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Abstract : This paper represents The algebraic soft-

decoding (ASD) of Reed–Solomon (RS) codes provides 

significant coding gain over hard-decision decoding with 

polynomial complexity. The low-complexity chase (LCC) 

algorithm is proposed for reducing the complexity of 
interpolation, which interpolates over 2^n test vectors, 

being attractive for VLSI implementation. The interpolation 

is simplified in LCC decoding by restricting the multiplicity 

to m=1 and replacing the factorization step with Chien’s 

search and Forney’s algorithm. In this paper, high-

throughput interpolator architecture for soft-decision 

decoding of Reed–Solomon (RS) codes based on low-

complexity chase (LCC) decoding is presented. We have 

formulated a modified form of the Nielson’s interpolation 

algorithm, using some typical features of LCC decoding. 

The proposed algorithm works with a different scheduling, 
takes care of the limited growth of the polynomials, and 

shares the common interpolation points, for reducing the 

latency of interpolation. Based on the proposed modified 

Nielson’s algorithm we have derived low-latency 

architecture to reduce the overall latency of the whole LCC 

decoder. An efficiency is low, in terms of area-delay 

product, has been achieved by an LCC decoder, by using 

the proposed interpolator architecture, over the best of the 

previously reported architectures for an RS(255,239) code 

with eight test vectors.  

  

Keyword:  RScodes,Guruswami-Sudan algorithm,   
Registers,Multiplexers,D-flipflop. 

 

I. INTRODUCTION 
2. Interpolation 

3. Factorization of bivariate polynomials  

It’s being the interpolation and the most 

computation-intensive one. Several architectures based on 

Nielson’s algorithm and Lee–O’Sullivan algorithm are 
found in the literature for the VLSI implementation of 

interpolation stage. However, their hardware complexity is 

still high. An interpolation architecture for LCC with m=3, 

called backward interpolation, is proposed in [9], which 

could be considered as the best of the current approaches. 

Backward interpolator shares the computation of common 

points of the test vectors. These points are ordered in such 

way that a pair of adjacent vectors differ only at one point. 

Due to this feature, the backward interpolation architecture 

involves less area and provides higher speed than its prior 

ones. 

 

II. REED SOLOMON SOFTWARE PERFORMANCE 
The following data details performance numbers 

for a number of specific RS (n, k) implementations for two 

general purpose processing architectures and one digital 

signal processor. Numbers are provided for both decode in 

the presence of no error, as well as decode in the presence 

of maximum channel error. Note that correcting errors 

requires more processing power than simply validating 

blocks, and that the required processing power increases 

linearly with the error rate. Typical applications tend to 

keep the error rate low such that active correction is not 

required. The two digit hexadecimal number in each 
column specifies the GF (255) primitive polynomial used to 

generate the underlying Galois field.In 1960, Irving Reed 

and Gus Solomon published a paper in the Journal of the 

Society for Industrial and Applied Mathematics. This paper 

described a new class of error-correcting codes that are now 

called Reed-Solomon (R-S) codes. These codes have great 

power and utility, and are today found in many applications 

from compact disc players to deep-space applications. This 

article is an attempt to describe the paramount features of 

R-S codes and the fundamentals of how they work. Reed-

Solomon codes are non-binary cyclic codes with symbols 

made up of m-bit Sequences, where m is any positive 
integer having a value greater than 2. R-S (n, k) codes on 

m-bit symbols exist for all n and k for which  

0 < k < n < 2m + 2 

Where k is the number of data symbols being 

encoded, and n is the total number of code symbols in the 

encoded block. For the most conventional R-S (n, k) code,  

(n, k) = (2m - 1, 2m - 1 - 2t)  

Where t is the symbol-error correcting capability 

of the code, and n - k = 2t is the number of parity symbols. 

An extended R-S code can be made up with n = 2m or n = 

2m + 1, but not any further.Reed-Solomon codes achieve 
the largest possible code minimum distance for any linear 

code with the same encoder input and output block lengths. 

For non-binary codes, the distance between two code words 

is defined (analogous to Hamming distance) as the number 

A Primitive Polynomial to Define the Finite Field Modules for High-

Throughput Interpolator to Encode and Decode Of Non Binary 

Cyclic Codes 
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of symbols in which the sequences differ. For Reed-

Solomon codes, the code minimum distance  

dmin = n - k + 1 

The code is capable of correcting any combination 

of t or fewer errors, where t can be expressed as   

 T= [(dmin-1) / 2] = [ (n-k) / 2 ] 

where [x] means the largest integer not to exceed 

x. Equation  illustrates that for the case of R-S codes, 

correcting t symbol errors requires no more than 2t parity 

symbols. Equation  lends itself to the following intuitive 

reasoning. One can say that the decoder has n - k redundant 
symbols to ―spend,‖ which is twice the amount of 

correctable errors. For each error, one redundant symbol is 

used to locate the error, and another redundant symbol is 

used to find its correct value. The erasure-correcting 

capability, ρ, of the code is 

 ρ = dmin - 1 = n - k (5) 

