed the first two equations have a nontrivial solution G,,, G,s if
F(,T27) = , . , .
(a%4)(4) (azs)(‘})”— (a20)® (az5)™® + (a24)™ (az5) ™ (Tos) + (a5)® (az4) ™ (Tys) +
(a20)® (Ty5) (a35) P (Tp5) = 0
589
(a) Indeed the first two equations have a nontrivial solution G,g, G,y if
F(,T31) = , } , )
(ags)(s)(aw)(s)”_ (az28)® (a29)® + (a28)® (@20) S (Tao) + (@29) (a28)® (Too) +
(az8) ™ (Tz9) (A29)® (Ty9) = 0 o
5

(@) Indeed the first two equations have a nontrivial solution Gs,, G35 if

F(T3s) =

(a32)®(@33)@ = (a3) @ (a33)® + (a32) @ (a33) @ (T33) + (a33)® (@32) @ (T33) +

(a32) @ (T33)(a33) @ (T33) = 0

Definition _and uniqueness of Ty, :- 561
After hypothesis £(0) <0, f(e) > 0 and the functions (a; )™ (Ty,) being increasing, it follows that there

exists a unique Ty, for which f(T7,) = 0. With this value , we obtain from the three first equations

Gia = (a13)D614 Gie = (a15)D614
13 [(@13)D+(a13)D(T1y)] ' 15 [(a15)D+(ais)D(114)]
Definition_and uniqueness of T} :- 562

After hypothesis £(0) <0, f(e) > 0 and the functions (a; )®(T,) being increasing, it follows that there
exists a unique Ty5 for which f(T;;) = 0. With this value , we obtain from the three first equations

G = (a16) P61y Gin = (a18) P61y 563
16 [(a16)P+(a16) P (T77)] ' 18 [(a18)P+(a1g)P(Ti7)]
Definition_and uniqueness of T;; :- 564
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After hypothesis £(0) < 0, f(e0) > 0 and the functions (a; ) (T, ) being increasing, it follows that there
exists a unique Ty; for which f(T;;) = 0. With this value , we obtain from the three first equations
G = (a20)®6p1 G = (a22)®6py

207 [ +az)® ()] 1 2T [a3)® +Haz) (1)

Definition and unigueness of Tys :-
After hypothesis £(0) < 0, f(e0) > 0 and the functions (a; ) (T,s) being increasing, it follows that there
exists aunique T,z for which f(T,s) = 0. With this value , we obtain from the three first equations
Gon = (a24)M65 G = (a26) MGy
27 [(a2)®+@az)®(135)] 267 [(aze)®+(aze)® (T35)]
Definition_and uniqueness of T;q :-
After hypothesis £(0) < 0, f(e) > 0 and the functions (a; )®(T,,) being increasing, it follows that there
exists a unique Ty, for which f(T5,) = 0. With this value , we obtain from the three first equations
G = (a28)®Gy9 G = (a30)%)629
BT (@)@ +az)® (1) 1 30T [(a30)® +(a30) ) ()]
Definition_and uniqueness of T35 :-
After hypothesis £(0) < 0, f(e0) > 0 and the functions (a; ) (T33) being increasing, it follows that there
exists a unique Ts3 for which f(T3;) = 0. With this value , we obtain from the three first equations
G = (a32)®633 Gas = (a34)©633
27 J@)©+as)®@ )] T (@30 © +(a30)©(153)]
(e) By the same argument, the equations 92,93 admit solutions Gy3, G4 if
(P(G) = (b,1”3)(1)(b,14)(1) N (b13)(,1,) (b14)(1) - ,
[(b13) P (b1) P (G) + (b1) P (b13) P (6)]+(b13) P (6) (1) P (G) = 0
Where in G(G,3,Gy4, G15), G13, Gis must be replaced by their values from 96. It is easy to see that ¢ is a
decreasing function in G,, taking into account the hypothesis ¢(0) > 0, @() < 0 it follows that there exists a
unique Gy, such that 9(G*) =0
(f) By the same argument, the equations 92,93 admit solutions Gy, Gy if

