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ABSTRACT: This paper deals with fuzzy goal 
programming approach to solve chance constrained 

quadratic bi-level programming problem. Chance 

constraints are converted into equivalent deterministic 

constraints by the prescribed distribution functions. In the 

model formulation, the quadratic membership functions are 

formulated by using the individual best solution of the 

quadratic objective functions subject to the equivalent 

deterministic constraints. Using first order Taylor’s series, 

the quadratic membership functions are approximated to 

linear membership functions expanding about the 

individual best solution points. For avoiding decision 

deadlock, each level decision maker provides a relaxation 
of bounds on the decision variables controlled by him. We 

use two fuzzy goal programming models to reach the 

highest degree of membership goals by minimizing negative 

deviational variables. Euclidean distance function is used 

to identify the most compromise optimal solution. To 

demonstrate the proposed approach, two numerical 

examples are solved. 

 

Keyword: Bi-level programming, chance constraints, fuzzy 

goal programming, quadratic programming problem, 

Taylor’s series.  

 

I. INTRODUCTION 
In bi-level programming problem (BLPP), there are two 

types of decision makers (DMs). One is first level decision 

maker (FLDM) and another is second level decision maker 
(SLDM). The execution of decision is sequential from first 

level to second level and each level DM independently 

controls only a set of decision variables. The FLDM makes 

his decision first. But SLDM may not be satisfied with the 

decision of FLDM. Consequently, decision deadlock occurs 

frequently in the hierarchical decision making context.  

Candler and Townsley [1] as well as Fortuny –Amart and 

McCarl [2] developed the formal bi-level programming 
problem (BLPP). In 1991, Edmund and Bard [3] studied 

non linear bi-level programming problems. Malhotra and 

Arora [4] discussed fractional bi-level programming 

problem using preemptive goal programming. Sakawa and 

Nishizaki [5, 6] studied linear fractional BLPP based on 

interactive fuzzy programming. Using analytical hierarchy 

process due to Saaty [7], Mishra [8] developed weighting 

method for linear fractional BLPP. Pramanik and Dey [9] 

presented linear fractional BLPP based on fuzzy goal 

programming (FGP) using first order Taylor polynomial 

series.  

Anandalingam [10] discussed multi level programming 

problem (MLPP) as well as bi-level decentralized 

programming problem by using Stackelberg solution 

approach. The concept of fuzzy set theory in MLPP was 

first introduced by Lai [11]. Shih et al. [12] and Shih and 
Lee [13] extended Lai’s ideas by introducing non-

compensatory max min aggregation operator and 

compensatory fuzzy operator respectively. Fuzzy goal 

programming for MLPP was studied by Pramanik and Roy 

[14].  

Quadratic bi-level programming problem (QBLPP) is a 

special type of non-linear bi-level programming problem.  
In this paper, we consider the objective function of each 

level DM is quadratic function and the constraints are linear 

functions. There are many research fields where QBLPP 

arise such as robust data fitting, traffic assignment 

problems, portfolio optimizations, transportations. In 1994, 

Faustino and Judice [15] developed the linear QBLPP. 

Vicente et al. [16] presented descent method for QBLPP. 

Optimality conditions and algorithm for solving QBLPP 

were developed by Wang et al. [17]. QBLPP for integer 

variables was presented by Thirwani and Arora [18]. They 

used linearization method and obtained integer solution for 

QBLPP by using Gomory cut and dual simplex method. 
Using Karush-Kuhn-Tucker conditions and duality theory, 

Calvete and Gale [19] discussed optimality conditions for 

the linear fractional / quadratic BLPP. Pal and Moitra [20] 

developed FGP approach for solving QBLPP in 2003. 

Recently, Pramanik and Dey [21] studied multi objective 

quadratic programming problem. They [22] also developed 

priority based FGP approach to multi objective quadratic 

programming problem. They [23] also extended their ideas 

for solving QBLPP based on FGP. 

 Uncertainties may occur in the decision making situations. 

Generally, uncertainties can be fuzzily or stochastically 

described. Using probability theory, Dantzig [24] 

introduced stochastic programming. There are two main 

approaches of stochastic programming, namely, chance 

constrained programming (CCP) and two- stage 

programming. Charnes and Cooper [25] developed the 

CCP. 