Simultaneous error-correction and erasure-correction 

capability can be expressed as follows: 

2α + γ < dmin < n - k (6) 

Where α is the number of symbol-error patterns 

that can be corrected and γ is the number of symbol erasure 
patterns that can be corrected. An advantage of non-binary 

codes such as a Reed-Solomon code can be seen by the 

following comparison. Consider a binary (n, k) = (7, 3) 

code. The entire n-tuple space contains 2n = 27 = 128 n-

tuples, of which 2k = 23 = 8 (or 1/16 of the n-tuples) are 

code words. Next, consider a non-binary (n, k) = (7, 3) code 

where each symbol is composed of m = 3 bits. The n-tuple 

space amounts to 2nm = 221 = 2,097,152 n-tuples, of which 

2km = 29 = 512 (or 1/4096 of the n-tuples) are code words. 

When dealing with non-binary symbols, each made up of m 

bits, only a small fraction (i.e., 2km of the large number 

2nm) of possible n-tuples are code words. This fraction 
decreases with increasing values of m. The important point 

here is that when a small fraction of the n-tuple space is 

used for code words, a large dmin can be created. Any 

linear code is capable of correcting n - k symbol erasure 

patterns if the n – k erased symbols all happen to lie on the 

parity symbols. However, R-S codes have the remarkable 

property that they are able to correct any set of n - k symbol 

erasures within the block. R-S codes can be designed to 

have any redundancy. However, the complexity of a high-

speed implementation increases with Reed-Solomon Codes 

redundancy. Thus, the most attractive R-S codes have high 
code rates (low redundancy). 

 

2.1 REED-SOLOMOERROR PROBABILITY 

The Reed-Solomon (R-S) codes are particularly 

useful for burst-error correction; that is, they are effective 

for channels that have memory. Also, they can be used 

efficiently on channels where the set of input symbols is 

large. An interesting feature of the R-S code is that as many 

as two information symbols can be added to an R-S code of 

length n without reducing its minimum distance.  

For R-S codes, error probability is an 

exponentially decreasing function of block length, n, and 
decoding complexity is proportional to a small power of the 

block length. The R-S codes are sometimes used in a 

concatenated arrangement. In such a System, an inner 

convolution decoder first provides some error control by 

operating on soft-decision demodulator outputs; the 

convolutional decoder then presents hard-decision data to 

the outer Reed-Solomon decoder, which further reduces the 

probability of error. 

 

 2.2 FINITE FIELDS 

In order to understand the encoding and decoding 

principles of non binary codes, such as Reed-Solomon (R-

S) codes, it is necessary to venture into the area of finite 

fields known as Galois Fields (GF). For any prime number, 

p, there exists a finite field denoted GF( p) that contains p 

elements. It is possible to extend GF( p) to a field of pm 

elements, called an extension field of GF( p), and denoted 
by GF( pm), where m is a nonzero positive integer. Note 

that GF( pm) contains as a subset the elements of GF( p). 

Symbols from the extension field GF(2m) are used in the 

construction of Reed-Solomon (R-S) codes. The binary 

field GF(2) is a subfield of the extension field GF(2m), in 

much the same way as the real number field is a subfield of 

the complex number field. Besides the numbers 0 and 1, 

there are additional unique elements in the extension field 

that will be represented with a new symbol α. Each nonzero 

element in GF(2m) can be represented by a power of α. An 

infinite set of elements, F, is formed by starting with the 
elements {0, 1, α}, and generating additional elementsby 

progressively multiplying the last entry by α, which yields 

the following: 

F = {0, 1, α, α2, …, α j, …} = {0, α0, α1, α2, …, α j, …}  

To obtain the finite set of elements of GF(2m) 

from F, a condition must be imposed on F so that it may 

contain only 2m elements and is closed under 

multiplication. The condition that closes the set of field 

elements under multiplication is characterized by the 

irreducible polynomial shown below: 

                        α(2m−1) + 1 = 0 

or equivalently Using this polynomial constraint, any field 
element that has a power equal to or greater than 2m - 1 can 

be reduced to an element with a power less than 2m - 1, as 

follows: 

                        α(2m+ n) = α(2m−1) αn+1 = αn+1  

 

