Somewhat almost ag-continuous functions and Somewhat almost ag-open functions

S. Balasubramanian¹ and Ch. Chaithanya²

¹Department of Mathematics, Govt. Arts College(A), Karur – 639 005, Tamilnadu ²Sri Mittapalli college of Engineering, Tummalapalem, Guntur, Andhrapradesh

Abstract: In this paper we tried to introduce a new variety of continuous and open functions called Somewhat almost α g-continuous functions and Somewhat almost α g-open functions. Its basic properties are discussed. **AMS** subject classification Number: 54C10, 534C08, 54C05.

Keywords: Somewhat α g-continuous functions and Somewhat α g-open functions, Somewhat almost α g-continuous functions and Somewhat almost α g-open functions

I. Introduction:

b-open[1] sets are introduced by Andrijevic in 1996. K.R.Gentry[9] introduced somewhat continuous functions in the year 1971. V.K.Sharma and the present authors of this paper defined and studied basic properties of *v*-open sets and *v*-continuous functions in the year 2006 and 2010 respectively. T.Noiri and N.Rajesh[11] introduced somewhat b-continuous functions in the year 2011. Inspired with these developments we introduce in this paper somewhat almost α g-continuous functions, somewhat almost α g-open functions and study its basic properties and interrelation with other type of such functions available in the literature. Throughout the paper (X, τ) and (Y, σ) (or simply X and Y) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For A \subset (X; τ), *cl*{A} and A^o denote the closure of A and the interior of A in X, respectively.

II. Preliminaries

Definition 2.1: A subset *A* of X is said to be

(i) b-open[1] if $A \subset (cl\{A\})^{\circ} \cap cl\{A^{\circ}\}$.

(ii) α g-dense in X if there is no proper α g-closed set C in X such that $M \subset C \subset X$.

Definition 2.2: A function *f* is said to be

(i) somewhat continuous[9][resp: somewhat b-continuous[11]; somewhat gs-continuous[6]] if for $U \in \sigma$ and $f^{-1}(U) \neq \phi$, there exists an open[resp: b-open; gs-open] set V in X such that $V \neq \phi$ and $V \subset f^{-1}(U)$.

(ii) somewhat open[11][resp: somewhat b-open[9]; somewhat gs-open] provided that if $U \in \tau$ and $U \neq \varphi$, then there exists an open[resp: b-open; gs-open] set V in Y such that $V \neq \varphi$ and $V \subset f(U)$.

Definition 2.3: (X, τ) is said to be resolvable[8][b-resolvable[11]] if there exists a set A in (X, τ) such that both A and X - A are dense[b-dense] in (X, τ) . Otherwise, (X, τ) is called irresolvable.

Definition 2.4: If X is a set and τ and σ are topologies on X, then τ is said to be equivalent[resp: αg -equivalent] to σ provided if $U \in \tau$ and $U \neq \phi$, then there is an open[resp: αg -open] set V in X such that $V \neq \phi$ and $V \subset U$ and if $U \in \sigma$ and $U \neq \phi$, then there is an open[resp: αg -open] set V in (X, τ) such that $V \neq \phi$ and $U \supset V$.

III. Somewhat almost α g-continuous function

Definition 3.1: A function *f* is said to be somewhat almost αg -continuous if for $U \in RO(\sigma)$ and $f^{-1}(U) \neq \varphi$, there exists a non-empty αg -open set V in X such that $V \subset f^{-1}(U)$.

It is clear that every almost continuous function is somewhat almost continuous and every somewhat almost continuous is somewhat almost α g-continuous. But the converses are not true.

Example 1: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, X\}$. The function $f:(X, \tau) \rightarrow (X, \sigma)$ defined by f(a) = c, f(b) = a and f(c) = b is somewhat almost αg -continuous, somewhat αg -continuous but not somewhat continuous.

Example 2: Let $X = \{a, b, c\}, \tau = \{\phi, \{b, c\}, X\}, \sigma = \{\phi, \{b\}, \{a, c\}, X\}$ and $\eta = \{\phi, \{a\}, X\}$. Then the identity functions $f:(X, \tau) \rightarrow (X, \sigma)$ and $g:(X, \sigma) \rightarrow (X; \eta)$ and $g \cdot f$ are somewhat almost αg -continuous.

However, we have the following

Theorem 3.1: If f is somewhat almost αg -continuous and g is continuous[r-continuous; r-irresolute], then g•f is somewhat almost ag-continuous.