In the present paper, we present QBLPP with chance 

constraints which is called chance constrained QBLPP. We 
first convert the chance constraints into equivalent 

deterministic constraints with prescribed distribution 

functions and confidence levels. We form quadratic 

membership function by using individual best solution. 

Using first order Taylor’s series, the quadratic membership 

function are approximated into linear membership functions 

by expanding about the respective individual best solution 

Chance Constrained Quadratic Bi-level Programming 

Problem 
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point. For avoiding decision deadlock, each decision maker 

prefers some bounds on the decision variables controlled by 

him. Two FGP models are formulated and Euclidean 

distance function is used to determine the most compromise 
solution. Two numerical examples are solved to 

demonstrate the efficiency of the proposed approach.   

The rest of the paper is organized in the following way. In 

Section II, we formulate chance constrained QBLPP. In 

Section III, chance constraints are transformed into 

equivalent deterministic constraints. Quadratic membership 

functions are constructed in Section IV. In Section V, 

technique of linearization of quadratic membership function 
is discussed by using first order Taylor’s series. In Section 

VI, preference bounds on the decision variables are defined. 

Section VII is devoted to develop two FGP models for 

solving chance constrained QBLPP for maximization type 

objective functions. Section VIII discusses FGP model 

formulation for solving chance constrained QBLPP for 

minimization type objective functions. The Euclidean 

distance function is described in the next Section IX. The 

step wise descriptions of the whole paper are summarized 

in the Section X. Section XI presents two numerical 

examples. Finally, Section XII concludes the paper with 
final conclusion and future work.  

 

II. FORMULATION OF CHANCE CONSTRAINED 

QUADRATIC BI-LEVEL PROGRAMMING 

PROBLEM 
The generic form of chance constrained QBLPP is  

[FLDM] XBX
2

1
XA)X(Z Max

1

T

11
1

X

                                 (1) 

[SLDM] XBX
2

1
XA)X(Z Max

2

T

22
2

X

                                (2) 

subject to  

X ϵ X`= 

}0≥X  ,m-I>)d  ≥
≤

XCPr(:R∈X{
n                       (3) 

Here, the decision vector 1X = (x11, x12, x13,…, x1n1) is 

controlled by FLDM and 
2

X = (x21, x22, x23,…, x2n2) is 

controlled by SLDM. XXX
21


n

R∈ ,  n1 + n2 = n, ‘T’ 

means transposition of vector. m,I,B,A,B,A
2211  

are given 

vectors. The order of
1

A ,
2

A are 1 n , the order of 

symmetric matrices
1

B ,
2

B are n n, I , d , m are vectors of 

order p 1, every elements of I is unity. C  is the given 

matrix of order p  n. The polyhedron X’ is assumed to be 
non-empty and bounded.

 

III. CONVERSION OF STOCHASTIC CONSTRAINTS 

INTO DETERMINISTIC CONSTRAINTS 
First, we consider the chance constraints of the form:   

 Pr (
i

n

1j jji
dxc 



) ≥ 1-
i

m ,   i = 1, 2, …, p1.                         (4) 

  Pr (
)dvar(

)d(Ed

)dvar(

)d(Exc

i

ii

i

n

1j ijij 


 


) ≥ 1- im , i = 1, 2,…, p1                                            

) 
)dvar(

)d(Ed

)dvar(

)d(Exc

Pr(1m

i

ii

i

n

1j ijij

i




 


  

)
)dvar(

)d(Ed

)dvar(

)d(Exc

Pr(m

i

ii

i

n

1j ijij

i




 


  

)dvar(

)d(Exc

)m(

i

n

1j ijij

i

1

 


  

 



n

1j ijijii

1
)d(Exc)dvar()m(  

 



n

1j ii

1

ijij
)dvar()m()d(Exc ,  

i = 1, 2, …, p1                                                                                 (5)                                                                                                                                                                                                                                                                                                                

Here  (.) and 
-1(.) represent the distribution function 

and inverse of distribution function of standard normal 

variable respectively. 