2.3 ADDITION IN THE EXTENSION FIELD GF(2M) 

Each of the 2m elements of the finite field, 

GF(2m), can be represented as a distinct polynomial of 

degree m - 1 or less. The degree of a polynomial is the 

value of its highest-order exponent. We denote each of the 

nonzero elements of GF(2m) as a polynomial, ai (X ), 
where at least one of the m coefficients of ai (X ) is 

nonzero. For i = 0,1,2,…,2m - 2,  

                            αi = ai (X ) = ai, 0 + ai, 1 X + ai, 2 X 2 + 

… + ai, m - 1 X m - 1  

Consider the case of m = 3, where the finite field is denoted 

GF(23). the mapping (developed later) of the seven 

elements {αi} and the zero element, in terms of the basis 

elements {X 0, X 1, X 2} described. Since Equation (10) 

indicates that α0 = α7, there are seven nonzero elements or 

a total of eight elements in this field. Each row in the 

mapping comprises a sequence of binary values 

representing the coefficients ai, 0, ai, 1, and ai, 2 in 
Equation (14). One of the benefits of using extension field 

elements {αi} in place of binary elements is the compact 

notation that facilitates the mathematical representation of 

nonbinary encoding and decoding processes. Addition of 

two elements of the finite field is then defined as the 
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modulo-2 sum of each of the polynomial coefficients of like 

powers, 

                αi + αj = (ai, 0 + aj, 0) + (ai, 1 + aj, 1) X + … + 

(ai, m - 1 + aj, m - 1) X m - 1  

 

2.4 APRIMITIVE POLYNOMIAL IS USED TO 

DEFINE THE FINITE FIELD 

A class of polynomials called primitive 

polynomials is of interest because such functions define the 

finite fields GF(2m) that in turn are needed to define R-S 

codes. The following condition is necessary and sufficient 
to guarantee that a polynomial is primitive. An irreducible 

polynomial f(X ) of degree m is said to be primitive if the 

smallest positive integer n for which f(X ) divides X n + 1 

is n = 2m - 1. Note that the statement A divides B means 

that A divided into B yields a nonzero quotient and a zero 

remainder. Polynomials will usually be shown low order to 

high order. Sometimes, it is convenient to follow the 

reverse format.  

 

2.4.1 ENCODER 

The Reed-Solomon encoder reads in k data 

symbols, computes the n - k parity symbols, and appends 

the parity symbols to the k data symbols for a total of n 

symbols. The encoder is essentially a 2t tap shift register 

where each register is m bits wide. The multiplier 

coefficients are the coefficients of the RS generator 

polynomial. The general idea is the construction of a 
polynomial; the coefficients produced will be symbols such 

that the generator polynomial will exactly divide the 

data/parity polynomial.  

 

 2.4.2 DECODER 

The Reed-Solomon decoder tries to correct errors 

and/or erasures by calculating the syndromes for each 

codeword. Based upon the syndromes the decoder is able to 

determine the number of errors in the received block. If 

there are errors present, the decoder tries to find the 

locations of the errors using the Berlekamp-Massey 
algorithm by creating an error locator polynomial. The 

roots of this polynomial are found using the Chien search 

algorithm. Using Forney's algorithm, the symbol error 

values are found and corrected. For an RS (n, k) code where 

n - k = 2T, the decoder can correct up to T symbol errors in 

the code word. Given that errors may only be corrected in 

units of single symbols (typically 8 data bits), Reed-

Solomon coders work best for correcting burst errors.  

 

2.5 REED-SOLOMON ENCODING 

The most conventional form of Reed-Solomon (R-

S) codes in terms of the parameters n, k, t, and any positive 
integer m > 2. 

(n, k) = (2m - 1, 2m - 1 - 2t) (20) 

where n - k = 2t is the number of parity symbols, 

and t is the symbol-error correcting capability of the code. 

The generating polynomial for an R-S code takes the 

following form: 

g(X ) = g0 + g1 X + g2 X 2 + … + g2t - 1 X 2t - 1 + X 2t 

(21) 

The degree of the generator polynomial is equal to 

the number of parity symbols. R-S codes are a subset of the 

Bose, Chaudhuri, and Hocquenghem (BCH) codes; hence, 
it should be no surprise that this relationship between the 

degree of the generator polynomial and the number of 

parity symbols holds, just as for BCH codes. Since the 

generator polynomial is of degree 2t, there must be 

precisely 2t successive powers of α that are roots of the 

polynomial. We designate the roots of 

g(X ) as α, α2, …, α2t. It is not necessary to start with the 

root α; starting with any power of α is possible.  

 

2.6 ENCODING IN SYSTEMATIC FORM 

Since R-S codes are cyclic codes, encoding in 

systematic form is analogous to the binary encoding 
procedure. We can think of shifting a message polynomial, 

m(X ), into the rightmost k stages of a codeword register 

and then appending a parity polynomial, p(X ), by placing it 

in the leftmost n - k stages. Therefore we multiply m(X ) by 

X n - k, thereby manipulating the message polynomial 

algebraically so that it is right-shifted n - k positions. Next, 

we divide X n - k m(X ) by the generator polynomial g(X ), 

which is written in the following form:  

X n - k m(X ) = q(X ) g(X ) + p(X )  

where q(X ) and p(X ) are quotient and remainder 

polynomials, respectively. As in the binary case, the 
remainder is the parity. Equation  can also be expressed as 

follows: 

p(X ) = X n - k m(X ) modulo g(X ) 

 

The resulting codeword polynomial, U(X ) can be written 

as  

                 U(X ) = p(X ) + X n - k m(X )  

 

2.6.1 SYSTEMATIC ENCODING WITH AN   (N-K) –

STAGE SHIFT REGISTER 
Using circuitry to encode a three-symbol sequence 

in systematic form with the (7, 3) R-S code described by 
g(X ) in the implementation of a linear feedback shift 

register (LFSR) circuit. It can easily be verified that the 

multiplier terms taken from left to right, correspond to the 

coefficients of the polynomial in low order to high order. 

