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I Introduction
In 1974, Das defined the concept of semi-connectedness in topology and investigated its properties. Compactness is
one of the most important, useful and fundamental concepts in topology. In 1981, Dorsett introduced and studied the concept
of semi-compact spaces. Since then, Hanna and Dorsett, Ganster and Mohammad S. Sarsak investigated the properties of
semi-compact spaces. In 1990, Ganster defined and investigated semi-Lindel6f spaces.
In this paper, we introduce the concepts of semi*-connected spaces, semi*-compact spaces and semi*-
Lindel6f spaces. We investigate their basic properties. We also discuss their relationship with already existing concepts.

1. Preliminaries

Throughout this paper (X, t) will always denote a topological space on which no separation axioms are assumed,
unless explicitly stated. If A is a subset of the space (X, 1), CI(A)
and Int(A) denote the closure and the interior of A respectively.
Definition 2.1: A subset A of a topological space (X, t) is called
(i) generalized closed (briefly g-closed)[11] if CI(A)<SU whenever ACU and U is open in X.
(ii) generalized open (briefly g-open)[11] if X\A is g-closed in X.
Definition 2.2: Let A be a subset of X. The generalized closure [6] of A is defined as the intersection of all g-closed sets
containing A and is denoted by CI*(A).
Definition 2.3: A subset A of a topological space (X, t) is called
(i) semi-open [10] (resp. semi*-open[14]) if ASCI(Int(A)) (resp. ASCI*(Int(A))).
(ii) semi-closed [1] (resp. semi*-closed[15]) if X\A is semi-open (resp. semi*-open) or

equivalently if Int(CI(A))SA (resp. Int*(CI(A))SA).
(iii) semi-regular [2] ( resp. semi*-regular [15]) if it is both semi-open and semi-closed (resp. both semi*-open and semi*-
closed).
The class of all semi-open (resp. semi-closed, semi*-open, semi*-closed) sets is denoted by SO(X, 1)(resp. SC(X, 1), S*O(X,
1), S*C(X,1)).
Definition 2.4: Let A be a subset of X. Then the semi*-closure [15] of A is defined as the intersection of all semi*-closed
sets containing A and is denoted by s*CI(A).
Theorem 2.5[14]: (i)  Every open set is semi*-open.
(i)  Every semi*-open set is semi-open.

Definition 2.6: If A is a subset of X, the semi*-frontier [13] of A is defined by
s*Fr(A)=s*CI(A)\s*Int(A).
Theorem 2.7[13]: Let A be a subset of a space X. Then A is semi*-regular if and only if s*Fr(A)=¢.
Theorem 2.8[15]: If A is a subset of X, then
(i) s*CIC\A)=X\s*Int(A).
(i) s*Int(X\A)=X\s*CI(A).
Definition 2.9: A topological space X is said to be connected [18] (resp. semi-connected [3]) if X cannot be expressed as the
union of two disjoint nonempty open (resp. semi-open) sets in X.
Theorem 2.10 [18]: A topological space X is connected if and only if the only clopen subsets of X are ¢ and X.
Definition 2.11: A collection B of open (resp. semi-open) sets in X is called an open (resp. semi-open) cover of AcX if
Acu{U, : U,eB } holds.
Definition 2.12: A space X is said to be compact [18] (resp. semi-compact [4]) if every open (resp. semi-open) cover of X
has a finite subcover.
Definition 2.13: A space X is said to be Lindelof [18] (resp. semi-Lindel6f [8]) if every cover of X by open (resp. semi-
open) sets contains a countable sub cover.
Definition 2.14: A function f :X—Y is said to be
(i) semi*-continuous [16] if f (V) is semi*-open in X for every open set V in Y.
(ii) semi*-irresolute [17] if f (V) is semi*-open in X for every semi*-openset Vin Y.
(iii) semi*-open [16] if f(V) is semi*-open inY for every open set V in X.
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(iv) semi*-closed [16] if f(V) is semi*-closed in Y for every closed set V in X.
(v) pre-semi*-open [16] if (V) is semi*-open in'Y for every semi*-open set V in X.
(vi) pre-semi*-closed [16] if f(V) is semi*-closed in Y for every semi*-closed set V in X.
(vii) totally semi*-continuous [17] if f (V) is semi*-regular in X for every openset Vin Y.
(vii) strongly semi*-continuous [17] if f (V) is semi*-regular in X for every subset V in Y.
(viii) contra-semi*-continuous [16] if f (V) is semi*-closed in X for every open set Vin Y.
(ix) contra-semi*-irresolute [17] if f (V) is semi*-closed in X for every semi*-open set Vin Y.
Theorem 2.15: Let f :X—Y be a function. Then
(i) f is semi*-continuous if and only if f *(F) is semi*-closed in X for every closed set F in Y.[16]
(ii) f is semi*-irresolute if and only if f *(F) is semi*-closed in X for every semi*-closed set F

inY.[17]
(iii) f is contra-semi*-continuous if and only if f (F) is semi*-open in X for every closed set F in