Theorem 3.2: For a surjective function f, the following statements are equivalent:

(i) f is somewhat almost α g-continuous.

(ii) If C is regular closed in Y such that $f^{-1}(C) \neq X$, then there is a proper αg -closed subset D of X such that $f^{-1}(C) \subset D$. (iii) If M is a α g-dense subset of X, then f(M) is a dense subset of Y.

Proof: (i) \Rightarrow (ii): Let $C \in RC(Y)$ such that $f^{-1}(C) \neq X$. Then $Y - C \in RO(Y)$ such that $f^{-1}(Y - C) = X - f^{-1}(C) \neq \varphi$ By (i), there exists $V \neq \varphi \in \alpha GO(X)$ and $V \subset f^{-1}(Y - C) = X - f^{-1}(C)$. Thus $X - V \supset f^{-1}(C)$ and X - V = D is a proper αg -closed set in X. (ii) \Rightarrow (i): Let $U \in RO(\sigma)$ and $f^{-1}(U) \neq \varphi$ Then $Y - U \in RC(\sigma)$ and $f^{-1}(Y - U) = X - f^{-1}(U) \neq X$. By (ii), there exists a proper

 $D \in \alpha GC(X)$ such that $D \supset f^{-1}(Y-U)$. This implies that $X-D \subset f^{-1}(U)$ and X-D is αg -open and $X-D \neq \varphi$.

(ii) \Rightarrow (iii): Let M be a α g-dense set in X. If f(M) is not dense in Y. Then there exists a proper C \in RC(Y) such that $f(M) \subset C \subset$ Y. Clearly $f^{-1}(C) \neq X$. By (ii), there exists a proper $D \in \alpha GC(X)$ such that $M \subset f^{-1}(C) \subset D \subset X$. This is a contradiction to the fact that M is αg -dense in X.

(iii) \Rightarrow (ii): If (ii) is not true, there exists C \in RC(Y) such that $f^{-1}(C) \neq X$ but there is no proper D $\in \alpha$ GC(X) such that $f^{-1}(C) \subset$ D. Thus $f^{-1}(C)$ is ag-dense in X. But by (iii), $f(f^{-1}(C)) = C$ is dense in Y, which contradicts the choice of C.

Theorem 3.3: Let f be a function and $X = A \cup B$, where $A, B \in RO(X)$. If $f_{A}: (A; \tau_{A}) \rightarrow (Y, \sigma)$ and $f_{B}: (B; \tau_{B}) \rightarrow (Y, \sigma)$ are somewhat almost α g-continuous, then *f* is somewhat almost α g-continuous.

Proof: Let $U \in RO(\sigma)$ such that $f^{-1}(U) \neq \varphi$. Then $(f_{/A})^{-1}(U) \neq \varphi$ or $(f_{/B})^{-1}(U) \neq \varphi$ or both $(f_{/A})^{-1}(U) \neq \varphi$ and $(f_{/B})^{-1}(U) \neq \varphi$. Suppose $(f_{A})^{-1}(U) \neq \varphi$, Since f_{A} is somewhat almost αg -continuous, there exists $V \neq \varphi \in \alpha GO(A)$ and $V \subset (f_{A})^{-1}(U) \subset f^{-1}(U)$ ¹(U). Since $V \in \alpha GO(A)$ and $A \in RO(X)$, $V \in \alpha GO(X)$. Thus f is somewhat almost αg -continuous. The proof of other cases are similar.

Theorem 3.4: Let $f(X, \tau) \rightarrow (Y, \sigma)$ be a somewhat almost αg -continuous surjection and τ^* be a topology for X, which is αg equivalent to τ . Then $f:(X, \tau^*) \rightarrow (Y, \sigma)$ is somewhat almost αg -continuous.

Proof: Let $V \in RO(\sigma)$ such that $f^{-1}(V) \neq \varphi$. Since f is somewhat almost αg -continuous, there exists $U \neq \varphi \in \alpha GO(X, \tau)$ such that $U \subset f^{-1}(V)$. But by hypothesis τ^* is αg -equivalent to τ . Therefore, there exists $U^* \neq \phi \in \alpha GO(X; \tau^*)$ such that $U^* \subset U$. But $U \subset f^{-1}(V)$. Then $U^* \subset f^{-1}(V)$; hence $f:(X, \tau^*) \to (Y, \sigma)$ is somewhat almost αg -continuous.

