
International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2938-2946 ISSN: 2249-6645

www.ijmer.com 2938 | P a g e

Susrutha Babu Sukhavasi
1
, Suparshya Babu Sukhavasi

1

S. R. Sastry K.
2
, M. Aravind Kumar

3
, P. Bosebabu

4
,

G. Roopa Krishna Chandra
5

1Faculty, Department of ECE, K L University, Guntur, AP, India.
2M.Tech -VLSI Student, Department of ECE, K L University, Guntur, AP, India.

3M.Tech -VLSI Student, Padmasri Dr.B.V.Raju Institute of Technology, Medak, A.P, India.
4 Faculty, Department of ECE, Andhra Loyola College Of Eng &Tech ,Vijayawada, AP, India.

5M.Tech - Student, Department of ECE, Lakireddy Bali Reddy College of engineering LBR, Guntur, AP, India

Abstract : This paper represents The algebraic soft-

decoding (ASD) of Reed–Solomon (RS) codes provides

significant coding gain over hard-decision decoding with

polynomial complexity. The low-complexity chase (LCC)

algorithm is proposed for reducing the complexity of
interpolation, which interpolates over 2^n test vectors,

being attractive for VLSI implementation. The interpolation

is simplified in LCC decoding by restricting the multiplicity

to m=1 and replacing the factorization step with Chien’s

search and Forney’s algorithm. In this paper, high-

throughput interpolator architecture for soft-decision

decoding of Reed–Solomon (RS) codes based on low-

complexity chase (LCC) decoding is presented. We have

formulated a modified form of the Nielson’s interpolation

algorithm, using some typical features of LCC decoding.

The proposed algorithm works with a different scheduling,
takes care of the limited growth of the polynomials, and

shares the common interpolation points, for reducing the

latency of interpolation. Based on the proposed modified

Nielson’s algorithm we have derived low-latency

architecture to reduce the overall latency of the whole LCC

decoder. An efficiency is low, in terms of area-delay

product, has been achieved by an LCC decoder, by using

the proposed interpolator architecture, over the best of the

previously reported architectures for an RS(255,239) code

with eight test vectors.

Keyword: RScodes,Guruswami-Sudan algorithm,
Registers,Multiplexers,D-flipflop.

I. INTRODUCTION
2. Interpolation

3. Factorization of bivariate polynomials

It’s being the interpolation and the most

computation-intensive one. Several architectures based on

Nielson’s algorithm and Lee–O’Sullivan algorithm are
found in the literature for the VLSI implementation of

interpolation stage. However, their hardware complexity is

still high. An interpolation architecture for LCC with m=3,

called backward interpolation, is proposed in [9], which

could be considered as the best of the current approaches.

Backward interpolator shares the computation of common

points of the test vectors. These points are ordered in such

way that a pair of adjacent vectors differ only at one point.

Due to this feature, the backward interpolation architecture

involves less area and provides higher speed than its prior

ones.

II. REED SOLOMON SOFTWARE PERFORMANCE
The following data details performance numbers

for a number of specific RS (n, k) implementations for two

general purpose processing architectures and one digital

signal processor. Numbers are provided for both decode in

the presence of no error, as well as decode in the presence

of maximum channel error. Note that correcting errors

requires more processing power than simply validating

blocks, and that the required processing power increases

linearly with the error rate. Typical applications tend to

keep the error rate low such that active correction is not

required. The two digit hexadecimal number in each
column specifies the GF (255) primitive polynomial used to

generate the underlying Galois field.In 1960, Irving Reed

and Gus Solomon published a paper in the Journal of the

Society for Industrial and Applied Mathematics. This paper

described a new class of error-correcting codes that are now

called Reed-Solomon (R-S) codes. These codes have great

power and utility, and are today found in many applications

from compact disc players to deep-space applications. This

article is an attempt to describe the paramount features of

R-S codes and the fundamentals of how they work. Reed-

Solomon codes are non-binary cyclic codes with symbols

made up of m-bit Sequences, where m is any positive
integer having a value greater than 2. R-S (n, k) codes on

m-bit symbols exist for all n and k for which

0 < k < n < 2m + 2

Where k is the number of data symbols being

encoded, and n is the total number of code symbols in the

encoded block. For the most conventional R-S (n, k) code,

(n, k) = (2m - 1, 2m - 1 - 2t)

Where t is the symbol-error correcting capability

of the code, and n - k = 2t is the number of parity symbols.

An extended R-S code can be made up with n = 2m or n =

2m + 1, but not any further.Reed-Solomon codes achieve
the largest possible code minimum distance for any linear

code with the same encoder input and output block lengths.

For non-binary codes, the distance between two code words

is defined (analogous to Hamming distance) as the number

A Primitive Polynomial to Define the Finite Field Modules for High-

Throughput Interpolator to Encode and Decode Of Non Binary

Cyclic Codes

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2938-2946 ISSN: 2249-6645

www.ijmer.com 2939 | P a g e

of symbols in which the sequences differ. For Reed-

Solomon codes, the code minimum distance

dmin = n - k + 1

The code is capable of correcting any combination

of t or fewer errors, where t can be expressed as

 T= [(dmin-1) / 2] = [(n-k) / 2]

where [x] means the largest integer not to exceed

x. Equation illustrates that for the case of R-S codes,

correcting t symbol errors requires no more than 2t parity

symbols. Equation lends itself to the following intuitive

reasoning. One can say that the decoder has n - k redundant
symbols to ―spend,‖ which is twice the amount of

correctable errors. For each error, one redundant symbol is

used to locate the error, and another redundant symbol is

used to find its correct value. The erasure-correcting

capability, ρ, of the code is

 ρ = dmin - 1 = n - k (5)