Y.[16]
(iv) f is contra-semi*-irresolute if and only if f *(F) is semi*-open in X for every semi*-closed

setFin Y.[17]
Remark 2.16:[14] If (X, 7) is a locally indiscrete space, then Tt = S*O(X, 1) = SO(X, 1).
Theorem 2.17:[14] A subset A of X is semi*-open if and only if A contains a semi*-open set about each of its points.

I1. Semi*-connected spaces
In this section we introduce semi*-connected spaces and investigate their basic properties.
Definition 3.1: A topological space X is said to be semi*-connected if X cannot be expressed as the union of two disjoint
nonempty semi*-open sets in X.
Theorem 3.2: (i) If a space X is semi*-connected, then it is connected.
(i) If a space X is semi-connected, then it is semi*-connected.
Proof: (i) Let X be semi*-connected. Suppose X is not connected. Then there exist disjoint hon-empty open sets A and B
such that X=AuUB. By Theorem 2.5(i), A and B are semi*-open sets. This is a contradiction to X is semi*-connected. This
proves (i).
(i) Let X be semi-connected. Suppose X is not semi*-connected. Then there exist disjoint non-empty semi*-open sets A and
B such that X=AuUB. By Theorem 2.5(ii), A and B are semi-open sets. This is a contradiction to X is semi-connected. This
proves (ii).
Remark 3.3: The converse of the above theorem is not true as shown in the following example.
Example 3.4: Consider the space (X, 1) where X={a, b, ¢, d} and t=={¢, {a}, {b}, {a, b},
{b, c}, {a, b, c}, X}. Clearly, (X, 1) is connected but not semi*-connected.
Example 3.5: It can be verified that the space (X, t) where X={a, b, ¢, d} and 1={¢, {a}, {b}, {a, b}, {a, b, c}, X} is semi*-
connected but not semi-connected.
Theorem 3.6: A topological space X is semi*-connected if and only if the only semi*- regular subsets of X are ¢ and X
itself.
Proof: Necessity: Suppose X is a semi*-connected space. Let A be non-empty proper subset of X that is semi*-regular.
Then A and X\A are non-empty semi*-open sets and X=AU(X\A). This is a contradiction to the assumption that X is semi*-
connected.
Sufficiency: Suppose X=AUB where A and B are disjoint non-empty semi*-open sets. Then A=X\B is semi*-closed. Thus
A is a non-empty proper subset that is semi*-regular. This is a contradiction to our assumption.
Theorem 3.7: A topological space X is semi*-connected if and only if every semi*-continuous function of X into a discrete
space Y with at least two points is a constant function.
Proof: Necessity: Let f be a semi*-continuous function of the semi*-connected space into the discrete space Y. Then for
each yeY, f *({y}) is a semi*-regular set of X. Since X is semi*-connected, f *({y})=¢ or X. If f *({y})=¢ for all yeY, then
f ceases to be a function. Therefore f *({yo})=X for a unique yo€Y. This implies f(X)={yo,} and hence f is a constant
function. Sufficiency: Let U be a semi*- regular set in X. Suppose U#p. We claim that U=X. Otherwise, choose two fixed

y,if xeU
points y; and y, in Y. Define f :X—Y by f(x)= )
y, otherwise
U if V contains y, only
) . X\U if Vcontains y, only
Then for any openset Vin Y, f (V)= ) )
X if V contains bothy, and y,
) otherwise

In all the cases f (V) is semi*-open in X. Hence f is a non-constant semi*-continuous function of X into Y. This is a
contradiction to our assumption. This proves that the only semi*- regular subsets of X are ¢ and X and hence X is semi*-
connected.