This encoding process is the non-binary equivalent of cyclic 

encoding. Here, corresponding to the (7, 3) R-S nonzero 

code words are made up of 2m - 1 = 7 symbols, and each 

symbol is made up of m = 3 bits.  

 

 
Fig 1:  SYSTEMATIC ENCODING WITH LFSR 

 

Here the example is non-binary, so that each stage 

in the shift register of Figure holds a 3-bit symbol. In the 

case of binary codes, the coefficients labeled g1, g2, and so 

on are binary. Therefore, they take on values of 1 or 0, 
simply dictating the presence or absence of a connection in 

the LFSR. However in Figure 9, since each coefficient is 

specified by 3-bits, it can take on one of eight values. The 

non-binary operation implemented by the encoder of 

Figure, forming code words in a systematic format, 

proceeds in the same way as the binary one. The steps can 

be described as follows:  
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1. Switch 1 is closed during the first k clock cycles to 

allow shifting the message symbols into the (n - k)–

stage shift register. 

2. Switch 2 is in the down position during the first k clock 

cycles in order to allow simultaneous transfer of the 

message symbols directly to an output register. 

3. After transfer of the kth message symbol to the output 

register, switch 1 is opened and switch  is moved to the 

up position. 

4. The remaining (n - k) clock cycles clear the parity 

symbols contained in the shift register by moving them 
to the output register.  

5. The total number of clock cycles is equal to n, and the 

contents of the output register is the codeword 

polynomial p(X ) + X n - k m(X ), where p(X ) 

represents the parity symbols and m(X ) the message 

symbols in polynomial form. 

 

2.7 REED-SOLOMON DECODING 

Earlier, a test message encoded in systematic form 

using a (7, 3) R-S code resulted in a codeword polynomial 

described. Now, assume that during transmission this 
codeword becomes corrupted so that two symbols are 

received in error. This number of errors corresponds to the 

maximum error-correcting capability of the code. For this 

seven-symbol codeword example, the error pattern, e(X ), 

can be described in polynomial form as follows: 

e 𝑥 =  en

6

𝑛=0

Xn 

For this example, let the double-symbol error be such that  

 one parity symbol has been corrupted with a 1-bit 

error (seen as α2), and one data symbol has been corrupted 

with a 3-bit error (seen as α5). The received corrupted-

codeword polynomial, r(X ), is then represented by the sum 

of the transmitted-codeword polynomial and the error-

pattern polynomial as follows: 

 
r(X) = U(X) + e(X) 

 

Following Equation, we add U(X )  

 

R(x) =(100)+(001)x+(011)x2+(100)x3+(101)x4+ 

(110)x5+(111)x6  

In this example, there are four unknowns—two 

error locations and two error values. Notice an important 

difference between the nonbinary decoding of r(X ) that we 

are faced with in Equation  and binary decoding; in binary 

decoding, the decoder only needs to find the error locations. 
Knowledge that there is an error at a particular location 

dictates that the bit must be ―flipped‖ from 1 to 0 or vice 

versa. But here, the non-binary symbols require that we not 

only learn the error locations, but also determine the correct 

symbol values at those locations. Since there are four 

unknowns in this example, four equations are required for 

their solution. 

 

2.7.1 ERROR LOCATION 

Suppose there are ν errors in the codeword at 

location X j1 , X j2 , ... , X jν . Then, the error polynomial 

e(X ) shown  
E(x) = ej1x

j1+ ej2x
j2+….+ ejvx

jv 

The indices 1, 2, … ν refer to the first, second, …, 

νth errors, and the index j refers to the error location. To 

correct the corrupted codeword, each error value e jl and its 

location X jl , where l = 1, 2, ..., ν, must be determined. We 

define an error locator number as jl l β = α . Next, we obtain 

the n - k = 2t syndrome symbols by substituting αi into the 

received polynomial for i = 1, 2, … 2t 

There are 2t unknowns (t error values and t 

locations), and 2t simultaneous equations. However, these 

2t simultaneous equations cannot be solved in the usual 

way because they are nonlinear (as some of the unknowns 
have exponents). Any technique that solves this system of 

equations is known as a Reed-Solomon decoding algorithm. 

 

III. LOW-COMPLEXITY CHASE DECODING OF RS 

CODES 
Reed Solomon codes are error-correcting codes 

that have found wide-ranging applications throughout the 
fields of digital communication and storage. Some of which 

include: 

 Storage Devices (hard disks, compact disks, DVD, 

barcodes, etc.) 