Simultaneous error-correction and erasure-correction

capability can be expressed as follows:

2α + γ < dmin < n - k (6)

Where α is the number of symbol-error patterns

that can be corrected and γ is the number of symbol erasure
patterns that can be corrected. An advantage of non-binary

codes such as a Reed-Solomon code can be seen by the

following comparison. Consider a binary (n, k) = (7, 3)

code. The entire n-tuple space contains 2n = 27 = 128 n-

tuples, of which 2k = 23 = 8 (or 1/16 of the n-tuples) are

code words. Next, consider a non-binary (n, k) = (7, 3) code

where each symbol is composed of m = 3 bits. The n-tuple

space amounts to 2nm = 221 = 2,097,152 n-tuples, of which

2km = 29 = 512 (or 1/4096 of the n-tuples) are code words.

When dealing with non-binary symbols, each made up of m

bits, only a small fraction (i.e., 2km of the large number

2nm) of possible n-tuples are code words. This fraction
decreases with increasing values of m. The important point

here is that when a small fraction of the n-tuple space is

used for code words, a large dmin can be created. Any

linear code is capable of correcting n - k symbol erasure

patterns if the n – k erased symbols all happen to lie on the

parity symbols. However, R-S codes have the remarkable

property that they are able to correct any set of n - k symbol

erasures within the block. R-S codes can be designed to

have any redundancy. However, the complexity of a high-

speed implementation increases with Reed-Solomon Codes

redundancy. Thus, the most attractive R-S codes have high
code rates (low redundancy).

2.1 REED-SOLOMOERROR PROBABILITY

The Reed-Solomon (R-S) codes are particularly

useful for burst-error correction; that is, they are effective

for channels that have memory. Also, they can be used

efficiently on channels where the set of input symbols is

large. An interesting feature of the R-S code is that as many

as two information symbols can be added to an R-S code of

length n without reducing its minimum distance.

For R-S codes, error probability is an

exponentially decreasing function of block length, n, and
decoding complexity is proportional to a small power of the

block length. The R-S codes are sometimes used in a

concatenated arrangement. In such a System, an inner

convolution decoder first provides some error control by

operating on soft-decision demodulator outputs; the

convolutional decoder then presents hard-decision data to

the outer Reed-Solomon decoder, which further reduces the

probability of error.

 2.2 FINITE FIELDS

In order to understand the encoding and decoding

principles of non binary codes, such as Reed-Solomon (R-

S) codes, it is necessary to venture into the area of finite

fields known as Galois Fields (GF). For any prime number,

p, there exists a finite field denoted GF(p) that contains p

elements. It is possible to extend GF(p) to a field of pm

elements, called an extension field of GF(p), and denoted
by GF(pm), where m is a nonzero positive integer. Note

that GF(pm) contains as a subset the elements of GF(p).

Symbols from the extension field GF(2m) are used in the

construction of Reed-Solomon (R-S) codes. The binary

field GF(2) is a subfield of the extension field GF(2m), in

much the same way as the real number field is a subfield of

the complex number field. Besides the numbers 0 and 1,

there are additional unique elements in the extension field

that will be represented with a new symbol α. Each nonzero

element in GF(2m) can be represented by a power of α. An

infinite set of elements, F, is formed by starting with the
elements {0, 1, α}, and generating additional elementsby

progressively multiplying the last entry by α, which yields

the following:

F = {0, 1, α, α2, …, α j, …} = {0, α0, α1, α2, …, α j, …}

To obtain the finite set of elements of GF(2m)

from F, a condition must be imposed on F so that it may

contain only 2m elements and is closed under

multiplication. The condition that closes the set of field

elements under multiplication is characterized by the

irreducible polynomial shown below:

 α(2m−1) + 1 = 0

or equivalently Using this polynomial constraint, any field
element that has a power equal to or greater than 2m - 1 can

be reduced to an element with a power less than 2m - 1, as

follows:

 α(2m+ n) = α(2m−1) αn+1 = αn+1

2.3 ADDITION IN THE EXTENSION FIELD GF(2M)

Each of the 2m elements of the finite field,

GF(2m), can be represented as a distinct polynomial of

degree m - 1 or less. The degree of a polynomial is the

value of its highest-order exponent. We denote each of the

nonzero elements of GF(2m) as a polynomial, ai (X),
where at least one of the m coefficients of ai (X) is

nonzero. For i = 0,1,2,…,2m - 2,

 αi = ai (X) = ai, 0 + ai, 1 X + ai, 2 X 2 +

… + ai, m - 1 X m - 1

Consider the case of m = 3, where the finite field is denoted

GF(23). the mapping (developed later) of the seven

elements {αi} and the zero element, in terms of the basis

elements {X 0, X 1, X 2} described. Since Equation (10)

indicates that α0 = α7, there are seven nonzero elements or

a total of eight elements in this field. Each row in the

mapping comprises a sequence of binary values

representing the coefficients ai, 0, ai, 1, and ai, 2 in
Equation (14). One of the benefits of using extension field

elements {αi} in place of binary elements is the compact

notation that facilitates the mathematical representation of

nonbinary encoding and decoding processes. Addition of

two elements of the finite field is then defined as the

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2938-2946 ISSN: 2249-6645

www.ijmer.com 2940 | P a g e

modulo-2 sum of each of the polynomial coefficients of like

powers,

 αi + αj = (ai, 0 + aj, 0) + (ai, 1 + aj, 1) X + … +

(ai, m - 1 + aj, m - 1) X m - 1

2.4 APRIMITIVE POLYNOMIAL IS USED TO

DEFINE THE FINITE FIELD

A class of polynomials called primitive

polynomials is of interest because such functions define the

finite fields GF(2m) that in turn are needed to define R-S

codes. The following condition is necessary and sufficient
to guarantee that a polynomial is primitive. An irreducible

polynomial f(X) of degree m is said to be primitive if the

smallest positive integer n for which f(X) divides X n + 1

is n = 2m - 1. Note that the statement A divides B means

that A divided into B yields a nonzero quotient and a zero

remainder. Polynomials will usually be shown low order to

high order. Sometimes, it is convenient to follow the

reverse format.