Theorem 3.8: A topological space X is semi*-connected if and only if every nonempty proper subset of X has non-empty
semi*-frontier.
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Proof: Suppose that a space X is semi*-connected. Let A be a non-empty proper subset of X. We claim that s*Fr(A)#¢. If
possible, let s*Fr(A)=¢. Then by Theorem 2.7, A is semi*-regular. By Theorem 3.6, X is not semi*-connected which is a
contradiction. Conversely, suppose that every non-empty proper subset of X has a non-empty semi*-frontier. We claim that
X is semi*-connected. On the contrary, suppose that X is not semi*-connected. By Theorem 3.6, X has a non-empty proper
subset, say A, which is semi*-regular. By Theorem 2.7, s*Fr(A)=¢ which is a contradiction to the assumption. Hence X is
semi*-connected.
Theorem 3.9: Let f :X—Y be semi*-continuous surjection and X be semi*-connected. Then Y is connected.
Proof: Let f :X—Y be semi*-continuous surjection and X be semi*-connected. Let VV be a clopen subset of Y. By
Definition 2.14(i) and by Theorem 2.15(i), f (V) is semi*-regular in X. Since X is semi*-connected, f (V)=¢ or X. Hence
V=¢ or Y. This proves that Y is connected.
Theorem 3.10: Let f :X—Y be a semi*-irresolute surjection. If X is semi*-connected, so is Y.
Proof: Let f :X—Y be a semi*-irresolute surjection and let X be semi*-connected. Let V be a subset of Y that is semi*-
regular in Y. By Definition 2.14(ii) and by Theorem 2.15(ii), f (V) is semi*-regular in X. Since X is semi*-connected, f -
Y(V)=¢ or X.Hence V=¢ or Y. This proves that Y is semi*-connected.
Theorem 3.11: Let f :X—Y be a pre-semi*-open and pre-semi*-closed injection. If Y is semi*-connected, so is X.
Proof: Let A be subset of X that is semi*- regular in X. Since f is both pre-semi*-open and pre-semi*-closed, f(A) is semi*-
regular in Y. Since Y is semi*-connected, f(A)=¢ or Y. Hence A=¢ or X. Therefore X is semi*-connected.
Theorem 3.12: If f :X—Y is a semi*-open and semi*-closed injection and Y is semi*-connected, then X is connected.
Proof: Let A be a clopen subset of X. Then f(A) is semi*- regular in Y. Since Y is semi*-connected, f(A)=¢ or Y. Hence
A=¢ or X. By Theorem 2.10, X is connected.
Theorem 3.13: If there is a semi*-totally-continuous function from a connected space X onto Y, then Y has the indiscrete
topology.
Proof: Letf be a semi*-totally-continuous function from a connected space X onto Y. Let V be an open set in Y. Then by
Theorem 2.5(i), V is semi*-open in Y. Since f is semi*-totally-continuous, f (V) is clopen in X. Since X is connected, by
Theorem 2.10, f *(V)=¢ or X. This implies V=¢ or Y. Hence Y has the indiscrete topology.
Theorem 3.14: If there is a totally semi*-continuous function from a semi*-connected space X onto Y, then Y has the
indiscrete topology.
Proof: Letf be a totally semi*-continuous function from a semi*-connected space X onto Y. Let V be an open setin Y.
Since f is totally semi*-continuous, f (V) is semi*- regular in X. Since X is semi*-connected, f *(V)=¢ or X. This implies
V=¢ or Y. Thus Y has the indiscrete topology.
Theorem 3.15: If f :X—Y is a strongly semi*-continuous bijection and Y is a space with at least two points, then X is not
semi*-connected.
Proof: Let yeY. Then f *({y}) is a non-empty proper subset that is semi*-regular in X. Hence by Theorem 3.6, X is not
semi*-connected.
Theorem 3.16: Let f :X—Y be contra-semi*-continuous surjection and X be semi*-connected. Then Y is connected.
Proof: Let f :X—Y be contra-semi*-continuous surjection and X be semi*-connected. Let V be a clopen subset of Y. By
Definition 2.14(viii) and Theorem 2.15(iii), f (V) is semi*-regular in X. Since X is semi*-connected, f1(V)=¢ or X.
Hence V=¢ or Y. This proves that Y is connected.
Theorem 3.17: Let f :X—Y be a contra-semi*-irresolute surjection. If X is semi*-connected, sois Y.
Proof: Let f:X—Y be a semi*-irresolute surjection and let X be semi*-connected. Let V be a subset of Y that is semi*-
regular in Y. By Definition 2.14(ix) and Theorem 2.15(iv), f *(V) is semi*-regular in X. Since X is semi*-connected, f -
Y(V)=¢ or X.Hence V=¢ or Y. This proves that Y is semi*-connected.
Theorem 3.18: Let X be a locally indiscrete space. Then the following are equivalent:

(i) X is connected.