Considering the case when Pr (
i

n

1j jij
dxc 



) ≥ 1- ,m
i

 

i = p1 +1, p1 +2, …, p.                                                         (6)                                                                              

The constraints can be rewritten as:  

Pr (
)dvar(

)d(Ed

)dvar(

)d(Exc

i

ii

i

n

1j ijij 


 
 ) ≥ 1- im  , i = p1+1, p1 +2, …, 

p. 

i

i

n

1j ijij

m-1  )
)dvar(

)d(Exc

( 

 


  

i

i

n

1j ijij

m-1  )
)dvar(

)d(Exc

(-1 

 


  

)dvar(

)d(Exc

)m(

i

n

1j ijij

i

1

 




 

 



n

1j ii

1

ijij
)dvar()m()d(Exc ,                                   (7) 

  i = p1 + 1, p1 + 2,…, p.                                                        

                                                                                                                                                                        

X ≥ 0                                                                                  (8)                                                                                                                                                             

Let us denote the equivalent deterministic system 
constraints (5), (7) and (8) by X. Here, X` and X are 

equivalent set of constraints. 

IV. CONSTRUCTION OF MEMBERSHIP 

FUNCTION  
In order to construct quadratic membership function subject 

to the equivalent deterministic system constraints, the 

quadratic objective functions are maximized separately.  

Let 2,1=i,)x,...,x,x,...,x,x,x(=X
B

in

B

1+
i

in

B

i
in

B

3i

B

2i

B

1i

B

i
be 

the individual best solution for the objective function    

Zi ).X(    

Let )X(ZZ)X(Zmax
B

11

B

11XX


  

and  ).X(ZZ)X(Zmax
B

22

B

22XX




 

Considering the individual best solution as the aspiration 

level, the fuzzy goal appears as:  
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)X(Z
i ~


B

i
Z

,
i = 1, 2                               (9)                       

We consider W

11XX
Z)X(Zmin 



and W

22XX
Z)X(Zmin 



as the 

lower tolerance limits of the fuzzy objective goals of 

FLDM and SLDM.   

Now, the membership function for the objective function 

)X(Z
1

 of FLDM can be written as: 

Z≤)X(Z if                ,0    

,Z≤)X(Z≤Z if ,
Z-Z

Z-)X(Z

,Z≥)X(Z if               ,1    

=)X(μ

W

11

B

11

W

1
W

1

B

1

W

11

B

11

1
  (10)  

and the membership function for the objective function

)X(Z
2

 of SLDM can be formulated as: 

 

Z≤)X(Z if               ,0    

,Z≤)X(Z≤Z if ,
Z-Z

Z-)X(Z

,Z≥)X(Z if              ,1    

=)X(μ

W

22

B

22

W

2
W

2

B

2

W

22

B

22

2
  (11) 

Now, the chance constrained QBLP reduces to  

max )X(
1

 ,  

max ),X(μ
2  

subject to  

X ϵ X.                                                                              (12) 

V. LINEARIZATION OF QUADRATIC MEMBERSHIP 

FUNCTIONS BY USING TAYLOR’S SERIES 

APPROXIMATION 

Let 2,1=i,)x,...,x,x,...,x,x,x(=X
*

in

*

1+
i

in

*

i
in

*

3i

*

2i

*

1i

*

i
 be the 

individual best solution of )X(i subject to the equivalent 

deterministic system constraints. Then we transform the 

quadratic membership function )X(
i

  into an equivalent 

linear membership function )X(
*

i
  at the point *

i
X  by using  

first order Taylor’s series as follows: 

( )Xμ
1

≅ ( )*

1
1

Xμ + ( )*

1
1

1

*

111
Xμ

x ∂

∂
)x-x( + 

)x-x(
*

122

( )*

1
1

2

Xμ
x ∂

∂
+…+ 

)x-x(
*

1
1n

1
n

( )*

1
1

1
n

Xμ
x ∂

∂
+ 

)x-x(
*

1+
1

1n1+
1

n

( )*

1
1

1+
1

n

Xμ
x ∂

∂
+... 

+ )x-x(
*

1nn

( )=Xμ
x ∂

∂ *

1
1

n

)X(μ
*

1
                                (13) 

( )Xμ
2

≅ ( )*

2
2

Xμ + )x-x(
*

211

( )*

2
2

1

Xμ
x ∂

∂
+ )x-x(

*

222

( )*

2
2

2

Xμ
x ∂

∂
+…+ )x-x(

*

2
2n

2
n

( )+Xμ
x ∂

∂ *

2
2

2
n

)x-x(
*

1+
2

2n1+
2

n

( )*

2
2

1+
2

n

Xμ
x ∂

∂
+…+

)x-x(
*

2nn

( )=Xμ
x ∂

∂ *

2
2

n

 )X(μ
*

2
                                              (14)  

VI. CHARACTERIZATION OF PREFERENCE BOUNDS 

ON THE DECISION VARIABLES FOR BOTH 

LEVEL DECISION MAKERS 
Since the objectives of level DMs are conflicting, 

cooperation between the level DMs is necessary in order to 

reach compromise optimal solution. Each DM tries to reach 
maximum profit with the consideration of benefit of other. 