(P(wa) = (”blles)(z)(bln)(z) - (b16)(3) (b17)(2) - ., ,

[(B16) P (b17)P (Gr9) + (b17)P (b16) P (G19) ]+ (b16) P (G19) (b17) P (Grg) = 0

Where in (G19)(G1g, G17, Gig), G16, G1g must be replaced by their values from 96. It is easy to see that ¢ is a
decreasing function in G, taking into account the hypothesis @(0) > 0, ¢(c0) < 0 it follows that there exists a
unique Gj, such that @((G19)*) =0

(9) By the same argument, the concatenated equations admit solutions G, G, if

(P((fza) = (,{9,20)(3)(19,21)(3) N (bzo)(i) (b21)(3) - } .

[(020)® (b31) P (Gy3) + (b31) P (b20)® (G23)|+(b30) P (G23) (b31) P (G3) = 0

Where in G,3(Gyg, Ga1, Go2), Gog, Go; must be replaced by their values from 96. It is easy to see that ¢ is a
decreasing function in G,; taking into account the hypothesis ¢(0) > 0, ¢ () < 0 it follows that there exists a
unique G5, such that ¢ ((G,3)*) =0

(h) By the same argument, the equations of modules admit solutions G,,, G, if

(P(G27) = (”b,24)(4) (b,zs)@) N (bz4)(‘:) (bzs)(4) - ., .,

[(B26) ™ (b25)® (Gy7) + (b2s5)™® (b32) P (G27) ]+ (b24) P (G37) (b35) P (Gr7) = 0

Where in (G27) (G4, G2, Gog), Goa, Go Must be replaced by their values from 96. It is easy to see that ¢ isa
decreasing function in G5 taking into account the hypothesis ¢(0) > 0, ¢ () < 0 it follows that there exists a
unique G5 such that ¢ ((G,7)*) =0

(i) By the same argument, the equations (modules) admit solutions G,g, G59 if

¢(Gsy) = (bés)(s)(bé9)(5) - (bzs)(s)(bz'a)(s) -

[(526)® (h29) ) (G31) + (b20)® (b28) ™ (G31)]+(b26) (G31) (h39) P (G31) = 0

Where in (G31)(Gag, Gag, G3g), G2g, Gso Must be replaced by their values from 96. It is easy to see that ¢ is a
decreasing function in G,4 taking into account the hypothesis @(0) > 0, ¢(c0) < 0 it follows that there exists a
unique G4 such that ¢((G3;)*) =0

(j) By the same argument, the equations (modules) admit solutions Gs,, G5 if

90((f35) = (”f’éz)(6) (b33)® - (bgz)(f) (b33)® — ) )

[(532) @ (b33)© (G35) + (b33)© (b32)© (G35)]+(b32) @ (G35) (b33) @ (G35) = 0

Where in (G35)(Gs;, Ga3, G34), G35, G34 Must be replaced by their values It is easy to see that ¢ is a decreasing
function in G taking into account the hypothesis @(0) > 0, () < 0 it follows that there exists a unique G33
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such that ¢(G*) =0
Finally we obtain the unique solution of 89 to 94 582
Gi4 givenby ¢ (G*) = 0, Ty, given by f(T;,) = 0 and
G = (a13) 61y G = (a15) M6y
B 7 @) W+@p®(riy)] 7 T (@) D+alO(11,)]
TH = (b13) D1, T = b15) 11,
BT oD -01M6EH] T T 1) D=15) V(6]
Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution 583
G givenby ©((G,9)*) = 0, Ty given by f(T}7) = 0 and 584
Gt = (a16) P61y Gt = (a18)@Gi; 585
16 7 @) @P+@1)@(Ti7)] 7 T8 T [@1e)P+@19) P (T1y)]
TF = b16)PTi, TH = b18)ATi, 586
167 [010)@-01)@@G9)0] 7 18 T [b19)@-015)P((619))]