(ii) X is semi*-connected.

(iii) X is semi-connected.
Proof: Follows from Remark 2.16.

v. Semi*-Compact and Semi*-Lindel6f Spaces
In this section we introduce semi*-compact spaces and semi*-Lindel6f spaces and study their properties.

Definition 4.1: A collection A of semi*-open sets in X is called a semi*-open cover of BEX if Bcu{U,, : U,EA} holds.
Definition 4.2: A space X is said to be semi*-compact if every semi*-open cover of X has a finite subcover.
Definition 4.3: A subset B of X is said to be semi*-compact relative to X if for every semi*-open cover A of B, there is a
finite subcollection of <A that covers B.
Definition 4.4: A space X is said to be semi*-Lindel6f if every cover of X by semi*-open sets contains a countable
subcover.
Remark 4.5: Every finite space is semi*-compact and every countable space is semi*- Lindeldf.
Theorem 4.6: (i) Every semi-compact space is semi*-compact.

(i) Every semi*-compact space is compact.

(iii) Every semi-Lindelof space is semi*-Lindelf.

(iv) Every semi*-Lindel6f space is Lindel6f.

(v) Every semi*-compact space is semi*-Lindel6f.
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Proof: (i), (ii), (iii) and (iv) follow from Theorem 2.5. (v) follows from Definition 2.12, Definition 2.13, Definition 4.2 and
Definition 4.4.
Theorem 4.7: Every semi*-closed subset of a semi*-compact space X is semi*-compact relative to X.
Proof: Let A be a semi*-closed subset of a semi*-compact space X. Let B be semi*-open cover of A. Then BU{X\A} is a
semi*-open cover of X. Since X is semi*-compact, this cover contains a finite subcover of X, namely {B,, B,..., B, , X\A}.
Then {By, B,... B} is a finite subcollection of B that covers A. This proves that A is semi*-compact relative to X.
Theorem 4.8: A space X is semi*-compact if and only if every family of semi*-closed sets in X with empty intersection
has a finite subfamily with empty intersection.
Proof: Suppose X is compact and {F, : a€A} is a family of semi*-closed sets in X such that N{F, : a€A}=¢. Then
U{X\F, : a€A} is a semi*-open cover for X. Since X is semi*-compact, this cover has a finite subcover, say {

n
X\F, . X\F,_ .., X\F, }for X. That is X=U{ X \F, :i=12,...,n}.This implies that ﬂ F,, =0. Conversely,
i=1
suppose that every family of semi*-closed sets in X which has empty intersection has a finite subfamily with empty
intersection. Let {U, : a€A} be a semi*-open cover for X. Then U{U,: a€A}=X. Taking the complements, we get N {X\U,,:

a€A}=¢. Since X\U, is semi*-closed for each a€A, by the assumption, there is a finite sub family, { X \U,, , X\U,_ ...,

n n
X \U, } with empty intersection. That is ﬂ(X \Uai ) =¢. Taking the complements on both sides, we get UUO,i =X.
i=1 i=1
Hence X is semi*-compact.
Theorem 4.9: Let X be a semi*-T, space in which S*O(X) is closed under finite intersection. If A is a semi*-compact subset
of X, then A is semi*-closed.
Proof: Suppose X is a semi*-T, space in which S*O(X) is closed under finite intersection. Let A be a semi*-compact subset
of X. Let xeX\A. Since X is semi*-T,, for each acA, there are disjoint semi*-open sets U, and V, containing x and a

respectively. {V, : acA} is a semi*-open cover for A. Since A is semi*-compact, this cover has a finite subcover say, {Val ,

n
Vaz ,...,Van }. Let Uy = ﬂUai _Then by assumption, Uy is a semi*-open set containing x. Also U,NA=¢ and hence U, < X\A.

i=1
Then by Theorem 2.17, X\A is semi*-open and hence A is semi*-closed.

Theorem 4.10: Let f :X—Y be a semi*-irresolute surjection and X be semi*-compact. Then Y is semi*-compact.

Proof: Letf:X—Y be a semi*-irresolute surjection and X be semi*-compact. Let {V,} be a semi*-open cover for Y. Then
{f 1(V,)} is a cover of X by semi*-open sets. Since X is semi*-compact, {f *(V,)} contains a finite subcover, namely {f (

V) FH Y, ) f 5V, 3 Then{V,, V...V, Yis a finite subcover for Y. Thus Y is semi*-compact.

Theorem 4.11: If f :X—Y is a pre-semi*-open function and Y is semi*-compact, then X is semi*-compact.

