
International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2908-2912 ISSN: 2249-6645

www.ijmer.com 2908 | P a g e

1
 D.T.V Dharmajee Rao,

2
B.Ramesh

1
 Professor & HOD, Dept. of Computer Science and Engineering, AITAM College of Engineering, JNTUK

2
 Dept. of Computer Science and Engineering, AITAM College of Engineering, JNTUK

Abstract: Sorting algorithm is one of the most basic

research fields in computer science. Sorting refers to

the operation of arranging data in some given order such as

increasing or decreasing, with numerical data, or

alphabetically, with character data.
 There are many sorting algorithms. All sorting

algorithms are problem specific. The particular Algorithm

one chooses depends on the properties of the data and

operations one may perform on data. Accordingly, we will

want to know the complexity of each algorithm; that is, to

know the running time f(n) of each algorithm as a function

of the number n of input elements and to analyses the

space and time requirements of our algorithms.

Selection of best sorting algorithm for a particular problem

depends upon problem definition. Comparisons of sorting

algorithms are based on different scenario. This work

experimentally analyzes the performance of various sorting

algorithms by calculating the execution time.

Keywords: Sort-Algorithm, Sorting, Quick sort, Merge

sort, Radix sort, Bubble sort, Gnome sort, Cocktail sort,

Counting sort.

I. Introduction

 Sort is an important operation in computer

programming. For any sequence of records or data, sort

is an ordering procedure by a type of keyword. The

sorted sequence is benefit for record searching,

insertion and deletion. Thus enhance the efficiency of

these operations.

Two categories of sort algorithms were

classified according to the records whether stored in the

main memory or auxiliary memory. One category is the

internal sort which stores the records in the main

memory. Another is the external sort which stores the

records in the hard disk because of the records' large

space occupation. In fact, by utilizing the splitting and

merging, the external sort could be converted to

internal sort. Therefore, only internal sort algorithms

such as Bubble, Select, Insertion, Merge, Shell,

Gnome, Cocktail, Counting, Radix and Quick Sort

were discussed bellow.

For the convenience, we make two

assumptions bellow. One is the sequence order,

ascending is default. Another is all the records of the

sequence were stored in the continuous address

memory cells. In this situation, the order of records was

determined by the position which stored in the

memory. The sort is the move operation of records.

The two classes of sorting algorithms are O(n
2
)

(which includes the bubble, insertion, selection, gnome,

cocktail and shell sorts) and O(n log n) (which includes the

heap, merge, and quick sort)

1.1 Theoretical Time Complexity of Various Sorting

Algorithms

Time Complexity of Various Sorting Algorithms

Name Best Average Worst

Insertion

sort

n n*n n*n

Selection

Sort

n*n n*n n*n

Bubble Sort n n*n n*n

Shell Sort n n (log n)
2
 n (log n)

2

Gnome Sort n n*n n*n

Quick Sort n log n n log n n*n

Merge Sort n log n n log n n log n

Cocktail

Sort

n n*n n*n

Counting

Sort

- n+ r n+ r

Radix Sort - n(k/d) n(k/d)

Heap Sort n log n n log n n log n

II. Fundamental Sorting Algorithms

 A. Insertion Sort

 Insertion sort algorithm used in the experiments below was

described by C language as:

Algorithm

1. For I=2 to N

2. A[I]=item ,J=I-1

3. WHILE j>0 and item<A[J]

4. A[J+1]=A[J]

5. J=J-1

6. A[J+1]=item

Pseudo Code

void insertion_sort(int b[],int N11)

{

int i,j,Temp,A[20000];

double starttime,endtime,difftime;

starttime=omp_get_wtime();

for(i=0;i<N11;i++)

A[i]=b[i];

for(i=1; i<N11; i++)

{Temp = A[i];

j = i-1;

while(Temp<A[j] && j>=0)

{A[j+1] = A[j];

j = j-1;}

A[j+1] = Temp;

}

B. Bubble Sort

 Bubble sort algorithm used in the experiments

below was described by C language as:

Algorithm

Experimental Based Selection of Best Sorting Algorithm

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2908-2912 ISSN: 2249-6645

www.ijmer.com 2909 | P a g e

1. for I=1 to N-1 (for pass)

2. for k=1 to N-I (for comparison)

3. if A[K]>A[K+1]

4. swap [A(k) , A(k+1)]

Pseudo Code
void bubble(int a[],int n)

{

int i,j,t;

for(i=n-2;i>=0;i--)

 { for(j=0;j<=i;j++)

 { if(a[j]>a[j+1])

 {t=a[j];a[j]=a[j+1];a[j+1]=t;}}}

}

C. Selection Sort

Selection sort algorithm used in the experiments below was

described by C language as:

Algorithm

1. for I=1 to N-1

2. min=A [I]

3. for K=I+1 to N

4. if (min>A [I])

5. min=A [K], Loc=K

6. Swap (A [Loc],A[I])

7. Exit

Pseudo Code

void selesort(int b[],int n)

{

int i, j,a[20000],min,index;

double starttime,endtime,difftime;

for(i=0;i<n;i++)

a[i]=b[i];

for(i=0;i<n-1;i++)

 {min=a[i]; index=i;

 for(j=i+1;j<n;j++)

 if(a[j]<min)

 {min=a[j];index=j;

 }

 a[index]=a[i];

 a[i]=min;

 }

}

D. Quick Sort

Quick sort algorithm used in the experiments below was

described by C language as:

Algorithm

Quick sort (A, p, r)

1. If p < r

2. Then q←partition (A, p ,r)

3. Quick sort (A, p, q-1)

4. Quick sort (A ,q+1 ,r)

To sort an entire array A, the initial call is Quick sort (A, 1,

length [A]).

Partition the array

The key to the algorithm is the PARTITION

procedure, which rearranges the sub array A

[p...r] in place.

Partition (A, p, r)

1. x←A[r]

2. i←p-1

3. For j←p to r-1

4. Do if A[j]<=x

5. Then i←i+1

6. Exchange A[i]↔A[j]

7. Exchange A[i+1]↔A[r]

8. Return i+1

Pseudo Code
void quick_sort(int arr[], int low, int high) {

 int i = low;

 int j = high;

 int y = 0;

 int z = arr[(low + high) / 2];

 do {

 while(arr[i] < z) i++;

 while(arr[j] > z) j--;

 if(i <= j)

{ y = arr[i];arr[i] = arr[j]; arr[j] = y;

 i++;j--;}

 } while(i <= j);

if(low < j)

 quick_sort(arr, low, j);

 if(i < high)

 quick_sort(arr, i, high);

}

E. Counting Sort

Counting sort algorithm used in the experiments below was

described by C language as:

Algorithm

1. for I=0 to K

2. C[I]=0

3. For j=1 to length [A]

4. C [A(J)]=C[A(J)]+1

5. For I=1 to K

6. C[I]=C[I]+C[I-1]

7. For J=length(A) down to 1

8. B[C(A(J)]=A[J]

9. C[A(J)]=C[A(J)]-1

Pseudo Code

void countingsort(int *a, int n)

{

 int i, min, max,array[20000];

 for(i=0;i<n;i++)

 array[i]=a[i];

 min = max = array[0];

 for(i=0; i < n; i++)

 {if (array[i] < min)

 {min = array[i];}

else if(array[i] > max)

 { max = array[i];}

 }

F. Shell Sort

Shell sort algorithm used in the experiments below was

described by C language as:

Algorithm

1. for I=n to i/2 (for pass)

2. for i=h to n

3. for j=1 to j=j-h upto j>=h && k< a[j-h]

4. assign a[j-h] to a[j]

Pseudo Code

void shell_sort(int a[],int n)

{

int j,i,m,mid;

for(m = n/2;m>0;m/=2)

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2908-2912 ISSN: 2249-6645

www.ijmer.com 2910 | P a g e

{for(j = m;j< n;j++)

{for(i=j-m;i>=0;i-=m)

if(a[i+m]>=a[i])

break;

else

{mid = a[i];a[i] = a[i+m];a[i+m] = mid;}}}}

}

G. Gnome Sort

Gnome sort algorithm used in the experiments below was

described by C language as:

Algorithm

1. for I=1 to n (for pass)

2. if i=0 and a[i-1] < a[i] then i++

3. else swap(a[i-1],a[i])

4. return a

Pseudo Code
void gnomeSort(int a[], int n)

{

 int i = 1, j = 2;

 int temp;

 while(i < n)

 {if(a[i-1] <= a[i])

 {i = j;j++;}

 else

 {temp = a[i];a[i] = a[i-1];a[i-1] = temp;

 i--;

 if(i == 0)

 {

 i = j;

 j++;

 }}}

}

H. Cocktail Sort

Cocktail sort algorithm used in the experiments below was

described by C language as:

Algorithm

1. for i=1 to n (for pass)

2. for i=n-1 to 1

3. while !i

4. swap(a[i-1],a[i])

Pseudo Code

void cocktasort(int a[], int l)

{

 int swapped = 0;

 int i,a[20000];

 do {

 for(i=0; i < (l-1); i++) {

 if (a[i] > a[i+1]) {

 temp = a[i];

 a[i] = a[i+1];

 a[i+1] = temp;

 swapped = 1;

}

 }

 if (! swapped) break;

 swapped = 0;

 for(i= l - 2; i >= 0; i--) {

 if (a[i] > a[i+1]) {

 int temp = a[i];

 a[i] = a[i+1];

 a[i+1] = temp;

 swapped = 1;

}

 }

 } while(swapped);

III. Problem Statement

The problem of sorting is a problem that arises

frequently in computer programming. Many different

sorting algorithms have been developed and improved to

make sorting fast. As a measure of performance mainly

the average number of operations or the average

execution times of these algorithms have been investigated

and compared.