2.4.1 ENCODER

The Reed-Solomon encoder reads in k data

symbols, computes the n - k parity symbols, and appends

the parity symbols to the k data symbols for a total of n

symbols. The encoder is essentially a 2t tap shift register

where each register is m bits wide. The multiplier

coefficients are the coefficients of the RS generator

polynomial. The general idea is the construction of a
polynomial; the coefficients produced will be symbols such

that the generator polynomial will exactly divide the

data/parity polynomial.

 2.4.2 DECODER

The Reed-Solomon decoder tries to correct errors

and/or erasures by calculating the syndromes for each

codeword. Based upon the syndromes the decoder is able to

determine the number of errors in the received block. If

there are errors present, the decoder tries to find the

locations of the errors using the Berlekamp-Massey
algorithm by creating an error locator polynomial. The

roots of this polynomial are found using the Chien search

algorithm. Using Forney's algorithm, the symbol error

values are found and corrected. For an RS (n, k) code where

n - k = 2T, the decoder can correct up to T symbol errors in

the code word. Given that errors may only be corrected in

units of single symbols (typically 8 data bits), Reed-

Solomon coders work best for correcting burst errors.

2.5 REED-SOLOMON ENCODING

The most conventional form of Reed-Solomon (R-

S) codes in terms of the parameters n, k, t, and any positive
integer m > 2.

(n, k) = (2m - 1, 2m - 1 - 2t) (20)

where n - k = 2t is the number of parity symbols,

and t is the symbol-error correcting capability of the code.

The generating polynomial for an R-S code takes the

following form:

g(X) = g0 + g1 X + g2 X 2 + … + g2t - 1 X 2t - 1 + X 2t

(21)

The degree of the generator polynomial is equal to

the number of parity symbols. R-S codes are a subset of the

Bose, Chaudhuri, and Hocquenghem (BCH) codes; hence,
it should be no surprise that this relationship between the

degree of the generator polynomial and the number of

parity symbols holds, just as for BCH codes. Since the

generator polynomial is of degree 2t, there must be

precisely 2t successive powers of α that are roots of the

polynomial. We designate the roots of

g(X) as α, α2, …, α2t. It is not necessary to start with the

root α; starting with any power of α is possible.

2.6 ENCODING IN SYSTEMATIC FORM

Since R-S codes are cyclic codes, encoding in

systematic form is analogous to the binary encoding
procedure. We can think of shifting a message polynomial,

m(X), into the rightmost k stages of a codeword register

and then appending a parity polynomial, p(X), by placing it

in the leftmost n - k stages. Therefore we multiply m(X) by

X n - k, thereby manipulating the message polynomial

algebraically so that it is right-shifted n - k positions. Next,

we divide X n - k m(X) by the generator polynomial g(X),

which is written in the following form:

X n - k m(X) = q(X) g(X) + p(X)

where q(X) and p(X) are quotient and remainder

polynomials, respectively. As in the binary case, the
remainder is the parity. Equation can also be expressed as

follows:

p(X) = X n - k m(X) modulo g(X)

The resulting codeword polynomial, U(X) can be written

as

 U(X) = p(X) + X n - k m(X)

2.6.1 SYSTEMATIC ENCODING WITH AN (N-K) –

STAGE SHIFT REGISTER
Using circuitry to encode a three-symbol sequence

in systematic form with the (7, 3) R-S code described by
g(X) in the implementation of a linear feedback shift

register (LFSR) circuit. It can easily be verified that the

multiplier terms taken from left to right, correspond to the

coefficients of the polynomial in low order to high order.

This encoding process is the non-binary equivalent of cyclic

encoding. Here, corresponding to the (7, 3) R-S nonzero

code words are made up of 2m - 1 = 7 symbols, and each

symbol is made up of m = 3 bits.

Fig 1: SYSTEMATIC ENCODING WITH LFSR

Here the example is non-binary, so that each stage

in the shift register of Figure holds a 3-bit symbol. In the

case of binary codes, the coefficients labeled g1, g2, and so

on are binary. Therefore, they take on values of 1 or 0,
simply dictating the presence or absence of a connection in

the LFSR. However in Figure 9, since each coefficient is

specified by 3-bits, it can take on one of eight values. The

non-binary operation implemented by the encoder of

Figure, forming code words in a systematic format,

proceeds in the same way as the binary one. The steps can

be described as follows:

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2938-2946 ISSN: 2249-6645

www.ijmer.com 2941 | P a g e

1. Switch 1 is closed during the first k clock cycles to

allow shifting the message symbols into the (n - k)–

stage shift register.

2. Switch 2 is in the down position during the first k clock

cycles in order to allow simultaneous transfer of the

message symbols directly to an output register.

3. After transfer of the kth message symbol to the output

register, switch 1 is opened and switch is moved to the

up position.