Obviously, these values represent an equilibrium solution 587
Finally we obtain the unique solution 588
Gy, givenby ¢((G,3)*) =0, Ty givenby f(T,;) = 0 and
G = (2200963, x (a22)®)63,

20 7 @)D +az)®(15)] 1 TP T [(a2)PHaz)®(T5)]
Ty, = (b20)®T54 Ty, = (b22)®T5

[(b20)®=(b20)®(G23M] [(622) ) —=(b22)®) (G237)]
Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution 589
G;s givenby ¢(G,;) = 0, Tys givenby f(T;s) = 0 and
G = — (az4)(‘i)62*5 Gi = — (azs)(‘i)Gz*s
2T (@) W+@z)®(135)] T 20 T [(a26) P +(az)®(155)]
T = (b24)®T55 T: — (b26) T35 590
2T ) ®=b2)®(G27))] T TE T [(hr6) P =(be) P (627)7)]
Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution 591
G;9 givenby ¢((G31)") = 0, Ty given by f(T59) = 0 and
G = (a28)®639 Gi = (a30)®639
27 [(a2)P+az)®(150)] T 0 T [(@30)PHaz0) (T )]
T = (b28) T3 Ti — (b30))T39 592
2B [0 ®-)® G001 30T [(h30)® =030 (631))]
Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution 593
G33 givenby ¢((G35)") = 0, T3 givenby f(T33) = 0 and
G = (a32) @633 G = (a3)©633
32 T (@) ©O+a3)®(153)] T T (3@ +a3)©(153)]
T;, = (b32)©T33 T = (b34)©T33 594

(03O -032)© (G35)7)] 3 {030 © 3@ (G35)7)]
Obviously, these values represent an equilibrium solution
ASYMPTOTIC STABILITY ANALYSIS 595
Theorem 4: If the conditions of the previous theorem are satisfied and if the functions (a; )’ and (b, )™
Belong to CV( R,) then the above equilibrium point is asymptotically stable.
Proof:_Denote
Definition of G;, T; :-