3.1 Problem statement

 All sorting algorithms are nearly problem specific.

How one can predict a suitable sorting algorithm for a

particular problem? What makes good sorting

algorithms? Speed is probably the top consideration, but

other factors of interest include versatility in handling various

data types, consistency of performance, memory

requirements, length and complexity of code, and stability

factor (preserving the original order of records that have equal

keys).

 For example, sorting a database which is so big that

cannot fit into memory all at once is quite different from

sorting an array of 100 integers. Not only will the

implementation of the algorithm be quite different,

naturally, but it may even be that the same algorithm

which is fast in one case is slow in the other. Also sorting an

array may be different from sorting a linked list.

3.2 Justification

 In order to judge suitability of a sorting algorithm to

a particular problem we need to see, are the data that

application needs to sort tending to have some pre existing

order?

 What are properties of data being sorted?

 Do we need stable sort?

Generally the more we know about the properties of

data to be sorted, the faster we can sort them. As we already

mentioned the size of key space is one of the most important

factors (sort algorithms that use the size of key space can sort

any sequence for time O (n log k).

3.3 Explanation

Many different sorting algorithms have been

invented so far. Why are there so many sorting methods?

For computer science, this is a special case of question, “why

there are so many x methods?”, where x ranges over the set of

problem; and the answer is that each method has its own

advantages and disadvantages, so that it outperforms the others

on the same configurations of data and hardware.

Unfortunately, there is no known “best” way to sort; there are

many best methods, depending on what is to be sorted on

what machine and for what purpose. There are many

fundamental and advance sorting algorithms. All sorting

algorithm are problem specific means they work well on

some specific problem, not all the problems. All sorting

algorithm apply to specific kind of problems. Some

sorting algorithm apply to small number of elements, some

sorting algorithm suitable for floating point numbers, some

are fit for specific range like (0 1].some sorting algorithm

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2908-2912 ISSN: 2249-6645

www.ijmer.com 2911 | P a g e

are used for large number of data, some are used for data

with duplicate values.

It is not always possible to say that one

algorithm is better than another, as relative performance

can vary depending on the type of data being sorted. In

some situations, most of the data are in the correct order,

with only a few items needing to be sorted; In

other situations the data are completely mixed up in a random

order and in others the data will tend to be in reverse order.

Different algorithms will perform differently according to the

data being sorted.

IV. Experimental Study

In order to compare the performance of the various

Sorting algorithms above, we use a desktop computer (Intel

Dual Core Processor @ 2.4GHz, 2GB RAM, Windows 7

operating system) to do a serial experiments. Under VS2008,

using C language, the programs test the performances of

various algorithms from input scale size by utilizing random

function call and time function call.

4.1 Experiments and Results

When the input sequence is produced by a random

function, input sequence is positive, and the input scale

varied from 1024 (1K) to 101376(99K), various sort

algorithms time costs were demonstrated by table 4.1.1 and

figure 4.1.1

4.1.1 Sort Algorithms Time Cost Under Positive Input

Sequence

From the table and the figure above, we got when the scale of

input sequence was small, the difference of time cost between

these algorithms was small. But with the scale of input

sequence becoming larger and larger, the difference became

larger and larger. Among these algorithms, the radix sort,

counting sort, quick sort, shell and merge was the best, then all

other traditional sorts. Whatever, the time cost curve of radix

sort, counting sort, quick sort, shell sort was almost a line. It's

the slowest changing with the input scale increasing.

Figure 4.1.1 Time cost Comparison of various sorting

algorithms with positive input sequence

When the input sequence is produced by a random function,

input sequence is negative and the input scale varied from

1024 (1K) to 101376(99K), various sort algorithms time

costs were demonstrated by table 4.1.2 and figure 4.1.2

4.1.2 Sort Algorithms Time Cost Under Negative Input

Sequence

Figure 4.1.2 Time cost Comparison of various Sorting

algorithms with Negative input sequence

4.2 Performances Evaluations

Two criteria to evaluate the sort algorithms: time

and space. The time related to the comparison operations

and move operations of records in the algorithms. The

space may dependent or independent to the input sequence

scale. If the additional space needed in the algorithm is

independent to the input, its space complexity is O(1) .