 Wireless Communication (mobile phones, microwave 

links, etc.) 

 Digital Television 

 Broadband Modems (ADSL, xDSL, etc.) 

 Deep Space and Satellite Communications Networks 

(CCSDS) 
 

 
Fig 2: Applications of RS code 

RS codes are systematic linear block codes, 

residing in a subset of the BCH codes called non-binary 

BCH. It is block because the original message is split into 

fixed length blocks and each block is split into m bit 

symbols; linear because each m bit symbol is a valid 

symbol; and systematic because the transmitted information 

contains the original data with extra CRC or 'parity' bits 

appended. These codes are specified as RS (n, k), with m 

bit symbols. This means that the encoder takes  k data 

symbols of m bits each, appends n - k parity symbols, and 
produces a code word of n symbols ( each of m bits). 

 

 
Fig 3: Modified REED SOLMON code 

 

Reed Solomon codes are based on a specialized 

area of mathematics known as Galois fields (a.k.a. finite 

fields). These fields are of the form GF (p^m), where p is 
prime. RS makes use of Galois fields of the form GF (2^m), 

where elements of the field can be represented by m binary 

bits. Hence, RS codes of the form RS (2^8) lend themselves 

well to digital communication.Reed-Solomon codes are 

powerful error-correcting codes that can be found in a wide 

variety ofdigital communications systems, from digital 

media to wireless communications and deep-spaceprobes. 

The ubiquitous nature of these codes continues to fuel 
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research into decoding algorithmssome forty years after 

their introduction. Reed-Solomon codes have been 

employed in a wide spectrum of digital communications 

systems because they provide powerful error correction 

with only a small number of overhead symbols. Reed-

Solomon codewords consist of non-binary symbols and 

therefore the correction of a single symbol could result in 

the correction of more than one of the constituent bits. For 

this reason, Reed-Solomon codes are well suited to the 

correction of burst errors.Classical decoders for Reed-

Solomon codes of length n and dimension k can correct up 
to t = bdmin/2c errors where dmin = (n−k+1) is the 

minimum distance of the code. Recently, a new class of list 

decoding algorithms has been introduced that can 

sometimes correct an even greater number of errors. The 

list decoding problem is to find the set of codewords at a 

Hamming distance of t0 from the received word. If t0 > 

dmin/2 there might not be a unique codeword so the 

decoder returns a list of candidate codewords. The 

Guruswami-Sudan (GS) list decoding algorithm has t0 as 

large as n – p nk errors. To improve the error-correction 

capability of a decoder even further, the decoder should 
take advantage of the soft reliability information available 

from the channel. Soft-decision decoders  can provide an 

asymptotic gain of 2-3 dB on Gaussian channels and 10 dB 

or more on Rayleigh fading channels. Traditional hard-

decision Reed-Solomon decoding algorithms are efficient 

because they are algebraic; that is, they exploit the 

underlying algebraic structure of the code to generate a 

system of equations that is solved using finite field 

arithmetic. However, an algebraic decoder based on finite 

field arithmetic does not appear to be compatible with the 

real-valued, soft information available from the channel and 

therefore it has been a research challenge to develop an 
algebraic soft-decision Reed-Solomon decoder.  Koetter 

and Vardy have recently proposed an algebraic soft 

decision decoding algorithm by extending the list decoder 

of Guruswami and Sudan to include a method for 

converting soft information into algebraic conditions. The 

Koetter-Vardy (KV) algorithm can achieve up to about 4 

dB of coding gain at a frame-error-rate (FER) of 10−3 on a 

Gaussian noise channel (with a practical range of 1–1.5 dB) 

and gains of 2–7 dB on a Rayleigh fading channel.The 

Koetter-Vardy soft-decision decoding procedure shows a 

lot of promise from the point of view of error correcting 
performance. At a first glance, the algorithm seems to be 

quite computationally complex and not straightforward to 

implement in VLSI. This paper aims to introduce 

techniques that reduce the complexity of interpolation-

based decoders to the point where an efficient VLSI 

implementation is possible. A review of the GS and KV 

list-decoding algorithms. The techniques for significantly 

reducing the complexity and memory requirements of 

interpolation-based decoders. A VLSI architecture is then 

developed that reduces the complexity of evaluating the 

Hasse derivative, one of the main tasks in interpolation.  

  

IV. INTERPOLATION-BASED LIST DECODING 

ALGORITHM 
We want to transmit a message f. The bits of the 

message can be grouped into log2(q)- bit symbols chosen 

from the finite field with q elements, GF(q). An (n, k) 

Reed-Solomon code over GF(q) represents the k-symbol 

message,  f = (f0, f1, f2, . . . , fk−1)  by an n-symbol 

codeword, c = (c0, c1, c2, . . . , ck−1, . . . , cn−1), where n > 

k and usually n = q − 1. The k symbols of the message f can 

be considered to be the coefficients of the up to degree (k − 

1) univariate message polynomial: 

                 f(x) = f0 + f1x + f2x2 + . . . + fk−1xk−1.  