G=G+G T,=T +T, 536
aa1)® ., F) blf' (€] .
H— () = @) 5= (67) =5,
Then taking into account equations (global) and neglecting the terms of power 2, we obtain 597
dG ' "
713 = —((@3)® + @13)V)Gy3 + (@13)VGrs — (1) V613 Tyg 598
dG ' *
714 = —((@)W + 1) V)G + (@) VGrz — (1) V61 Ty 599
dG . .
715 = —((@5)® + P15) V) G5 + (@15)VGry — (@15) VG5 Tyg 600
aT ’ *
713 = —((b1)® = (r13) V) T3 + (b13) VT4 + X215 (5030 153 G) 601
aT ’ *
714 = _((b14)(1) - (r14)(1))’ll"14 + (b)) VT3 + 2}513 (5(14)U)T14(Gj) 602
dT , .
715 = _((bls)(l) - (7”15)(1))T15 + (bys) VT, + Z}i13(5(15)(j)T15(Gj) 603
If the conditions of the previous theorem are satisfied and if the functions (a; )® and (b; )® Belong to 604
C@(R,) then the above equilibrium point is asymptotically stable
Denote 605
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Definition of G;, T; :-
G, =G+ G T-=T*+']T 606
F) @ ) . ( ) 607
2?1y = @)@, L2 (G0)) = sy
takmg into account equations (global)and neglecting the terms of power 2, we obtain 608
dG ' "
?16 = —((@16)® + (P16)P) Gy + (a16) P Gyy — (q16) P Gi6 Ty 609
dG ' "
?17 = —((@17)® + (P17)P)Gy7 + (a17) PGy — (q17) PG5, T4y 610
dG ! *
?18 = —((a18)® + (p1g)P)Gyg + (a18) P Gyy — (q15) P Gig Ty 611
dT ! *
Tw = _((b16)(2) - (T16)(2))T16 + (b1e)PTy; + 2}216(5(16)(j)T16((;']') 612
dT ! *
?17 = _((b17)(2) - (T17)(2))T17 + (b)) DT + 2}216(5(17)0)T17((;']') 613
dT ’ *
?18 = _((bls)(z) - (Tls)(z))Tw + (b1g)PTy; + 2}216(5(18)U)T18 (G]-) 614
If the conditions of the previous theorem are satisfied and if the functions (a; )® and (b; )®® Belong to 615
C® (R,) then the above equilibrium point is asymptotically stabl
+
_Denote
Definition of G;, T; :-
G =G +G  T=T +T,
2 (b,
(a21) (T21) = (g2)® , ( ) ( (G23)") =535
616
Then taking into account equations (global) and neglecting the terms of power 2, we obtain 617
4G , R
720 = _((azo)(3) + (on)(3))Gzo + (azo)(3)@21 - (CIZO)(3)GZOT21 618
4G , R
721 = —((a21)(3) + (P21)(3))G21 + (a21)® Gy — (42165, Ty 619
4G : R
—2= ~((a22)® + (P22)P) Gz + (a22)P Gy — (422)P 63, Ty 6120
aT : .
Tzo = =((b30)® = (120)P)Tag + (b)) P Ty + 2}2220(5(20)0)7"20«;‘]‘) 621
aT , .
721 = _((b21)(3) - (T21)(3))T21 + (b21)(3)T20 + 2}2220(5(21)0)7"21«;‘]‘) 622
aT : .
Tzz = _((bzz)(3) - (Tzz)(3))T22 + (bzz)(3)T21 + 2}2220(5(22)0)7"22«;‘]‘) 623
If the conditions of the previous theorem are satisfied and if the functions (a; ) and (b; ) Belong to 624
C®(R,) then the above equilibrium point is asymptotically stabl
_Denote
Definition of G;, T; :- 625
G=G+G  T,=T +T,
a ) b, ( )
(aZS) (Ts) = (q25)® ( ) ——(G7)" ) =5
Then taklng into account equatlons (global) and neglecting the terms of power 2, we obtain 626
dG ! *
—= ~((224)® + (24) ) G4 + (a20) P G5 — (424) V63, Tos 627
G , .
725 = —((az5)® + (025) ) G5 + (a25) P Gy — (q25) G35 Tos 628
G : .
- = ~((a26)™® + (P26) ™) G + (a26) P G5 — (426) ™ G36 T2 629
dT ! *
=2 = —((b2)® = ()P T4 + () P Tos + Eio2u(5ay) T4 G;) 630
dT , R
dtzs = ~((b25)™® = (r5) @) Ta5 + (bys) VT4 + 2% (ses)n 55 Gy) 631
dT
d_Zﬁ = _((bze)(4) - (7’26)(4))Tze + (b2e) P Tys + ZJ 24(5(26)U)T26(G ) 632
633
If the conditions of the previous theorem are satisfied and if the functions (a; )® and (b; )® Belong to
C®)(R,) then the above equilibrium point is asymptotically stable
Denote
Definition of G;, T; :- 634
G, =G + G T-—T*+T
il ®) b, 6 )
W (5) = (@) L2 (G ) =5y
Then takmg into account equatlons (global) and neglecting the terms of power 2, we obtain 635
dG ' *
728 = —((a28)® + (026)) Gizg + (a26) P Gz — (q28) VG35 T2o 636
dG ' *
729 = —((a20)® + (29)®) o + (a20)® Gz — (429) G39 T 637
dG
d_30 = —((a30)® + (030)®)G3o + (a30) P Gz9 — (q30) G50 T2o 638
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dT 4 *
728 = —((b26)® = (126) ) Ty + (b2) P9 + X226 (S (287 T3 G )
dT 4 *
—2 = —((b20)® = (129) ®) 29 + (b29)®T25 + X235 (5(20)() T35 Gy )
T30

e ~((h30)® = (130) ) T30 + (b30) P T2 + X725 (s5G0y ) T30 G;)
If the conditions of the previous theorem are satisfied and if the functions (a; ) and (b; )® Belong to
C©(R,) then the above equilibrium point is asymptotically stable