Here, the relaxations on both decision variables are 

considered for overall benefit. 

Let )r-x(
_

j1

*

j1
and )r+x(

+

j1

*

j1
 (j = 1, 2, …, n1) be the 

lower and upper bounds of decision variable j1x (j = 1, 2, 

…, n1) provided by the FLDM. Here,

)x,...,x,x,...,x,x(=X
*

n1

*

1+
1

n1

*

1
n1

*

12

*

11

*

1 is the individual best 

solution of the quadratic membership function )x(μ
1

of 

FDLM when calculated in isolation subject to the 

equivalent deterministic system constraints. 

 Similarly, )r-x(
_

j2

*

j2
and )r+x(

+

j2

*

j2
 (j = 1, 2, …, n2)  

be the lower and upper bounds of decision variables j2x (j 

= 1, 2, …, n2) provided by the SLDM. 

)x,x,...,x,x(=X
*

2
n2

*

2
n2

*

22

*

21

*

2 is the individual best solution 

of the quadratic membership function )x(μ
2

of SLDM when 

calculated in isolation subject to the equivalent 

deterministic system constraints. Therefore, preference 

bounds on the decision variable can presented as follows: 

)r-x(
_

j1

*

j1
  

j1
x  )r+x(

+

j1

*

j1
(j = 1, 2, …, n1)           (15)  

)r-x(
_

j2

*

j2


j2
x  )r+x(

+

j2

*

j2
(j = 1, 2, …, n2)  (16)                                                                                                   

Here, 
_

j1
r  and 

+

j1
r

 (j = 1, 2, …, n1) and  are the negative and 

positive tolerance values, which are not necessarily same. 

Similarly, 
_

j2
r  and 

+

j2
r

 (j = 1, 2, …, n2 ) are negative and 

positive tolerance values that may be not be necessarily 

same.
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VII. FORMULATION OF FUZZY GOAL 

PROGRAMMING MODEL OF CHANCE 

CONSTRAINED QUADRATIC BI-LEVEL 

PROGRAMMING PROBLEM 
The chance constrained QBLPP reduces to the following 

problem 

Max )X(μ
*

1
,  

Max )X(μ
*

2        

subject to 

)r-x(
_

j1

*

j1


j1
x  )r+x(

+

j1

*

j1
, (j = 1, 2, …, n1)  

)r-x(
_

j2

*

j2


j2
x  )r+x(

+

j2

*

j2
, (j = 1, 2, …,n2)    

X ϵX                                                                                (17) 

According to Pramanik and Dey, it can be written [23] as:  

,1d
i

*

i



i = 1, 2.                                                           (18)   

_

2

_

1
d,d are the negative deviational variables. Now, two FGP 

models are formulated as follows: 

Model-I 

min                                                                 (19) 

subject to 

,1=d+)X(μ
_

1

*

1
 

,1=d+)X(μ
_

2

*

2  
_

1
d≥λ , 

_

2
d≥λ , 

,1≤d≤0
_

1
 

,1≤d≤0
_

2
 

)r-x(
_

j1

*

j1


j1
x  )r+x(

+

j1

*

j1
, (j = 1, 2, …, n1)  

)r-x(
_

j2

*

j2


j2
x  )r+x(

+

j2

*

j2
, (j = 1, 2, …,n2)                                                                                            

X ϵX                                                                                                     
Model –II                     (20) 

Min ξ = 



2

1i i
d   

subject to  

,1=d+)X(μ
_

1

*

1  

,1=d+)X(μ
_

2

*

2  ,1≤d≤0
_

1  
,1≤d≤0

_

2  

)r-x(
_

j1

*

j1


j1
x  )r+x(

+

j1

*

j1
, j = 1, 2, …, n1  

)r-x(
_

j2

*

j2


j2
x  )r+x(

+

j2

*

j2
, j = 1, 2, …,n2                                                               

X ϵX     .                                                                                           

 

VIII. MODEL FORMULATION FOR QUADRATIC 

BI-LEVEL PROGRAMMING PROBLEM WITH 

CHANCE CONSTRAINTS FOR 

MINIMIZATION TYPE OBJECTIVE 

FUNCTIONS 

 
Let us consider the following problem of chance 

constrained QBLPP with minimization type objective 

functions. 