4. The remaining (n - k) clock cycles clear the parity

symbols contained in the shift register by moving them
to the output register.

5. The total number of clock cycles is equal to n, and the

contents of the output register is the codeword

polynomial p(X) + X n - k m(X), where p(X)

represents the parity symbols and m(X) the message

symbols in polynomial form.

2.7 REED-SOLOMON DECODING

Earlier, a test message encoded in systematic form

using a (7, 3) R-S code resulted in a codeword polynomial

described. Now, assume that during transmission this
codeword becomes corrupted so that two symbols are

received in error. This number of errors corresponds to the

maximum error-correcting capability of the code. For this

seven-symbol codeword example, the error pattern, e(X),

can be described in polynomial form as follows:

e 𝑥 = en

6

𝑛=0

Xn

For this example, let the double-symbol error be such that

 one parity symbol has been corrupted with a 1-bit

error (seen as α2), and one data symbol has been corrupted

with a 3-bit error (seen as α5). The received corrupted-

codeword polynomial, r(X), is then represented by the sum

of the transmitted-codeword polynomial and the error-

pattern polynomial as follows:

r(X) = U(X) + e(X)

Following Equation, we add U(X)

R(x) =(100)+(001)x+(011)x2+(100)x3+(101)x4+

(110)x5+(111)x6

In this example, there are four unknowns—two

error locations and two error values. Notice an important

difference between the nonbinary decoding of r(X) that we

are faced with in Equation and binary decoding; in binary

decoding, the decoder only needs to find the error locations.
Knowledge that there is an error at a particular location

dictates that the bit must be ―flipped‖ from 1 to 0 or vice

versa. But here, the non-binary symbols require that we not

only learn the error locations, but also determine the correct

symbol values at those locations. Since there are four

unknowns in this example, four equations are required for

their solution.

2.7.1 ERROR LOCATION

Suppose there are ν errors in the codeword at

location X j1 , X j2 , ... , X jν . Then, the error polynomial

e(X) shown
E(x) = ej1x

j1+ ej2x
j2+….+ ejvx

jv

The indices 1, 2, … ν refer to the first, second, …,

νth errors, and the index j refers to the error location. To

correct the corrupted codeword, each error value e jl and its

location X jl , where l = 1, 2, ..., ν, must be determined. We

define an error locator number as jl l β = α . Next, we obtain

the n - k = 2t syndrome symbols by substituting αi into the

received polynomial for i = 1, 2, … 2t

There are 2t unknowns (t error values and t

locations), and 2t simultaneous equations. However, these

2t simultaneous equations cannot be solved in the usual

way because they are nonlinear (as some of the unknowns
have exponents). Any technique that solves this system of

equations is known as a Reed-Solomon decoding algorithm.

III. LOW-COMPLEXITY CHASE DECODING OF RS

CODES
Reed Solomon codes are error-correcting codes

that have found wide-ranging applications throughout the
fields of digital communication and storage. Some of which

include:

 Storage Devices (hard disks, compact disks, DVD,

barcodes, etc.)

 Wireless Communication (mobile phones, microwave

links, etc.)

 Digital Television

 Broadband Modems (ADSL, xDSL, etc.)

 Deep Space and Satellite Communications Networks

(CCSDS)

Fig 2: Applications of RS code

RS codes are systematic linear block codes,

residing in a subset of the BCH codes called non-binary

BCH. It is block because the original message is split into

fixed length blocks and each block is split into m bit

symbols; linear because each m bit symbol is a valid

symbol; and systematic because the transmitted information

contains the original data with extra CRC or 'parity' bits

appended. These codes are specified as RS (n, k), with m

bit symbols. This means that the encoder takes k data

symbols of m bits each, appends n - k parity symbols, and
produces a code word of n symbols (each of m bits).

Fig 3: Modified REED SOLMON code

Reed Solomon codes are based on a specialized

area of mathematics known as Galois fields (a.k.a. finite

fields). These fields are of the form GF (p^m), where p is
prime. RS makes use of Galois fields of the form GF (2^m),

where elements of the field can be represented by m binary

bits. Hence, RS codes of the form RS (2^8) lend themselves

well to digital communication.Reed-Solomon codes are

powerful error-correcting codes that can be found in a wide

variety ofdigital communications systems, from digital

media to wireless communications and deep-spaceprobes.

The ubiquitous nature of these codes continues to fuel

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2938-2946 ISSN: 2249-6645

www.ijmer.com 2942 | P a g e

research into decoding algorithmssome forty years after

their introduction. Reed-Solomon codes have been

employed in a wide spectrum of digital communications

systems because they provide powerful error correction

with only a small number of overhead symbols. Reed-

Solomon codewords consist of non-binary symbols and

therefore the correction of a single symbol could result in

the correction of more than one of the constituent bits. For

this reason, Reed-Solomon codes are well suited to the

correction of burst errors.Classical decoders for Reed-

Solomon codes of length n and dimension k can correct up
to t = bdmin/2c errors where dmin = (n−k+1) is the

minimum distance of the code. Recently, a new class of list

decoding algorithms has been introduced that can

sometimes correct an even greater number of errors. The

list decoding problem is to find the set of codewords at a

Hamming distance of t0 from the received word. If t0 >

dmin/2 there might not be a unique codeword so the

decoder returns a list of candidate codewords. The

Guruswami-Sudan (GS) list decoding algorithm has t0 as

large as n – p nk errors. To improve the error-correction

capability of a decoder even further, the decoder should
take advantage of the soft reliability information available