Denote

Definition of G;, T; :-
GiZGi*‘l'(Gi ,Ti=Ti*+']Tl-
2(a5)® -, a6 )® .
%(T%) =(g33)© | a—(;j((G35) ) =5

Then taking into account equations(global) and neglecting the terms of power 2, we obtain

d% = _((aéz)(@ + (P32)(6))G32 + (a3) @Gz — (432) G5, Ts3
T8 = (@)@ + (03) @) Gz + (033) G — (433) V65T
dg% - _((a,34)(6) + (p34)(6))@’34 + (a34)(6)G33 - (‘I34)(6)G3*4T33
T2 = (03 — (1)@ )Ty + (b32) O T + T, (s600) T2 G )
T = —((b3)® = (133) @) T3 + (b33) Ty + T, (560)() 153G, )
Dot — _(B5)© = (13)@) Ty + B3)OTs5 + T (53006754 G )

The characteristic equation of this system is

(D® + (b15)® = (1) )(DD + (@15)® + (p15) )

[(((/1)(1) + (@13)® + 013) D) (@1 VG4 + (@) P (q13) V65 )]

(((/1)(1) + (b13)® = (13) D) sayan T +(b14)(1)5(13),(14)T1*4)

+ (((/1)(1) + (@)W + 1) V) (q1) V615 + (a13)(1)(Q14)(1)Gf4)

(((/1)(1) + (b13)® = (13) D) sayan s + (b14)(1)5(13),(13)T1*3)

(WD) + (@)™ + @)™ + i) + i) @) WD)

(WD) + (bi)® + B1)® = (1) D + (1)) (DD

+((@®D) + (@) + @)™ + i) + 1)) D) (@15) D65
+H(DD + (@1)® + (013)P) ((a15)P (@) V61 + (1) P (a15) P (q13)V613)

(((/1)(1) + (b13) W = (1)) saa,as) Tia +(b14)(1)5(13),(15)T1*3)} =0
+

(WP + (1)@ = (1) (P + (a18)? + (P1)?)
[(((/1)(2) + (a16)® + (p16)?) (17) @ Gi7 + (a17)(2)(Q16)(2)G§6)]
(((/1)(2) + (b16)® = (16)?)san,anTiz +(b17)(2)5(16),(17)Tf7)
+ (((/1)(2) +(a17)® + (p17)®) (q16) P Gi6 + (a16)(2)(Q17)(2)GI7)
(((/1)(2) + (b16)® = (116) @) san,a6)Ti7 + (b17)(2)5(16),(16)Tf6)
(((/1)(2))2 +((@16)® + (@)@ + (016)? + (P:1)?) (}L)(Z))
((W@) + (Bl + BN ~ (10)@ + (37)P) WD)
+ (((/1)(2))2 +((@16)® + (@)@ + (016)® + (p1)?) (/1)(2)) (418)PGyg
+H(DP + (a16)® + (016)?) ((218)P (@17)P G617 + (a17)P (a18) (q16) @ Gig)

(((/1)(2) +(b16)® = (116)®)s17), a8 Ti7 +(b17)(2)5(16),(18)Tf6)} =0
+

(P +B2) = () DN(DD + (a2)® + (022)P)
[(((/1)(3) +(a20)® + (p20)P) (@20 G631 + (021)(3)(1120)(3)(;50)]
(((/1)(3) + (b20)® — (120)®)s21), 2y T3t +(b21)(3)5(20),(21)T2*1)

+ (((/1)(3) +(@20)® + (p21)) (0200 PG50 + (azo)(3)(QZ1)(DG2*1)
(((/1)(3) +(b20)® = (120)®)s 21y, 200 T1 + (b21)(3)5(20),(20)T2*0)
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(((/1)(3))2 +((@20)® + (a21)® + (020)® + (21)®) (/1)(3))
(((/1)(3))2 +((520)® + (b21)® = (120)® + (1)) (/1)(3))
+ (((/1)(3))2 +((@20)® + (@21)® + (020)® + (21)®) (/1)(3)) (422)P Gz
+H(D® + (@20)® + 20)®) ((@22)® (421631 + (2210 (a22)® (g20)P630)