[FLDM] XBX
2

1
XA)X(Z Min

1

T

11
1

X

                               (21) 

[SLDM] XBX
2

1
XA)X(Z Min

2

T

22
2

X
                              (22) 

subject to  

X ϵ X`= 

}0≥X  ,m-I>)d  ≥
≤

XCPr(:R∈X{
n

                     (23)  

The descriptions of the coefficients, matrices, and vectors 

of the problem are already provided in section 2.  

The chance constraints are converted into equivalent 
deterministic constraints as described in (5) and (7). Then, 

the objective functions are solved separately subject to 

equivalent deterministic constraints. Let B

1
X , B

2
X be the 

individual best solutions for the quadratic objective 

functions )X(Z
1

, )X(Z
2

 and 
XX

min


)X(ZZ)X(Z
B

11

B

11
 and 

).X(ZZ)X(Zmin
B

22

B

22XX




 

Considering the individual best solution as the aspiration 

level, the fuzzy goal appears as:
  

)X(Z
i ~


B

i
Z , i = 1, 2                                                     (24) 

We consider 
X∈X

max W

11
Z)X(Z   and 

X∈X

max W

22
Z)X(Z 

 
as the 

upper tolerance limits of the fuzzy objective goals of 

FLDM and SLDM. 

Now, the quadratic membership functions are formulated 

as: 

)25(

Z≥)X(Z if                ,0    

,Z≥)X(Z≥Z if ,
Z-Z

)X(Z-Z

,Z≤)X(Z if               ,1 

=)X(μ

W

ii

B

ii

W

i
B

i

W

i

i

W

i

B

ii

i

  i = 1,2.

                                                               

 

The theoretical development of chance constrained QBLPP 

with minimization type objective functions is remain the 
same as developed for chance constrained QBLPP with 

maximization type objective functions. 
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IX. DISTANCE FUNCTION FOR DETERMINATION 

OF COMPROMISE SOLUTION 
For multi objective programming, the objectives are 

incommensurable and conflicting in nature. The aim of 

decision makers is to find out the compromise solution 

which is as near as possible to the ideal solution points in 

the decision making context. Here, we use the Euclidean 
distance function [26] of the type 

S2
 = 

2/1
2

1i

2*

i
)1( 







 


                                              

The solution with the minimum distance is considered as 

the best compromise optimal solution. 

 

X. SUMMARIZATION OF THE PROCESS FOR 

SOLVING CHANCE CONSTRAINTS QUADRATIC 

BI-LEVEL PROGRAMMING PROBLEM 
To solve chance constrained QBLPP we use the following 

steps. 

S-1.  Transform the chance constraints into equivalent 

deterministic constraints. 

S-2.  Calculate individual best solution for each quadratic 

objective function of the level DM subject to the equivalent 

deterministic constraints. 

S-3. Lower and upper tolerance limits are determined for 

each quadratic objective function by minimizing and 

maximizing separately subject to the equivalent 

deterministic constraints.  

S-4. Quadratic membership functions are formulated by 

using individual best solutions subject to the equivalent 

deterministic system constraints. 

S-5.  Find out the individual best solution for each of the 
quadratic membership functions subject to the equivalent 

deterministic constraints. 

S-6. Using first order Taylor’s series, the quadratic 

membership functions are approximated into linear 

functions at the individual best solution point.  

S-7. Both level DMs express their choices for the upper and 

lower preference bounds on the decision variables 

controlled by them. 

S-8. Two FGP models are formulated and solved. 

S-9. Determine the Euclidean distance for two optimal 

compromise solutions obtained from two FGP Models. 

S-10. Select the solution with the minimum Euclidean 

distance as the best compromise optimal solution.  

 

XI. ILLUSTRATIVE EXAMPLES OF CHANCE 

CONSTRAINED QUADRATIC BI-LEVEL 

PROGRAMMING PROBLEM  

11.1 Example 1. 

 

To illustrate the proposed FGP approach, the following 

chance constrained QBLPP with maximization type 

objective function at each level is considered.  