Theorem 3.5: Let $f:(X, \tau) \to (Y, \sigma)$ be a somewhat almost αg -continuous surjection and σ^* be a topology for Y, which is equivalent to σ . Then $f:(X, \tau) \rightarrow (Y, \sigma^*)$ is somewhat almost α g-continuous.

Proof: Let $V^* \in RO(\sigma^*)$ such that $f^{-1}(V^*) \neq \varphi$. Since σ^* is equivalent to σ , there exists $V \neq \varphi \in RO(Y, \sigma)$ such that $V \subset V^*$. Now $\varphi \neq f^{-1}(V) \subset f^{-1}(V^*)$. Since *f* is somewhat almost αg -continuous, there exists $U \neq \varphi \in \alpha GO(X, \tau)$ such that $U \subset f^{-1}(V)$. Then U $\subset f^{-1}(V^*)$; hence $f(X, \tau) \to (Y, \sigma^*)$ is somewhat almost αg -continuous.

IV. Somewhat *ag-irresolute* function

Definition 4.1: A function *f* is said to be somewhat αg -irresolute if for $U \in \alpha GO(\sigma)$ and $f^{-1}(U) \neq \varphi$, there exists a non-empty α g-open set V in X such that V $\subset f^{-1}(U)$.

Example3: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, X\}$. The function $f:(X, \tau) \rightarrow (X, \sigma)$ defined by f(a) = c, f(b) = a and f(c) = b is somewhat αg -irresolute but not somewhat-irresolute.

Example 4: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, X\}$. The function $f:(X, \tau) \rightarrow (X, \sigma)$ defined by f(a) = c, f(b) = a and f(c) = b is not somewhat αg -irresolute and somewhat-irresolute.

Note 1: Every somewhat αg -irresolute function is slightly αg -irresolute.

Example 5: The identity functions f; g and $g \cdot f$ in Example 2 are somewhat αg -irresolute.

However, we have the following

Theorem 4.1: If f is somewhat αg -irresolute and g is irresolute, then $g \cdot f$ is somewhat αg -irresolute.

Theorem 4.2: For a surjective function *f*, the following statements are equivalent:

(i) f is somewhat αg -irresolute.

(ii) If C is αg -closed in Y such that $f^{-1}(C) \neq X$, then there is a proper αg -closed subset D of X such that $f^{-1}(C) \subset D$. (iii)If M is a α g-dense subset of X, then f(M) is a α g-dense subset of Y.

Proof: (i) \Rightarrow (ii): Let $C \in \alpha GC(Y)$ such that $f^{-1}(C) \neq X$. Then $Y - C \in \alpha GO(Y)$ such that $f^{-1}(Y - C) = X - f^{-1}(C) \neq \phi$ By (i), there exists $V \neq \phi \in \alpha GO(X)$ and $V \subset f^{-1}(Y-C) = X - f^{-1}(C)$. This means $X - V \supset f^{-1}(C)$ and X - V = D is proper αg -closed in X.

(ii) \Rightarrow (i): Let $U \in \alpha GO(\sigma)$ and $f^{-1}(U) \neq \phi$ Then $Y \cdot U \neq \phi \in \alpha GC(Y)$ and $f^{-1}(Y \cdot U) = X \cdot f^{-1}(U) \neq X$. By (ii), there exists $D \neq \phi \in \alpha GC(X)$ such that $D \supset f^{-1}(Y \cdot U)$. This implies that $X \cdot D \subset f^{-1}(U)$ and $X \cdot D$ is αg -open and $X \cdot D \neq \phi$.

(ii) \Rightarrow (iii): Let M be a αg -dense set in X. If f(M) is not αg -dense in Y. Then there exists a proper $C \in \alpha GC(Y)$ such that $f(M) \subset C \subset Y$. Clearly $f^{-1}(C) \neq X$. By (ii), there exists a proper $D \in \alpha GC(X)$ such that $M \subset f^{-1}(C) \subset D \subset X$. This is a contradiction to the fact that M is αg -dense in X.

(iii) \Rightarrow (ii): Suppose (ii) is not true. there exists $C \in \alpha GC(Y)$ such that $f^{-1}(C) \neq X$ but there is no proper $D \neq \varphi \in \alpha GC(X)$ such that $f^{-1}(C) \subset D$. This means that $f^{-1}(C)$ is αg -dense in X. But by (iii), $f(f^{-1}(C)) = C$ must be αg -dense in Y, which is a contradiction to the choice of C.