from the channel. Soft-decision decoders can provide an

asymptotic gain of 2-3 dB on Gaussian channels and 10 dB

or more on Rayleigh fading channels. Traditional hard-

decision Reed-Solomon decoding algorithms are efficient

because they are algebraic; that is, they exploit the

underlying algebraic structure of the code to generate a

system of equations that is solved using finite field

arithmetic. However, an algebraic decoder based on finite

field arithmetic does not appear to be compatible with the

real-valued, soft information available from the channel and

therefore it has been a research challenge to develop an
algebraic soft-decision Reed-Solomon decoder. Koetter

and Vardy have recently proposed an algebraic soft

decision decoding algorithm by extending the list decoder

of Guruswami and Sudan to include a method for

converting soft information into algebraic conditions. The

Koetter-Vardy (KV) algorithm can achieve up to about 4

dB of coding gain at a frame-error-rate (FER) of 10−3 on a

Gaussian noise channel (with a practical range of 1–1.5 dB)

and gains of 2–7 dB on a Rayleigh fading channel.The

Koetter-Vardy soft-decision decoding procedure shows a

lot of promise from the point of view of error correcting
performance. At a first glance, the algorithm seems to be

quite computationally complex and not straightforward to

implement in VLSI. This paper aims to introduce

techniques that reduce the complexity of interpolation-

based decoders to the point where an efficient VLSI

implementation is possible. A review of the GS and KV

list-decoding algorithms. The techniques for significantly

reducing the complexity and memory requirements of

interpolation-based decoders. A VLSI architecture is then

developed that reduces the complexity of evaluating the

Hasse derivative, one of the main tasks in interpolation.

IV. INTERPOLATION-BASED LIST DECODING

ALGORITHM
We want to transmit a message f. The bits of the

message can be grouped into log2(q)- bit symbols chosen

from the finite field with q elements, GF(q). An (n, k)

Reed-Solomon code over GF(q) represents the k-symbol

message, f = (f0, f1, f2, . . . , fk−1) by an n-symbol

codeword, c = (c0, c1, c2, . . . , ck−1, . . . , cn−1), where n >

k and usually n = q − 1. The k symbols of the message f can

be considered to be the coefficients of the up to degree (k −

1) univariate message polynomial:

 f(x) = f0 + f1x + f2x2 + . . . + fk−1xk−1.

We use the classical view of Reed-Solomon codes

taken from the original definition, with this evaluation map

encoding method, a codeword is formed by evaluating the

message polynomial f(x) at n elements of GF(q). If the set
of evaluation elements is X = {x0, x1, . . . , xn−1}, the

codeword c is:

 c = (f(x0), f(x1), . . . , f(xn−1)), xi E X.

We will always assume that n = q −1 and the set of

evaluation elements X is the set of nonzero elements of

GF(q):

X4={x0, x1, x2, . . . , xn−1}4={1, _, _2, . . . , _n−1}

where Xn is a primitive n’th root of unity. The

evaluation map encoding method is useful because, it

provides insight leading to interpolation-based decoding
algorithms.

Guruswami-Sudan algorithm

An interpolation-based decoder takes the point of

view that a codeword is a message polynomial evaluated at

points in a finite field and uses polynomial interpolation to

try to reconstruct that polynomial. The Guruswami-Sudan

(GS) algorithm is an interpolation-based list decoder for

Reed- Solomon codes. To describe the algorithm, we will

first need to review some notation and facts about bivariate

polynomials, which are the basic data structures in the

algorithm. Consider the bivariate polynomial with
coefficients chosen from a finite field:

Consider the received word y = c + e, where e is

an error vector with components drawn from GF(q). Since

each component of c was generated by evaluating f(x) at a

unique value of x 2 X, a unique xi can be associated with

each received yi 2 GF(q) to form the list of points,

 L = {(x0, y0), (x1, y1), . . . , (xn−1, yn−1)}.

If there is no noise (e = 0), then yi = f(xi), 0 _ i <

n, and a bivariate polynomial, P(x, y) = y−f(x), passes

through all the points in L with a multiplicity of one. This

suggests that an interpolation-based approach can be used

to decode Reed-Solomon codes. In the presence of noise (e

6= 0), the interpolation polynomial will pass through some

points that are not part of the codeword. The GS algorithm

ensures that under certain conditions, the codeword

polynomial ―lives inside‖ the interpolation polynomial [2,

3]. The GS algorithm is an interpolation-based list decoder
with two main steps:

1. Interpolation Step: Given the set of points L and a

positive integer m, compute P(x, y) of GF(q)[x, y]\{0} of

minimal (1, k −1)-weighted degree that passes through all

the points in L with multiplicity at least m.

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2938-2946 ISSN: 2249-6645

www.ijmer.com 2943 | P a g e

2. Factorization Step: Given the interpolation

polynomial P(x, y), identify all the factors of P(x, y) of the

form y − f(x) with deg f(x) < k. The output of the algorithm

is a list of the code words that correspond to these factors.

A complete factorization of P(x, y) is not necessary since

we are just looking for linear y-roots of degree < k. An

appropriate root-finding algorithm is given. The

multiplicity, m, functions as a user-selectable complexity

parameter. The error-correcting ability of the GS algorithm

increases as the value of m increases. Unfortunately, so

does the decoding complexity. Primitive polynomials are of
interest here because they are used to define the Galois

field.

 A popular choice for a primitive polynomial is:

 p(x) = x8 + x7 + x2 + x1 + 1

This is also known as the 0x87 polynomial,

corresponding to the binary representation of the

polynomial's coefficients excluding the MSB (i.e.