 

We use the classical view of Reed-Solomon codes 

taken from the original definition, with this evaluation map 

encoding method, a codeword is formed by evaluating the 

message polynomial f(x) at n elements of GF(q). If the set 
of evaluation elements is X = {x0, x1, . . . , xn−1}, the 

codeword c is: 

                c = (f(x0), f(x1), . . . , f(xn−1)),  xi E X.  

 

We will always assume that n = q −1 and the set of 

evaluation elements X is the set of nonzero elements of 

GF(q):  

X4={x0, x1, x2, . . . , xn−1}4={1, _, _2, . . . , _n−1} 

where Xn is a primitive n’th root of unity. The 

evaluation map encoding method is useful because, it 

provides insight leading to interpolation-based decoding 
algorithms. 

 

Guruswami-Sudan algorithm 

An interpolation-based decoder takes the point of 

view that a codeword is a message polynomial evaluated at 

points in a finite field and uses polynomial interpolation to 

try to reconstruct that polynomial. The Guruswami-Sudan 

(GS) algorithm is an interpolation-based list decoder for 

Reed- Solomon codes. To describe the algorithm, we will 

first need to review some notation and facts about bivariate 

polynomials, which are the basic data structures in the 

algorithm. Consider the bivariate polynomial with 
coefficients chosen from a finite field: 

 
Consider the received word y = c + e, where e is 

an error vector with components drawn from GF(q). Since 

each component of c was generated by evaluating f(x) at a 

unique value of x 2 X, a unique xi can be associated with 

each received yi 2 GF(q) to form the list of points,  

           L = {(x0, y0), (x1, y1), . . . , (xn−1, yn−1)}.  

If there is no noise (e = 0), then yi = f(xi), 0 _ i < 

n, and a bivariate polynomial, P(x, y) = y−f(x), passes 

through all the points in L with a multiplicity of one. This 

suggests that an interpolation-based approach can be used 

to decode Reed-Solomon codes. In the presence of noise (e 

6= 0), the interpolation polynomial will pass through some 

points that are not part of the codeword. The GS algorithm 

ensures that under certain conditions, the codeword 

polynomial ―lives inside‖ the interpolation polynomial [2, 

3]. The GS algorithm is an interpolation-based list decoder 
with two main steps: 

 

1. Interpolation Step: Given the set of points L and a 

positive integer m, compute P(x, y) of GF(q)[x, y]\{0} of 

minimal (1, k −1)-weighted degree that passes through all 

the points in L with multiplicity at least m. 
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2. Factorization Step: Given the interpolation 

polynomial P(x, y), identify all the factors of P(x, y) of the 

form y − f(x) with deg f(x) < k. The output of the algorithm 

is a list of the code words that correspond to these factors. 

A complete factorization of P(x, y) is not necessary since 

we are just looking for linear y-roots of degree < k. An 

appropriate root-finding algorithm is given. The 

multiplicity, m, functions as a user-selectable complexity 

parameter. The error-correcting ability of the GS algorithm 

increases as the value of m increases. Unfortunately, so 

does the decoding complexity. Primitive polynomials are of 
interest here because they are used to define the Galois 

field. 

 A popular choice for a primitive polynomial is:  

                   p(x) = x8 + x7 + x2 + x1 + 1 

This is also known as the 0x87 polynomial, 

corresponding to the binary representation of the 

polynomial's coefficients excluding the MSB (i.e. 

10000111). This specific polynomial is used in the CCSDS 
specification for a RS (255, 223). In GF (2^8) there are 16 

possible primitive polynomials.  

The VOCAL implementation has the ability to 

perform all combinations of RS (n, k) [n = 255, and 0 < k < 

n], for any of the 16 possible Galois fields, including the 

0x87 field used by CCSDS. Additionally, the VOCAL RS 

modules can use any arbitrary generator polynomial for the 

calculation of the parity symbols.  

 

V. REED SOLOMON IMPLEMENTATIONS 
The implementations below can be customized to 

work with other RS (n, k) codes to yield similar results in 

performance. Optimized Software Implementation: The 

pure software implementation is dominated 

computationally by multiplication over a finite field (Galois 

Field multiplication). The encoder requires 71,181 cycles 

per codeword on a MIPS32 processor and the decoder 

requires 66,045 cycles. Scalar GF Multiply Support: This is 

the simplest form of VOCAL’s hardware acceleration. The 

Scalar GF Multiply Support extends the capabilities of the 
MIPS32 processor by taking advantage of MIPS 

Technologies CorExtend capability to decrease the number 

of cycles to 23,305 cycles to encode and 9,174 cycles per 

codeword to decode on the MIPS32 processor.SIMD GF 

Multiply Support: The SIMD GF Multiply Support requires 

128 bytes of local ROM Memory, but increases the 

performance to 3,918 cycles per megabit to encode and 

3,078 cycles per codeword to decode. RS Encode Kernel. 