Proof: Let {V,} be asemi*-open cover for X. Then {f(V,)} is a cover of Y by semi*-open sets.Since Y is semi*-compact,
{f(V,)}contains a finite subcover, namely {f(Va1 ), f(VOt2 ),...,f(Vo[n )}Then {Val ,Vo[2 ,...,Vwn }is a finite subcover for X.
Thus X is semi*-compact.

Theorem 4.12: If f :X—Y is a semi*-open function and Y is semi*-compact, then X is compact.
Proof: Let {V,} be an open cover for X. Then {f(\VV,)}is a cover of Y by semi*-open sets.

Since Y is semi*-compact, {f(V,)}contains a finite subcover, namely {f(V,, ), f(V,, )....f(V, )}.

Then{V,,V, ...V, }isa finite subcover for X. Thus X is compact.

Theorem 4.13: Let f :X—Y be a semi*-continuous surjection and X be semi*-compact.
Then 'Y is compact.
Proof: Letf:X—Y be a semi*-continuous surjection and X be semi*-compact. Let {V,} be an open cover for Y. Then {f"

1(V,)} is a cover of X by semi*-open sets. Since X is semi*-compact, {f *(V,)} contains a finite subcover, namely {f '1(V0[1 ),

AV, Denf AV, )3 Then{V,, .V, ...V, }isacover for Y. Thus Y is compact.

Theorem 4.14: A space X is semi*-Lindel6f if and only if every family of semi*-closed sets in X with empty intersection
has a countable subfamily with empty intersection.

Proof: Suppose X is compact and {F, : a€A} is a family of semi*-closed sets in X such that N{F, : a€A}=¢. Then
U{X\F, : a€A} is a semi*-open cover for X. Since X is semi*-Lindelof, this cover has a countable sub cover, say  {

X\ F, i1, 2, ..} for X. That is X=U{ X \Fai :1=1,2,...} .This implies that ﬂ(X \F, ) =¢. Conversely, suppose

that every family of semi*-closed sets in X which has empty intersection has a countable subfamily with empty intersection.
Let {U,: a€A} be a semi*-open cover for X. Then U{U, : a€A}=X. Taking the complements, we get N{X\U, : a€EA}=¢.
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Since X\U,, is semi*-closed for each a€A, by the assumption, there is a countable sub family, { X \UG[i Si=1, 2, ...} with

empty intersection. That is ﬂ (X \Uwi ) =¢. Taking the complements we get UUai =X. Hence X is semi*-Lindeldf.
i i

Theorem 4.15: Let f:X—Y be a semi*-continuous surjection and X be semi*-Lindel6f.

Then Y is Lindel6f.

Proof: Letf:X—Y be a semi*- continuous surjection and X be semi*-Lindel6f. Let {V,} be an open cover for Y. Then {f
1(V,)}is a cover of X by semi*-open sets. Since X is semi*-Lindel6f, {f *(V,)} contains a countable subcover, namely {f *(

V, )} Then {V, }is a countable subcover for Y. Thus Y is Lindelof.

Theorem 4.16: Let f :X—Y be a semi*-irresolute surjection and X be semi*-Lindel6f.

Then Y is semi*-Lindel6f.

Proof: Let f :X—Y be a semi*-irresolute surjection and X be semi*-Lindelof. Let { V,} be a semi*-open cover for Y.
Then {f *(V,)} is a cover of X by semi*-open sets. Since X is semi*- Lindelof, {f (V,)} contains a countable sub cover,

namely {f '1(Van )}. Then {Van } is a countable subcover for Y. Thus Y is semi*-Lindelof.

Theorem 4.17: If f :X—Y is a pre-semi*-open function and Y is semi*-Lindel6f, then X is semi*-Lindelof.
Proof: Let{V,} be a semi*-open cover for X. Then {f(V,)} is a cover of Y by semi*-open sets.

Since Y is semi*- Lindelof, {f(V,)} contains a countable subcover, namely {f (Van )}. Then {Vmn } is a countable subcover

for X. Thus X is semi*- Lindel6f.
Theorem 4.18: If f :X—Y is a semi*-open function and Y is semi*-Lindel6f, then X is Lindelof.
Proof: Let {V,} be an open cover for X. Then {f(V,)}is a cover of Y by semi*-open sets. Since Y is semi*- Lindelof,

{f(V,)} contains a countable subcover, namely {f (Vmn )}. Then {Vmn } is a countable subcover for X. Thus X is Lindel6f.
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