10000111). This specific polynomial is used in the CCSDS
specification for a RS (255, 223). In GF (2^8) there are 16

possible primitive polynomials.

The VOCAL implementation has the ability to

perform all combinations of RS (n, k) [n = 255, and 0 < k <

n], for any of the 16 possible Galois fields, including the

0x87 field used by CCSDS. Additionally, the VOCAL RS

modules can use any arbitrary generator polynomial for the

calculation of the parity symbols.

V. REED SOLOMON IMPLEMENTATIONS
The implementations below can be customized to

work with other RS (n, k) codes to yield similar results in

performance. Optimized Software Implementation: The

pure software implementation is dominated

computationally by multiplication over a finite field (Galois

Field multiplication). The encoder requires 71,181 cycles

per codeword on a MIPS32 processor and the decoder

requires 66,045 cycles. Scalar GF Multiply Support: This is

the simplest form of VOCAL’s hardware acceleration. The

Scalar GF Multiply Support extends the capabilities of the
MIPS32 processor by taking advantage of MIPS

Technologies CorExtend capability to decrease the number

of cycles to 23,305 cycles to encode and 9,174 cycles per

codeword to decode on the MIPS32 processor.SIMD GF

Multiply Support: The SIMD GF Multiply Support requires

128 bytes of local ROM Memory, but increases the

performance to 3,918 cycles per megabit to encode and

3,078 cycles per codeword to decode. RS Encode Kernel.

The RS Encode Kernel uses 1024 bytes of local ROM

memory to encode. The number of cycles to process a

codeword on a MIPS32 CPU falls to 2,702 cycles for
encoding and decoding only consumes 828 cycles with this

implementation.

5.1 METHODOLOGIES

Methodologies are the principles and explanations

of High-Throughput Interpolator Architecture for Low-

Complexity Chase Decoding of RS Codes. And here we

have Five types of modules are used.

MODULES

1. Registers

2. Multiplexers

3. D-flipflop

4. Gf(2^8) multiplier

5. Gf(2^8) adder

6. Polynomial Evaluation

7. Polynomial update

MODULE DESCRIPTIONS

5.1.1 REGISTERS

Actual definition of Register is ―a combinational

of flip-flops‖. Flip-flops are used as data storage elements.

Such data storage can be used for storage of computer
science, and such a circuit is described as sequential logic.

Shift Register is another type of sequential logic circuit

that is used for the storage or transfer of data in the form of

binary numbers and then "shifts" the data out once every

clock cycle, hence the name "shift register". It basically

consists of several single bits "D-Type Data Latches", one

for each bit (0 or 1) connected together in a serial or daisy-

chain arrangement so that the output from one data latch

becomes the input of the next latch and so on. The data bits

may be fed in or out of the register serially, i.e. one after the

other from either the left or the right direction, or in
parallel, i.e. all together. The number of individual data

latches required to make up a single Shift Register is

determined by the number of bits to be stored with the most

common being 8-bits wide.

The Shift Register is used for data storage or data

movement and are used in calculators or computers to store

data such as two binary numbers before they are added

together, or to convert the data from either a serial to

parallel or parallel to serial format. The individual data

latches that make up a single shift register are all driven by

a common clock signal making them synchronous devices.

Generally, shift registers operate in one of four different
modes with the basic movement of data through a shift

register being:

 Serial-in to Parallel-out - In this serial-in to parallel-

out, the register is loaded with serial data, one bit at a

time, with the stored data being available in parallel

form.

 Serial-in to Serial-out - In this serial-in to serial-out,

the register is loaded with the serial data is shifted

serially "IN" and "OUT" of the register, one bit at a

time in either a left or right direction under clock

control.

 Parallel-in to Serial-out - In this parallel-in to serial-

out, the register is loaded with the parallel data is

loaded into the register simultaneously and is shifted

out of the register serially one bit at a time under clock

control.

 Parallel-in to Parallel-out - In this parallel –in to

parallel-out, the register is loaded with the parallel data

is loaded simultaneously into the register, and

transferred together to their respective outputs by the

same clock pulse.

 Universal shift registers- Today, high speed bi-
directional "universal" type Shift Registers are

available as a 4-bit multi-function devices that can be

used in either serial-to-serial, left shifting, right

shifting, serial-to-parallel, parallel-to-serial, and as a

parallel-to-parallel multifunction data register, hence

the name "Universal". These devices can perform any

combination of parallel and serial input to output

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2938-2946 ISSN: 2249-6645

www.ijmer.com 2944 | P a g e

operations but require additional inputs to specify

desired function and to pre-load and reset the device.

5.1.2 MULTIPLEXERS
A 2n-to-1 multiplexer sends one of 2n input lines

to a single output line. A multiplexer has two sets of inputs:

2n data input lines, n select lines, to pick one of the 2n data

inputs. The mux output is a single bit, which is one of the

2n data inputs. A 2n-to-1 multiplexer routes one of 2n input

lines to a single output line. Just like decoders, muxes are

common enough to be supplied as stand-alone devices for
use in modular designs. Muxes can implement arbitrary

functions. Smaller muxes can be combined to produce

larger ones. It can add active-low or active-high enable

inputs. As always, we use truth tables and Boolean algebra

to analyze things. Tune in tomorrow as we start to discuss

how to build circuits to do arithmetic.

5.1.3 D-FLIP-FLOP

There are some circuits that are not quite as

straight forward as the gate circuits. However, we still need

to learn about circuits that can store and remember
information. They're the kind of circuits that are used in

computers to store program information - RAM memory.