The RS Encode Kernel uses 1024 bytes of local ROM 

memory to encode. The number of cycles to process a 

codeword on a MIPS32 CPU falls to 2,702 cycles for 
encoding and decoding only consumes 828 cycles with this 

implementation.  

 

5.1 METHODOLOGIES 

Methodologies are the principles and explanations 

of High-Throughput Interpolator Architecture for Low-

Complexity Chase Decoding of RS Codes. And here we 

have Five types of modules are used.  

 

MODULES 

1. Registers 

2. Multiplexers 

3. D-flipflop 

4. Gf(2^8) multiplier 

5. Gf(2^8) adder 

6. Polynomial Evaluation 

7. Polynomial update 

 

MODULE DESCRIPTIONS 

5.1.1 REGISTERS  

Actual definition of Register is ―a combinational 

of flip-flops‖. Flip-flops are used as data storage elements. 

Such data storage can be used for storage of computer 
science, and such a circuit is described as sequential logic. 

Shift Register is another type of sequential logic circuit 

that is used for the storage or transfer of data in the form of 

binary numbers and then "shifts" the data out once every 

clock cycle, hence the name "shift register". It basically 

consists of several single bits "D-Type Data Latches", one 

for each bit (0 or 1) connected together in a serial or daisy-

chain arrangement so that the output from one data latch 

becomes the input of the next latch and so on. The data bits 

may be fed in or out of the register serially, i.e. one after the 

other from either the left or the right direction, or in 
parallel, i.e. all together. The number of individual data 

latches required to make up a single Shift Register is 

determined by the number of bits to be stored with the most 

common being 8-bits wide.  

The Shift Register is used for data storage or data 

movement and are used in calculators or computers to store 

data such as two binary numbers before they are added 

together, or to convert the data from either a serial to 

parallel or parallel to serial format. The individual data 

latches that make up a single shift register are all driven by 

a common clock signal making them synchronous devices.  

Generally, shift registers operate in one of four different 
modes with the basic movement of data through a shift 

register being: 

 Serial-in to Parallel-out - In this serial-in to parallel-

out, the register is loaded with serial data, one bit at a 

time, with the stored data being available in parallel 

form. 

 Serial-in to Serial-out -  In this serial-in to serial-out, 

the register is loaded with the serial data is shifted 

serially "IN" and "OUT" of the register, one bit at a 

time in either a left or right direction under clock 

control.  

 Parallel-in to Serial-out - In this parallel-in to serial-

out, the register is loaded with  the parallel data is 

loaded into the register simultaneously and is shifted 

out of the register serially one bit at a time under clock 

control.  

 Parallel-in to Parallel-out - In this parallel –in to 

parallel-out, the register is loaded with the parallel data 

is loaded simultaneously into the register, and 

transferred together to their respective outputs by the 

same clock pulse.  

 Universal shift registers- Today, high speed bi-
directional "universal" type Shift Registers are 

available as a 4-bit multi-function devices that can be 

used in either serial-to-serial, left shifting, right 

shifting, serial-to-parallel, parallel-to-serial, and as a 

parallel-to-parallel multifunction data register, hence 

the name "Universal". These devices can perform any 

combination of parallel and serial input to output 
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operations but require additional inputs to specify 

desired function and to pre-load and reset the device. 

 

5.1.2 MULTIPLEXERS 
A 2n-to-1 multiplexer sends one of 2n input lines 

to a single output line. A multiplexer has two sets of inputs: 

2n data input lines, n select lines, to pick one of the 2n data 

inputs. The mux output is a single bit, which is one of the 

2n data inputs. A 2n-to-1 multiplexer routes one of 2n input 

lines to a single output line. Just like decoders, muxes are 

common enough to be supplied as stand-alone devices for 
use in modular designs. Muxes can implement arbitrary 

functions. Smaller muxes can be combined to produce 

larger ones. It can add active-low or active-high enable 

inputs.  As always, we use truth tables and Boolean algebra 

to analyze things.  Tune in tomorrow as we start to discuss 

how to build circuits to do arithmetic. 

 

5.1.3 D-FLIP-FLOP  

There are some circuits that are not quite as 

straight forward as the gate circuits.  However, we still need 

to learn about circuits that can store and remember 
information.  They're the kind of circuits that are used in 

computers to store program information - RAM memory.  

The combination of two flip-flops constitutes a D-type flip-

flop.  That's D because the output of the flip-flop is delayed 

by the time of one clock pulse. Set a value for the data and 

pulse the clock ON and OFF.  We’ll find a copy of the data 

appearing at the output on the trailing edge of the clock 

pulse.  Now, if we consider the combination of two flip-

flops as a unit, we have a D flip-flop.  It's called a D flip-

flop because it delays the signal.  The signal appears at the 

output of the circuit delayed by the time of one clock pulse.  