21

2

2

2

11
2

x
xx2+x5-x=)X(Zmax

                       
               (26) 

 

45+xx-x12+x3=)X(Zmax
21212

1
x

                               (27) 

subject to 

Pr (x1 +x2 ≤ d1) ≥ 1- 
1

m
                                                    (28)

 

Pr (-2x1 + 5x2 ≤ d2) ≥ 1- 
2

m
                                            (29) 

 

Pr (3x1 - 4x2 ≥ d3) ≥ 1- 
3

m                                                (30) 

x1≥ 0, x2≥ 0                                                    (31) 

The mean, variance and the confidence levels are 

prescribed as follows: 

E (d1) = 3, var (d1) = 2, 
1

m = 0.03                                    (32) 

E (d2) = 12, var (d2) = 8, 
2

m = 0.01                                  (33) 

E (d3) = 10, var (d3) = 18, 
3

m = 0.05                                (34)                                  

Using (5) and (7), the chance constraints defined in (28), 

(29) and (30) can be converted into equivalent deterministic 

constraints as: 

x1 + x2 ≤  5.66579                                                             (35) 

-2x1 + 5x2 ≤ 18.57609                                                      (36) 

3x1 - 4x2 ≥ 3.020856                                                        (37) 

The individual solution for each quadratic objective 

function of level DM subject to the equivalent deterministic 

constraints is obtained as 
B

1
Z 32.10118, at 

B

1
X  = (5.66579, 

0), and 
B

2
Z 72.64119, at 

B

2
X = (3.669145,1.996645).                                                                             

The fuzzy goals appear as: 

)X(Z
1 ~

 32.10118, )X(Z
2

 
~
  72.64119                       (38) 

The lower tolerance limits are obtained as 013952.1=Z
W

1
 

and .02086.48=Z
W

2

           

 

Now, the quadratic membership function for FLDM and 

SLDM are constructed as follows: 
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=)X(μ
1

 

013952.1≤)X(Z if                                   0,

,10118.32≤)X(Z≤1.013952 if ,
1.013952-10118.32

1.013952-)X(Z

,10118.32≥)X(Z if                             1, 

1

1

1

1

                              

                                                           (39)          

=)X(μ
2

02086.48≤)X(Z if                                   0,

,64119.72≤)X(Z≤48.02086 if ,
48.02086-72.64119

02086.48-)X(Z

,64119.72≥)X(Z if                             1, 

2

2

2

2

                                                                                         (40) 

The quadratic membership functions are linearized at their 

individual best solution point at  B

1
X  = (5.66579, 0), B

2
X = 

(3.669145, 1.996645) and we obtained equivalent linear 

membership functions as follows: 

)X(
*

1


 
= 1 + (x1 - 5.66579) × (2×5.66579 / 31.087228) +  

(x2 - 0) × (2×5.66579 / 31.087228),                                 (41)                                                                                                    

                                                                           

)X(
*

2


 
= 1 + (x1 - 3.669145) × ((3 - 1.996645) / 24.62033) 

+ (x2 - 1.996645) × ((12 - 3.669145) / 24.62033)            (42)                                                   

Let 0 ≤ x2 ≤ 2   and 3 ≤ x1 ≤ 6 be the preference bounds 

provided by the level DMs.                                                

Proposed two FGP models (see Table 1) in (19) and (20) 

offer the same solution at x1 = 3.669145, x2 = 1.996645, 

with Z1= 8.181629 and Z2 = 72.64119. 

TABLE1. COMPARISON OF DISTANCES FOR THE OPTIMAL 

SOLUTIONS OBTAINED FROM TWO FGP MODELS OF THE 

PROBLEM 11.1   

MODEL NUMBER MEMBERSHIP 

FUNCTION 
DISTANCE 

FUNCTION 

Model I,  

Model II 

*

1
  =0.2305666 

*

2
  = 1 

0.7694334 

It is clear from the table that two FGP Models offer the 

same result.  

 

1.2 Example 2. 

 

To illustrate the proposed FGP approach, the following 

chance constrained QBLPP with minimization type 

objective function at each level is considered.  