Theorem 4.3: Let *f* be a function and $X = A \cup B$, where $A, B \in RO(X)$. If $f_{/A}$: $(A; \tau_{/A}) \rightarrow (Y, \sigma)$ and $f_{/B}$: $(B; \tau_{/B}) \rightarrow (Y, \sigma)$ are somewhat αg -irresolute, then *f* is somewhat αg -irresolute.

Proof: Let $U \in \alpha GO(\sigma)$ such that $f^{-1}(U) \neq \phi$. Then $(f_{/A})^{-1}(U) \neq \phi$ or $(f_{/B})^{-1}(U) \neq \phi$ or both $(f_{/A})^{-1}(U) \neq \phi$ and $(f_{/B})^{-1}(U) \neq \phi$. If $(f_{/A})^{-1}(U) \neq \phi$, Since $f_{/A}$ is somewhat αg -irresolute, there exists $V \neq \phi \in \alpha GO(A)$ and $V \subset (f_{/A})^{-1}(U) \subset f^{-1}(U)$. Since $V \in \alpha GO(A)$ and $A \in RO(X)$, $V \in \alpha GO(X)$. Thus f is somewhat αg -irresolute.

The proof of other cases are similar.

If *f* is the identity function and τ and σ are α g-equivalent. Then *f* and *f*⁻¹ are somewhat α g-irresolute. Conversely, if the identity function *f* is somewhat α g-irresolute in both directions, then τ and σ are α g-equivalent.

Theorem 4.4: Let $f:(X, \tau) \to (Y, \sigma)$ be a somewhat αg -irresolute surjection and τ^* be a topology for X, which is αg -equivalent to τ . Then $f:(X, \tau^*) \to (Y, \sigma)$ is somewhat αg -irresolute.

Proof: Let $V \in \alpha GO(\sigma)$ such that $f^{-1}(V) \neq \varphi$. Since *f* is somewhat αg -irresolute, there exists $U \neq \varphi \in \alpha GO(X, \tau)$ with $U \subset f^{-1}(V)$. But for τ^* is αg -equivalent to τ , there exists $U^* \neq \varphi \in \alpha GO(X; \tau^*)$ such that $U^* \subset U$. But $U \subset f^{-1}(V)$. Then $U^* \subset f^{-1}(V)$; hence $f:(X, \tau^*) \rightarrow (Y, \sigma)$ is somewhat αg -irresolute.

Theorem 4.5: Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a somewhat αg -irresolute surjection and σ^* be a topology for Y, which is equivalent to σ . Then $f:(X, \tau) \rightarrow (Y, \sigma^*)$ is somewhat αg -irresolute.

Proof: Let $V^* \in \sigma^*$ such that $f^{-1}(V^*) \neq \varphi$. Since σ^* is equivalent to σ , there exists $V \neq \varphi \in (Y, \sigma)$ such that $V \subset V^*$. Now $\varphi \neq f^{-1}(V) \subset f^{-1}(V^*)$. Since *f* is somewhat αg -irresolute, there exists $U \neq \varphi \in \alpha GO(X, \tau)$ such that $U \subset f^{-1}(V)$. Then $U \subset f^{-1}(V^*)$; hence $f:(X, \tau) \to (Y, \sigma^*)$ is somewhat αg -irresolute.

V. Somewhat almost αg-open function

Definition 5.1: A function *f* is said to be somewhat almost αg -open provided that if $U \in RO(\tau)$ and $U \neq \varphi$, then there exists a non-empty αg -open set V in Y such that $V \subset f(U)$.

Example 6: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, X\}$. The function *f*: $(X, \tau) \rightarrow (X, \sigma)$ defined by f(a) = a, f(b) = c and f(c) = b is somewhat almost αg -open, somewhat αg -open and somewhat open.

Theorem 5.1: Let *f* be r-open and *g* be somewhat almost α g-open. Then *g*•*f* is somewhat almost α g-open.

Theorem 5.2: For a bijective function *f*, the following are equivalent:

(i) f is somewhat almost α g-open.

(ii) If C is regular closed in X, such that $f(C) \neq Y$, then there is a αg -closed subset D of Y such that $D\neq Y$ and $D\supset f(C)$.