(((/1)(3) + (byo)® — (7”20)(3))5(21),(22)T2*1 +(b21)(3)5(20),(22)T2*0)} =0
+
((/1)(4) + (bye)™ — (T26)(4)){((/1)(4) + (az6)™® + (p26)(4))

[((D® + @) + ©2)®)(@25)D G35 + (a25) P (0260634 )|
(((/1)(4) + (b24)® = (120)®) 525, 25) T +(b25)(4)5(24),(25)T2*5)
+ (((/1)(4) + (azs)® + (pzs)(4))(QZ4)(4)G2*4 + (a24)(4)(q25)(4)62*5)
(((/1)(4) + (b)) — (T24)(4))5(25),(24)T2*5 + (bzs)(4)5(24),(24)T2*4)
(WD) + (@@ + @)@ + @20)@ + @2)®) WD)
(DD + (Br)® + )@ = (2@ + (r5)@) WD)
+ (WD) + (@)@ + @)@ + @20)® + 25)®) D®) (26) G
+((/1)(4) + (az)® + (P24)(4)) ((a26)(4) (425) P G35 + (azs)®(az)™ (CI24)(4)GZ*4)

(((/1)(4) + (b,24)(4) - (T24)(4))5(25),(26)T2*5 +(b25)(4)5(24),(26)T2*4)} =0
+

(DD + (30)® = (30) )P + (az)® + (p30)®)
[(((/1)(5) + (a20)® + (p26)®) (429) G50 + (a29)(5)(QZ8)(5)058)]
(((/1)(5) + (b26)® — (128)®)5(29),29) T +(b29)(5)5(28),(29)T2*9)
+ (((/1)(5) + (a20)® + (026)) (925) G35 + (azs)(s)(CIZf))(s)Gz*f))
(((/1)(5) + (b26)® — (128) ) S(29),28) T30 + (b29)(5)5(28),(28)T2*8)
(W) + (@)@ + (@) + P2)® + (P20)@) D)
(W) + (B3 + (b30)® = () + (120)®) W)
+ (W) + (@)@ + (@) + P26)® + P20)P) D) (450) Gz
(D + (a28)® + (26)) ((@30)®(q20) G50 + (a20)® (@30)® (426) G35

(((/1)(5) + (b26)® — (126)®)5(29),30) T3 +(b29)(5)5(28),(30)T2*8)} =0
(9 + (50 = )OO+ @) + (pe))
[(((/1)(6) +(a32)@ + (232)©) (33) @G53 + (a33) @ (32) @63, )]
(((/1)(6) + (b32)® — (732)®) 533,33 T3 +(b33)(6)5(32),(33)T3*3)
+ (((/1)(6) +(a33)®@ + (p33)©) (432) @ 63, + (a3)© (Q33)(6)G§3)

(((/1)(6) + (b32)® — (732) @) 533,320 T35 + (b33)(6)5(32),(32)T3*2)
(((/1)(6))2 +((@32)@ + (a33)® + 03)©@ + (p33)®) (}L)(Q)

((WO) + (B5)® + (b3)® — (3)@ + (135)@) (D@
+ (((/1)(6))2 +((@32)©@ + (a33)® + (p32)©@ + (p33)®) (/1)(6)) (43)@Gs4
+H(D® + (a3)©@ + (032)@) ((a34)©(g33) @G35 + (a33) @ (a34) @ (g32) @63, )
(((/1)(6) + (b32)® = (r3)©) 533y, 30 T3 +(b33)(6)5(32),(34)T3*2)} =0

And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, and this
proves the theorem.
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same. In the eventuality of the fact that there has been any act of omission on the part of the authors, we
regret with great deal of compunction, contrition, regret, trepidiation and remorse. As Newton said, it is
only because erudite and eminent people allowed one to piggy ride on their backs; probably an attempt
has been made to look slightly further. Once again, it is stated that the references are only illustrative and
not comprehensive
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