The combination of two flip-flops constitutes a D-type flip-

flop. That's D because the output of the flip-flop is delayed

by the time of one clock pulse. Set a value for the data and

pulse the clock ON and OFF. We’ll find a copy of the data

appearing at the output on the trailing edge of the clock

pulse. Now, if we consider the combination of two flip-

flops as a unit, we have a D flip-flop. It's called a D flip-

flop because it delays the signal. The signal appears at the

output of the circuit delayed by the time of one clock pulse.

5.1.4 GF (2
8
) MULPTIPLIER

Galois Field Theory (GFT) deals with numbers

that are binary in nature, have the properties of a

mathematical ―field,‖ and are finite in scope. Although

some Galois computations don’t exist in ordinary

mathematics, many Galois operations match those of

regular math. Addition (Ex-Or) and multiplication are

common Galois operations, and logarithms, particularly, are

handy for checking multiplication results. For over 40

years, Galois Field multipliers have been used both for

coding theory and for cryptography. Both areas are
complex, with similar needs, and both deal with fixed

symbolic alphabets that neatly fit the extended Galois Field

model.

This application note will focus primarily on

cryptographic applications of GFT, and will present some

practical design solutions that have been synthesized and

simulated for ready use. While the basic multiplier structure

used by the solutions clearly has its roots in the designs of

Berlekamp and Massey from the 1960s, the specific

structure used here comes from a more recent paper by

Johann Großschädl at IAIK (Graz University of

Technology, Austria). This application note does not delve
deeply into GFT, although its appendices point out some

enlightening tutorial material for interested readers. Its goal

instead is to deliver a series of multiplier solutions and

verify their correctness and usabilty. The specific results

and tools presented will then be applicable to other

multiplier versions of varying lengths. To this end, we

first present a 4-bit multiplier and its verification. We then

expand it into an 8-bit multiplier, doing the same, and

finally into a 163-bit multiplier. The larger multiplier can

eventually be used as part of a solution for Elliptic Curve

Cryptography using one of the NIST-recommended curves

and the NIST chosen irreducible polynomial. A complete

verification of this larger multiplication is an ordeal, but a

few examples will be presented to assure readers of its

validity.

5.1.5 The Finite Field GF(2
8
).

The case in which n is greater than one is much

more difficult to describe. In cryptography, one almost

always takes p to be 2 in this case. This section just treats

the special case of p = 2 and n = 8, that is. GF(28), because

this is the field used by the new U.S. Advanced Encryption

Standard (AES). The AES works primarily with bytes (8

bits), represented from the right as:

b7b6b5b4b3b2b1b0.

The 8-bit elements of the field are regarded as polynomials

with coefficients in the field Z2:

 b7x
7
 + b6x

6
 + b5x

5
 + b4x

4
 + b3x

3
 + b2x

2
 + b1x

1
 + b0.

The field elements will be denoted by their

sequence of bits, using two hex digits.

5.1.6 Multiplication in GF(2
8
)

Multiplication is this field is much more difficult

and harder to understand, but it can be implemented very

efficiently in hardware and software. The first step in

multiplying two field elements is to multiply their

corresponding polynomials just as in beginning algebra

(except that the coefficients are only 0 or 1, and 1 + 1 = 0

makes the calculation easier, since many terms just drop
out). The result would be up to a degree 14 polynomial --

too big to fit into one byte. A finite field now makes use of

a fixed degree eight irreducible polynomial (a polynomial

that cannot be factored into the product of two simpler

polynomials). For the AES the polynomial used is the

following (other polynomials could have been used):

 m(x) = x8 + x4 + x3 + x + 1 = 0x11b (hex).

The intermediate product of the two polynomials

must be divided by m(x). The remainder from this division

is the desired product. This sounds hard, but is easier to do

by hand than it might seem (though error-prone). To make
it easier to write the polynomials down, adopt the

convension that instead of x8 + x4 + x3 + x + 1 just write the

exponents of each non-zero term. (Remember that terms are

either zero or have a 1 as coefficient.)

5. GF (2
8
) ADDER

To add two field elements, just add the

corresponding polynomial coefficients using addition in Z2.

Here addition is modulo 2, so that 1 + 1 = 0, and addition,

subtraction and exclusive-or are all the same. The identity

element is just zero: 00000000 (in bits) or 0x00 (hex).

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2938-2946 ISSN: 2249-6645

www.ijmer.com 2945 | P a g e

VI. SIMULATION RESULTS

Fig 4: Multiplexer

Fig 5: D flip-flop

Fig 6: GF(2^8) ADDITION

Fig 7: GF(2^8)) MULTIPLIER

Fig 8: 8 - BIT REGISTER

Fig 9: Polynomial Evaluation

Fig 10,11: Polynomial Update

VII. CONCLUSION
The modified Nielson’s algorithm, which works

with a different scheduling, takes care of the limited growth

of the polynomials and shares the common interpolation

points, for reducing the latency of interpolation. Based on

the proposed modified Nielson’s algorithm, we have

derived a low-latency interpolator architecture. An LCC
decoder using our low-latency interpolator is found to be at

least 39% more efficient in terms of area-delay product

over the best of previous works.

REFERENCES
[1] R. Koetter and A. Vardy, ―Algebraic soft-decision

decoding of Reed–Solomon codes,‖ IEEE Trans. Inf.

Theory, vol. 49, no. 11, pp. 2809–2825, Nov. 2003.

[2] A. Ahmed, N. R. Shanbhag, and R. Koetter, ―An
architectural comparision of Reed–Solomon soft-

decoding algorithm,‖ Signals, Syst. Comput., pp.