Proof: (i) \Rightarrow (ii): Let $C \in RC(X)$ such that $f(C) \neq Y$. Then $X - C \neq \phi \in RO(X)$. Since *f* is somewhat almost αg -open, there exists $V \neq \phi \in \alpha GO(Y)$ such that $V \subset f(X-C)$. Put D = Y-V. Clearly $D \neq \phi \in \alpha GC(Y)$. If D = Y, then $V = \phi$, which is a contradiction. Since $V \subset f(X-C)$, $D = Y-V \supset (Y - f(X-C)) = f(C)$.

(ii) \Rightarrow (i): Let $U \neq \phi \in RO(X)$. Then $C = X - U \in RC(X)$ and f(X - U) = f(C) = Y - f(U) implies $f(C) \neq Y$. Then by (ii), there is $D \neq \phi \in \alpha GC(Y)$ and $f(C) \subset D$. Clearly $V = Y - D \neq \phi \in \alpha GO(Y)$. Also, $V = Y - D \subset Y - f(C) = Y - f(X - U) = f(U)$.

Theorem 5.3: The following statements are equivalent:

(i) f is somewhat almost αg -open.

(ii) If A is a α g-dense subset of Y, then $f^{-1}(A)$ is a dense subset of X.

Proof: (i) \Rightarrow (ii): Let A be a αg -dense set in Y. If $f^{-1}(A)$ is not dense in X, then there exists $B \in RC(X)$ such that $f^{-1}(A) \subset B \subset X$. Since *f* is somewhat almost αg -open and X-B $\in RO(X)$, there exists $C \neq \phi \in \alpha GO(Y)$ such that $C \subset f(X-B)$. Therefore, $C \subset f(X-B) \subset f(f^{-1}(Y-A)) \subset Y$ -A. That is, $A \subset Y-C \subset Y$. Now, Y-C is a αg -closed set and $A \subset Y-C \subset Y$. This implies that A is not a αg -dense set in Y, which is a contradiction. Therefore, $f^{-1}(A)$ is a dense set in X.

(ii) \Rightarrow (i): If $A \neq \phi \in RO(X)$. We want to show that $\alpha g(f(A))^{\circ} \neq \phi$. Suppose $\alpha g(f(A))^{\circ} = \phi$. Then, $\alpha gcl\{(f(A))\} = Y$. Then by (ii), $f^{-1}(Y - f(A))$ is dense in X. But $f^{-1}(Y - f(A)) \subset X$ -A. Now, $X - A \in RC(X)$. Therefore, $f^{-1}(Y - f(A)) \subset X$ -A gives $X = cl\{(f^{-1}(Y - f(A)))\} \subset X$ -A. Thus $A = \phi$, which contradicts $A \neq \phi$. Therefore, $\alpha g(f(A))^{\circ} \neq \phi$. Hence *f* is somewhat almost αg -open.

Theorem 5.4: Let *f* be somewhat almost αg -open and $A \in RO(X)$. Then $f_{/A}$ is somewhat almost αg -open. **Proof:** Let $U \neq \phi \in RO(\tau_{/A})$. Since $U \in RO(A)$ and $A \in RO(X)$, $U \in RO(X)$ and since *f* is somewhat almost αg -open, there exists $V \in \alpha GO(Y)$, such that $V \subset f(U)$. Thus $f_{/A}$ is somewhat almost αg -open.

Theorem 5.5: Let *f* be a function and $X = A \cup B$, where $A,B \in RO(X)$. If $f_{/A}$ and $f_{/B}$ are somewhat almost αg -open, then *f* is somewhat almost αg -open.

Proof: Let $U \neq \phi \in RO(X)$. Since $X = A \cup B$, either $A \cap U \neq \phi$ or $B \cap U \neq \phi$ or both $A \cap U \neq \phi$ and $B \cap U \neq \phi$. Since U is regular open in X, U is regular open in both A and B.

Case (i): If $A \cap U \neq \phi \in RO(A)$. Since f_{A} is somewhat almost αg -open, there exists a αg -open set V of Y such that $V \subset f(U \cap A) \subset f(U)$, which implies that *f* is a somewhat almost αg -open.

Case (ii): If $B \cap U \neq \varphi \in RO(B)$. Since f_{B} is somewhat almost αg -open, there exists a αg -open set V in Y such that $V \subset f(U \cap B) \subset f(U)$, which implies that *f* is somewhat almost αg -open.