 

5.1.4 GF (2
8
) MULPTIPLIER 

Galois Field Theory (GFT) deals with numbers 

that are binary in nature, have the properties of a 

mathematical ―field,‖ and are finite in scope. Although 

some Galois computations don’t exist in ordinary 

mathematics, many Galois operations match those of 

regular math. Addition (Ex-Or) and multiplication are 

common Galois operations, and logarithms, particularly, are 

handy for checking multiplication results. For over 40 

years, Galois Field multipliers have been used both for 

coding theory and for cryptography. Both areas are 
complex, with similar needs, and both deal with fixed 

symbolic alphabets that neatly fit the extended Galois Field 

model. 

This application note will focus primarily on 

cryptographic applications of GFT, and will present some 

practical design solutions that have been synthesized and 

simulated for ready use. While the basic multiplier structure 

used by the solutions clearly has its roots in the designs of 

Berlekamp and Massey from the 1960s, the specific 

structure used here comes from a more recent paper by 

Johann Großschädl at IAIK (Graz University of 

Technology, Austria). This application note does not delve 
deeply into GFT, although its appendices point out some 

enlightening tutorial material for interested readers. Its goal 

instead is to deliver a series of multiplier solutions and 

verify their correctness and usabilty. The specific results 

and tools presented will then be applicable to other 

multiplier versions of varying lengths. To this end, we  

first present a 4-bit multiplier and its verification. We then 

expand it into an 8-bit multiplier, doing the same, and 

finally into a 163-bit multiplier. The larger multiplier can 

eventually be used as part of a solution for Elliptic Curve 

Cryptography using one of the NIST-recommended curves 

and the NIST chosen irreducible polynomial. A complete 

verification of this larger multiplication is an ordeal, but a 

few examples will be presented to assure readers of its 

validity. 

 

5.1.5 The Finite Field GF(2
8
).  

The case in which n is greater than one is much 

more difficult to describe. In cryptography, one almost 

always takes p to be 2 in this case. This section just treats 

the special case of p = 2 and n = 8, that is. GF(28), because 

this is the field used by the new U.S. Advanced Encryption 

Standard (AES). The AES works primarily with bytes (8 

bits), represented from the right as:  

b7b6b5b4b3b2b1b0. 

The 8-bit elements of the field are regarded as polynomials 

with coefficients in the field Z2:  

    b7x
7
 + b6x

6
 + b5x

5
 + b4x

4
 + b3x

3
 + b2x

2
 + b1x

1
 + b0. 

 

The field elements will be denoted by their 

sequence of bits, using two hex digits. 

 

5.1.6 Multiplication in GF(2
8
) 

Multiplication is this field is much more difficult 

and harder to understand, but it can be implemented very 

efficiently in hardware and software. The first step in 

multiplying two field elements is to multiply their 

corresponding polynomials just as in beginning algebra 

(except that the coefficients are only 0 or 1, and 1 + 1 = 0 

makes the calculation easier, since many terms just drop 
out). The result would be up to a degree 14 polynomial -- 

too big to fit into one byte. A finite field now makes use of 

a fixed degree eight irreducible polynomial (a polynomial 

that cannot be factored into the product of two simpler 

polynomials). For the AES the polynomial used is the 

following (other polynomials could have been used):  

      m(x) = x8 + x4 + x3 + x + 1 = 0x11b (hex). 

The intermediate product of the two polynomials 

must be divided by m(x). The remainder from this division 

is the desired product. This sounds hard, but is easier to do 

by hand than it might seem (though error-prone). To make 
it easier to write the polynomials down, adopt the 

convension that instead of x8 + x4 + x3 + x + 1 just write the 

exponents of each non-zero term. (Remember that terms are 

either zero or have a 1 as coefficient.)  

 

5. GF (2
8
) ADDER 

To add two field elements, just add the 

corresponding polynomial coefficients using addition in Z2. 

Here addition is modulo 2, so that 1 + 1 = 0, and addition, 

subtraction and exclusive-or are all the same. The identity 

element is just zero: 00000000 (in bits) or 0x00 (hex). 
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VI. SIMULATION RESULTS 

 
Fig 4: Multiplexer 

 

 
Fig 5: D flip-flop 

 

 
Fig 6: GF(2^8) ADDITION 

 

 
Fig 7: GF(2^8)) MULTIPLIER 

 

 
Fig 8:  8 - BIT REGISTER 

 

 
Fig 9: Polynomial Evaluation 

 
Fig 10,11: Polynomial Update 

 

 
 

VII. CONCLUSION 
The modified Nielson’s algorithm, which works 

with a different scheduling, takes care of the limited growth 

of the polynomials and shares the common interpolation 

points, for reducing the latency of interpolation. Based on 

the proposed modified Nielson’s algorithm, we have 

derived a low-latency interpolator architecture. An LCC 
decoder using our low-latency interpolator is found to be at 

least 39% more efficient in terms of area-delay product 

over the best of previous works. 
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