Otherwise, its space complexity is O(n) .

Let N denote the number of input records, in

which there are n elements were ordered. Then we could

define K, called ordered factor

K= (n/N)

K [0, 1] reflects the sort degree of random

sequence. K is bigger, more ordered exists in the sequence.

Otherwise, K is smaller, more random exists in the

sequence. Let KCN represent the number of comparison

operation, and RCN represent the number of remove

operation, T(n) and S(n) represent the algorithm time

complexity and space complexity respectively. When K

→1, then RCN →0 and T(n) become lesser. When K →0,

then RCN and T(n) become bigger. According to S (n)

whether independent or dependent to the input scale, its

value is O (1) or O (n).

V. Conclusion

Every sorting algorithm has some advantages and

disadvantages. In the following table we are tried to show

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2908-2912 ISSN: 2249-6645

www.ijmer.com 2912 | P a g e

the strengths and weakness of some sorting algorithms

according to their order, memory used, stability, data type

and complexity. To determine the good sorting algorithm,

speed is the top consideration but other factor include

handling various data type, consistency of performance,

length and complexity of code, and the prosperity of

stability.

Sort Order Wo

rst

Cas

e

Memory st

ab

le

Dat

a

Typ

e

Comple

xity

Quic

k

n log

n

n
2
 nk+np+stac

k

no all High

Merg

e

n log

n

n

log

n

nk+np+stac

k

ye

s

all Mediu

m

Shell n(log

n)
2

n nk+np no all Low

Inser

tion

n
2
 n

2
 nk+np ye

s

all very

low

Selec

tion

n
2
 n

2
 nk+np ye

s

all very

low

Bubb

le

n
2
 n

2
 nk+np ye

s

all very

low

Coun

ting

n n nk+np ye

s

all very

low

Gno

me

n n
2
 nk+np ye

s

all very

low

Coka

tail

n n
2
 nk+np ye

s

all very

low

Table 5.1: Strength and Weakness of various sorting

algorithm

From the average time algorithms cost, the radix

sort, counting sort, quick sort, shell and merge sort are

superior to other algorithms. But in the worst time

situation, the quick sort cost too much time than the merge

sort.

When the input scale isn't big, time cost of

algorithms has not an obvious difference. But with the input

scale increasing, the Radix sort has certainly on advantage

over other algorithms.

For the space occupation, the quick sort and merge

sort cost too much than others, their space complexity is

O(log n) and O(n), the space occupation of the radix and

counting sort is O(nk) and O(n+k), dependent to the input

scale. Other algorithms cost little, their space complexity is

O(1), independent to the input scale.

For the application, appropriate sort algorithm is

selected according to the attributes of input sequence. If the

input scale is small, any traditional algorithm is a good

choice. But when the input scale is large Radix Sort,

Counting sort, Shell Sort, Quick sort and Merge sort is the

necessary choice essentially.

References
[1] MacLaren, M.D. “Internal Sorting By Radix Plus

Sifting”. J. ACM 13, 3 (July1966), 404-- 411.

[2] Williams, J.W.J. “Algorithm 232: Heap sort”.

Comm. ACM 7, 6 (June 1964),347-348.

[3] J. Larriba-Pey, D. Jim´enez-Gonz´alez,and J.

Navarro.“An Analysis ofSuperscalar Sorting

Algorithms on an R8000 processor”. In

InternationalConference of the Chilean Computer

Science Society pages 125-134, November1997.

[4] A. Aho, J. Hopcroft, J. Ullman, “Data Structures

and Algorithms”, Pearson India reprint, 2000

[5] R. Motwani and P. Raghavan, “Randomized

Algorithms”,Cambridge University Press, 2000

[6] Aditya Dev Mishra, Deepak Garg“Selection of

Best Sorting Algorithm” International Journal of

Intelligent Information Processing” Vol II Issue II

2008 ISSN0.973-3892, p. 233-238.

[7] Kumari A., Chakraborty S. Software Complexity: A

Statistical Case Study through Insertion Sort.

Applied Mathmatics and Computation. 2007,

190(1): 40-50.

[8] Jafarlou M. Z., Fard P. Y. Heuristic and Pattern

Based Merge Sort. Procedia Computer Science.

2011, 3: 322-324.

[9] Nardelli E., Proietti G. Efficient Unbalanced Merge-

Sort. Information Science. 2006, 176(10):1321-

1337.

[10] Feng H. Analysis of the Complexity of Quick Sort

for two Dimension Table. Jisuanji Xuebao. In

Chinese. 2007, 30(6):963-968.