912–916, 2006.

[3] W. J. Gross, F. R. Kschischang, R. Koetter, and P. G.

Gulak, ―Architecture and implementation of an

interpolation processor for soft-decision Reed–

Solomon decoding,‖ IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 15, no. 3, pp. 309–318,

Mar. 2007.

[4] X. Zhang, ―Reduced complexity interpolation

architecture for soft-decision Reed–Solomon

decoding,‖ IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 14, no. 10, pp. 1156–1161, Oct.

2006.

[5] Z. Wang and J. Ma, ―High-speed interpolation

architecture for softdecision decoding of Reed–

Solomon codes,‖ IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 14, no. 9, pp. 937–950,

Sep. 2006.

[6] J. Zhu and X. Zhang, ―Efficient VLSI architecture

for soft-decision decoding of Reed–Solomon codes,‖

IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55,

no. 10, pp. 3050–3062, Nov. 2008.
[7] J. Bellorado and A. Kavcic, ―A low-complexity

method for Chase-type decoding of Reed–Solomon

codes,‖ Proc. ISIT, pp. 2037–2041, Jul. 2006.

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2938-2946 ISSN: 2249-6645

www.ijmer.com 2946 | P a g e

[8] X. Zhang and J. Zhu, ―High-throughput interpolation

architecture for algebraic soft-decision Reed–

Solomon decoding,‖ IEEE Trans. Circuits Syst. I,

Reg. Papers, vol. 57, no. 3, pp. 581–591, Mar. 2010.

[9] J. Zhu, X. Zhang, and Z. Wang, ―Backward

interpolation architecture for algebraic soft-decision

Reed–Solomon decoding,‖ IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 17, no. 11, pp. 1602–

1615, 2009.

[10] T. K. Moon, Error Correction Coding: Mathematical

Methods and Algorithms. Hoboken, NJ: Wiley,
2004.

[11] W. J. Gross, F. R. Kschischang, R. Koetter, and P. G.

Gulak, ―A VLSI architecture for interpolation-based

in soft-decision list decoding of Reed–Solomon

decoders,‖ J. VLSI Signal Process., vol. 39, no. 1–2,

pp. 93–111, 2005.

[12] F.Parvaresh and A. Vardy, ―Multiplicity assignments

for algebraic soft-decoding of Reed–Solomon

codes,‖ in Proc. ISIT, 2003, pp. 205–205.

[13] X. Zhang, ―High-speed VLSI architecture for low-

complexity Chase soft-decision Reed–Solomon
decoding,‖ in Proc. Inf. Theory Applic. Workshop,

San Diego, CA, Feb. 2009.

[14] J. Ma, A.Vardy, and Z.Wang, ―Reencoder design for

soft-decision decoding of an (255,239) Reed–

Solomon code,‖ in Proc. IEEE Int. Symp. Circuits

Syst., Island of Kos, Greece, May 2006, pp. 3550–

3553.

Authors

 S.Susrutha Babu was born in India, A.P. He
received the B.Tech degree from JNTU, A.P, and M.Tech

degree from SRM University, Chennai, Tamil Nadu, India

in 2008 and 2010 respectively. He worked as Assistant

Professor in Electronics Engineering in Bapatla

Engineering College for academic year 2010-2011 and

from 2011 to till date working in K L University. He is a

member of Indian Society for Technical Education and
International Association of Engineers. His research

interests include antennas, FPGA Implementation, Low

Power Design and wireless communications and Digital

VLSI. He has published articles in various international

journals and Conference in IEEE.

 S.Suparshya Babu was born in India, A.P.
He received the B.Tech degree from JNTU, A.P, and

M.Tech degree from SRM University, Chennai, Tamil

Nadu, India in 2008 and 2010 respectively. He worked as

Assistant Professor in Electronics Engineering in Bapatla

Engineering College for academic year 2010-2011 and

from 2011 to till date working in K L University. He is a

member of Indian Society for Technical Education and

International Association of Engineers. His research

interests include antennas, FPGA Implementation, Low

Power Design and wireless communications and Robotics.
He has published articles in various international journals

and Conference in IEEE

 S R Sastry Kalavakolanu was born in

A.P,India. He received the B.Tech degree in Electronics &

communications Engineering from Jawaharlal Nehru

Technological University in 2010. Presently he is pursuing

M.Tech VLSI Design in KL University. His research

interests include Low Power VLSI Design. He has

undergone 3 International Journals and 1 publishment in

IEEE.

 M.Aravind Kumar was born in A.P,India
He received his B.Tech degree in Electronics and

Communication Engineering from S.V.H college of

Engineering and Technology in the year 2005. He is

presently pursuing masters in VLSI system design (4th

semester) at Padmasri Dr.B.V.Raju Institute of

Technology, Medak(dst), A.P.India.

P.Bose Babu was born in A.P,India, He
Completed M.Tech in VLSI system Design from MVGR

COLLEGE OF ENGG.&TECH, Vizianagaram in 2011 and
B.Tech from QIS College of engineering, in 2009 in

Electronics &Communication engineering. Presently he is

Working as Asst.Professor in ANDHRA LOYOLA college

of Engg.& Technology, Vijayawada,A.P,India.

 G.Roopa Krishna Chandra was born in
A.P,India He received his B.Tech degree in Electronics and

Communication Engineering from Sri Sarathi Institute of

Engineering and Technology year 2009. He has completed

M.Tech in Lakireddy Bali Reddy College of engineering in

2012. His Research areas are Adaptive Signal Processing,

Embedded Systems.