Case (iii): Suppose that both $A \cap U \neq \varphi$ and $B \cap U \neq \varphi$. Then by case (i) and (ii) *f* is somewhat almost αg -open.

Remark 1: Two topologies τ and σ for X are said to be α g-equivalent iff the identity function *f* is somewhat almost α g-open in both directions.

Theorem 5.6: If $f:(X, \tau) \rightarrow (Y, \sigma)$ is somewhat almost open. Let τ^* and σ^* be topologies for X and Y, respectively such that τ^* is equivalent to τ and σ^* is αg -equivalent to σ . Then $f: (X; \tau^*) \rightarrow (Y; \sigma^*)$ is somewhat almost αg -open.

VI. Somewhat M-αg-open function

Definition 6.1: A function *f* is said to be somewhat M- α g-open provided that if $U \in \alpha GO(\tau)$ and $U \neq \varphi$, then there exists a non-empty α g-open set V in Y such that $V \subset f(U)$.

Example 7: f as in Example 6 is somewhat M- α g-open.

Theorem 6.1: Let *f* be r-open and *g* be somewhat M- α g-open. Then *g*•*f* is somewhat M- α g-open.

Theorem 6.2: For a bijective function *f*, the following are equivalent:

(i) f is somewhat M- α g-open.

(ii) If $C \in \alpha GC(X)$, such that $f(C) \neq Y$, then there is a $D \in \alpha GC(Y)$ such that $D \neq Y$ and $D \supset f(C)$.

Proof: (i) \Rightarrow (ii): Let $C \in \alpha GC(X)$ such that $f(C) \neq Y$. Then $X - C \neq \phi \in \alpha GO(X)$. Since *f* is somewhat M- αg -open, there exists $V \neq \phi \in \alpha GO(Y)$ such that $V \subset f(X-C)$. Put D = Y-V. Clearly $D \neq \phi \in \alpha GC(Y)$. If D = Y, then $V = \phi$, which is a contradiction. Since $V \subset f(X-C)$, $D = Y-V \supset (Y - f(X-C)) = f(C)$.

(ii) \Rightarrow (i): Let $U \neq \phi \in RO(X)$. Then $C = X \cdot U \in \alpha GC(X)$ and $f(X \cdot U) = f(C) = Y \cdot f(U)$ implies $f(C) \neq Y$. Then by (ii), there is $D \in \alpha GC(Y)$ such that $D \neq Y$ and $f(C) \subset D$. Clearly $V = Y \cdot D \neq \phi \in \alpha GO(Y)$. Also, $V = Y \cdot D \subset Y \cdot f(C) = Y \cdot f(X \cdot U) = f(U)$.

Theorem 6.3: The following statements are equivalent:

(i) f is somewhat M- α g-open.

(ii) If A is a αg -dense subset of Y, then $f^{-1}(A)$ is a αg -dense subset of X.

Proof: (i) \Rightarrow (ii): Let A be a α g-dense set in Y. If $f^{-1}(A)$ is not α g-dense in X, then there exists $B \in \alpha GC(X)$ in X such that $f^{-1}(A) \subset B \subset X$. Since *f* is somewhat M- α g-open and X-B is α g-open, there exists a $C \neq \varphi \in \alpha GO(Y)$ such that $C \subset f(X-B)$. Therefore, $C \subset f(X-B) \subset f(f^{-1}(Y-A)) \subset Y-A$. That is, $A \subset Y-C \subset Y$. Now, Y-C is a α g-closed set and $A \subset Y-C \subset Y$. This implies that A is not a α g-dense set in Y, which is a contradiction. Therefore, $f^{-1}(A)$ is a α g-dense set in X.

(ii) \Rightarrow (i): Let $A \neq \phi \in \alpha GO(X)$. To prove $\alpha g(f(A))^{\circ} \neq \phi$. Assume $\alpha g(f(A))^{\circ} = \phi$. Then, $\alpha gcl\{(f(A))\} = Y$. Then by (ii), $f^{-1}(Y - f(A))$ is αg -dense in X. But $f^{-1}(Y - f(A)) \subset X$ -A. Now, $X - A \in \alpha GC(X)$. Therefore, $f^{-1}(Y - f(A)) \subset X$ -A gives $X = cl\{(f^{-1}(Y - f(A)))\} \subset X$ -A. Thus $A = \phi$, which contradicts $A \neq \phi$. Therefore, $\alpha g(f(A))^{\circ} \neq \phi$. Hence *f* is somewhat M- αg -open.