21

2

2

2

11
1

x
x11+x8+x6+x7=)X(Zmin               (43)    

21+xx7+)3+x(+)1-x(=)X(Zmin
21

2

2

2

12
2

x
 
               (44)  

subject  

Pr (2x1 + 5x2 ≥ d1) ≥ 1- 
1

m
                                               (45)

 

Pr (3x1 + 6x2 ≤ d2) ≥ 1- 
2

m
                                              (46)

 

The means, variances and the confidence levels are 
prescribed as follows: 

E (d1) = 6, var (d1) = 9, 
1

m = 0.06                                    (47) 

E (d2) = 4, var (d2) = 4, 
2

m = 0.04                                    (48) 

Using (5), (7) the chance constraints defined in (45), (46) 

can be converted into equivalent deterministic constraints 

as: 

2x1 + 5x2 ≥ 1.335                                                              (49) 

3x1 + 6x2 ≤ 7.51                                                                (50) 

The individual solution for each quadratic objective 

function subject to equivalent deterministic system 

constraints is obtained as: 
B

1
Z 3.364734,  

at 
B

1
X  = (0, 0.267), =Z

B

2
30, at 

B

2
X  = (1, 0)                 (51)                  

The upper tolerance limits are obtained as 89341.63=Z
W

1
  

and .77668.40=Z
W

2

           

 

The fuzzy goals assume the form:  

)X(Z
1 ~

≤3.364734, )X(Z
2 ~

 30 

Now, the quadratic membership functions for FLDM and 

SLDM are formulated as follows:  

=)X(μ
1

89341.63)X(Zif0

,364734.3)X(Z89341.63if
364734.389341.63

)X(Z89341.63

,364734.3)X(Zif,1

1

1

1

1










 

 (52) 

=)X(μ
2

77668.40)X(Zif0

,30)X(Z77668.40if
3077668.40

)X(Z77668.40

,30)X(Zif,1

2

2

2

2










 (53)

    

                                                                                                                           

The quadratic membership functions are linearized at their 

individual best solution point at  
B

1
X  = (0, 0.267), 

B

2
X  = 

(1, 0)    by using Taylor’s series approximation method as 

follows: 

)X(μ
*

1  = 1 + (x1 - 0) × (- 8 / 60.5287) +  

(x2 - 0.267) × (- 12×0.267 + 11) / 60.5287                      (54)                      

)X(μ
*

2  = 1 + (x2 - 0) × (- (13 / 10.7767))                       (55) 

Let 0 ≤ x1 ≤ 1, 0 ≤ x2  ≤ 0.5 be the preference bounds 

provided by the level DMs.                                                
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FGP model I (see Table 2) offers the optimal solution at x1 

= 0.6184107, x2 = 0.0196357 with Z1= 7.842614 and 

 Z2 = 30.34881. 

FGP Model II (See Table 2) offers the optimal solution at 

x1 = 0.6675, x2 = 0, with Z1= 8.458894 and Z2 = 30.11056. 

TABLE2. COMPARISON OF DISTANCES FOR THE OPTIMAL 

SOLUTIONS OBTAINED FROM TWO FGP MODELS OF THE 

PROBLEM 11.2.    

MODEL 

NUMBER 
MEMBERSHIP 

FUNCTION 
EUCLIDEAN 

DISTANCE 

FUNCTION 

Model I *

1
  = 0.92602,  

•

2
μ = 0.96763 

0.08075066 

Model II  *

1
  = 0.91584,

*

2
  = 0.98974 

0.08478454 

 

It is clear from the Table 2 that the Euclidean distance is 

minimal for the FGP Model I which implies that Model I 

provides better compromise solution for this example. 

Note 1. Lingo ver.11.0 is used for solution purpose. 

 

XII. CONCLUSION 
In this paper, we present chance constrained QBLPP by 

using FGP approach which is simple to understand and easy 

to apply. After transforming the chance constraints into 

equivalent deterministic constraints, we transform quadratic 

bi-level programming problem into linear bi-level 

programming problem by using the first order Taylor’s 

series approximation. To avoid decision deadlock, each 

level DM provides preference bounds on the decision 

variables controlled by him. Two FGP models are proposed 

for solution purpose. The proposed approach can be used to 

deal with chance constrained multi-level quadratic 
programming problem. The proposed approach can further 

be used for solving chance constrained linear quadratic 

fractional programming problem. 

For the future study in the hierarchical decision making 

context, we hope, the proposed approach can be used for 

chance constrained quadratic decentralized multi-level 

multi-objective programming problems. We hope further 
that the proposed approach will be useful for the real 

decision making problems that arise in industrial belt, 

supply chain, marketing, IT sector, management sciences.                    
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