Theorem 6.4: If *f* is somewhat M- α g-open and A is r-open in X. Then $f_{/A}: (A; \tau_{/A}) \to (Y, \sigma)$ is somewhat M- α g-open. **Proof:** Let $U \neq \phi \in \alpha GO(\tau_{/A})$. Since $U \in \alpha GO(A)$ and $A \in RO(X)$, $U \in RO(X)$ and since *f* is somewhat M- α g-open, there exists $V \in \alpha GO(Y)$, such that $V \subset f(U)$. Thus $f_{/A}$ is somewhat M- α g-open.

Theorem 6.5: Let *f* be a function and $X = A \cup B$, where $A, B \in \alpha GO(X)$. If f_{A} and f_{B} are somewhat M- αg -open, then *f* is somewhat M- αg -open.

Proof: Let $U \neq \phi \in RO(X)$. Since $X = A \cup B$, either $A \cap U \neq \phi$ or $B \cap U \neq \phi$ or both $A \cap U \neq \phi$ and $B \cap U \neq \phi$. Since U is regular open in X, U is regular open in both A and B.

Case (i): If $A \cap U \neq \varphi \in RO(A)$. Since f_{A} is somewhat M- α g-open, there exists a α g-open set V of Y such that $V \subset f(U \cap A) \subset f(U)$, which implies that *f* is a somewhat M- α g-open.

Case (ii): If $B \cap U \neq \phi \in RO(B)$. Since f_{B} is somewhat M- α g-open, there exists a α g-open set V in Y such that $V \subset f(U \cap B) \subset f(U)$, which implies that *f* is somewhat M- α g-open.

Case (iii): If both $A \cap U \neq \varphi$ and $B \cap U \neq \varphi$. Then by case (i) and (ii) *f* is somewhat M- α g-open.

Remark 2: Two topologies τ and σ for X are said to be α g-equivalent iff the identity function *f* is somewhat M- α g-open in both directions.

Theorem 6.6: If $f:(X, \tau) \rightarrow (Y, \sigma)$ is somewhat M-open. Let τ^* and σ^* be topologies for X and Y, respectively such that τ^* is equivalent to τ and σ^* is αg -equivalent to σ . Then $f: (X; \tau^*) \rightarrow (Y; \sigma^*)$ is somewhat M- αg -open.

VII. CONCLUSION

In this paper we defined Somewhat- α g-continuous functions, studied its properties and their interrelations with other types of Somewhat-continuous functions.

Acknowledgments

The authors would like to thank the referees for their critical comments and suggestions for the development of this paper.

References

- [1] D. Andrijevic. On b-open sets. Math. Vesnik, 1996, 48: 59 64.
- [2] A.A. El-Atik. A study of some types of mappings on topological spaces. M. Sc. Thesis, Tanta University, Egypt, 1997.
- [3] S. Balasubramanian and Sandhya.C., Slightly GS-continuous functions, somewhat GS-continuous functions, Bull. Kerala Math. Association, Vol.9,No.1(2012)87 98.
- [4] S. Balasubramanian and Chaitahya.Ch, αg-separation axioms, Inter.J.Math.Archive, 3(3)(2012)855–863.
- [5] S. Balasubramanian and Chaitahya.Ch, On αg-separation axioms, Inter.J.Math.Archive, 3(3)(2012)877–888.
- [6] S. Balasubramanian and Chaitahya.Ch, Slightly αg -continuous functions, somewhat αg -continuous functions (Communicated)
- [7] S. Balasubramanian and Chaitahya.Ch, Minimal αg-open sets, Aryabhatta J. of Mathematics and Informatics, 4(1)Jan-June(2012)83 94.
- [8] M. Ganster. Preopen sets and resolvable spaces. Kyungpook Math. J., 1987, 27(2):135-143.
- [9] K.R. Gentry, H.B. Hoyle. Somewhat continuous functions. Czechslovak Math. J., 1971, 21(96):5-12.
- [10] Y.Gnanambal., On generalized pre regular closed sets in topological spaces, I.J.P.A.M., 28(3) (1997), 351-360.
- [11] T.Noiri, N.Rajesh. Somewhat b-continuous functions. J. Adv. Res. in Pure Math., 2011,3(3):1-7.doi: 10.5373/jarpm.515.072810