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I. Introduction 
In the design of various engineering structures, namely the construction of facilities, aircraft, missile, ship, etc. - there are 

problems of complex configuration (not rectangular plate shape, with cut-outs, multiply, etc.) lamellar structural elements 

calculation and optimization. The mathematical complexity of the calculation of these arbitrary shape plate elements, 

especially their optimization, resulted in a significant research and publications backlog on these issues from the calculation 

and optimization of the "tra 

 

II. Statement of the Problem 
The problem of engineering design optimizing will be put as mathematical programming problem: it is necessary to 

determine the vector Х(х1, х2,…, хn) optimized parameters ),1( nixi  , giving the objective function F(x) extreme (for 

definiteness, we take min), keeping restrictions on the parameters аi ix b i, ),1( ni 
 
and functional limitations fj 

(x) 0  ),1( mj  . This problem can be written 

                            F(X) min ,  

                         fj(X)0   ),1( mj  ,                                                           (1) 

                             ai x   bi  ),1( ni  . 

We shall consider equation (1) in details. The most commonly accepted  parameters to be optimized in the structural 

elements are geometric (plate thickness h, curvature radius  R1, external and internal edges, cutouts, etc.) and physical 

(elastic modulus Е, etc.). The lower аi and upper bi meanings of xi limits of parameters are defined on the basis of design and  

technological, operational, etc. requirements. For the objective function F(X) the most commonly accepted parameters are: 

weight, materials consumption, the cost of construction. 

The main functional constraints fj(X)0 ),1( mj   for engineering structures, subjected to various external influences, 

optimization, are the following. 

 

1. Stress state  restrictions : 

max ( )
экв (Х)   

 ][            (ψ =1,n).                   (2 

Here
 


   is  the  number of variants of the design impact; max ( )
eq (Х) - the maximum equivalent structural stress, 

defined according to the accepted hypothesis, or theory of strength, with   - м version of the impact,    - the 

allowable stress for the material of construction in the - m option exposure. 
To  the canonical form (1) restrictions (2) come  as follows: 

F1(X) = max  ( )
eq (Х) -      0. 

 

2. Deformed state  restrictions : 

max u  ( ) (X)   [u] , 

where   max u ( )(X) - the maximum the surface structure displacement  with m -option impact,  u   - allowable 

surface structure  displacement. 

In the canonical form: 

F2(X) = max u( ) (X)  -  u     0. 
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3. Stability conditions: 

Р    Рcr, 

where Р - compressive force with  -effect, Рcr - the critical force on the structure. 

In the canonical form: 

 F 3(X) = P - Pc 0. 

4. Restrictions on the natural oscillations frequency. The variable (periodic) loads activity at a certain frequency 

demands to analyze natural frequency constraints : 

min wi
( ) (X)   w       (i = 1,2,…), 

where the  min{wi
( ) (X)} is the lowest natural  -х oscillation  frequency, w   -the lowest  allowed natural  -х 

oscillation  frequency, appointed as the calculated value of the compelled 
 
vibrations. 

In the canonical form: 

 F4(X)=[w]  -min{wi
( )(X)}  0 

 

5.  Mechanical vibrations amplitude constraints: 

a0
( )(X,wi)   [a0(wi) 

 ], 

where a0
( )(X,wi) is the maximum forced   x- oscillations amplitude  with  the wi frequency; and   [a0(wi) 

 ]  is  the  

permissible amplitude. 

The  above  mentioned restrictions are most common in the structures ‘ optimization, but the certain structures optimization 

solving tasks may require additional structural, technological, operational and other constraints. 

Problem (1)  of complex configuration structures  engineering  optimization is non-linear  programming problem, which has 

a number of specific  features. First, the calculation of the objective function (weight, cost) needs much less time than to 

check the restrictions, which require the construction calculation direct task solving, Second, the global minimum will 

always be at a border or at their junction, otherwise we will have a stockpile of material, that can be removed without 

violating the conditions of strength, stiffness, stability, etc. Third, the form of the (Х), u(Х), Рc(Х) etc. functions are a 

priori unknown and can only be determined numerically. Thus, to solve the problem (1) we shall apply the algorithms 

described in [2-15] taking into account the above features. The algorithm has high convergence speed and reliability. 

 

III. Calculation  methods 
Let us consider the methods for solving the direct problem of calculation. 

It is known that the equations of equilibrium, fluctuations and the stability of anisotropic plates, according to the moments 

are [1]: 
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Here, W- plate deflection, M1, M12, M2 - the bending and tensional moments,  m =  h g,   - the  volume weight  per  

unit, g - plate gravity  acceleration, h - thickness. 

Relations for the M1, M12, M2, when the plate is isotropic, orthotropic and anisotropic, are given in [1]. 

Substituting in (3), (4) the ratio of M1, M12, M2, when the plate is isotropic, orthotropic, or in other cases of anisotropy, it is 

possible to obtain the corresponding equations. These equations are given in many textbooks on the theory of elasticity [1-2]. 

Equations (3), (4) are supplied with the boundary conditions, and equation (5) –with both boundary and initial conditions. 

Here are the types of encountered boundary conditions frequencies [1]: 
 

a) rigidly clamped-edge 

W 0Г г = 0, 0



Г

n

W

 
b) free-simply supported edge 

W 0Г , 0)sinsincoscos( 2

212

2

1  ГГn MMMM   

where )^( oxn  and )^( oyn  are  the angles  between  the  normals, relatively the axis Ox, Oy; 
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c)  the  free edge 

Mn
0Г

,  0)( 



 Гnn M

S
  

Where   coscos 21 MMn  , ).cos(coscoscos)( 22

1212   MMMM  

In addition, there are possible combinations of these boundary conditions, depending on  the plates edges fixing method. 

The initial conditions for equations (5) have the form 

),(),,( 00
yxWtyxW tt  ,    ),(),,( 0

0
yxWtyxW ti







 . 

The formation of the matrix to solve the above problems is carried out by V.L.Rvachev‘s   R function [12]  and  Bubnov-

Galerkin ‘s [3-4]  method s  combination. 

It should be noted that the direct application of the Bubnov-Galerkin method to solve equations (3), (4), (5) leads to 

computational difficulties. In this work further for the formation of resolving equations  elements we shall  use the method 

proposed in [12]. 

Here the application of the R – functions method is associated with the coordinate sequences construction, that will  satisfy 

the boundary conditions without any approximations. 

Coordinate sequences that satisfy the boundary conditions can be represented as an expansion 


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11

),()(),()(    ,                                           (6) 

where Ti (t) are unknown function of time, to be determined;{Wi(x,y)} - a complete, linearly independent system of 

functions, which we will  build, using  V.L.Rvachev’s   R - functions method [12]. 

Note that in the case of static’s in the representation (5) instead of Ti(t) function the unknown coefficients  Ci will occure. 

Substituting (6)  to (3) - (5) and performing the usual procedure of the Bubnov-Galerkin method, we obtain the following 

equation: 

           AC=B,                                                                                              (7) 

A- B=0,                                                                                                  (8) 

FATTM 


,                                                                                             (9) 
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

 TtT  , 

where 

 ,
1

1









 


dWq
S

bb iij  ,
1









 


df
S

a ijij A= 

B=  ,
1









 


d
S

b ijij     ,
1

2









 


dWq
S

fF ii  

 ,
1









 


dWmW
S

mM jiij   )()0(,)()0( 02

1

01

1 tTTtTT 


    

,
1

)( 001









 


dWW
S

tT i ,
1

)( 002









 




dWW
S

tT i

yx

W

yx

W

y

W

x

W

y

W

x

W

y

W

x

W
f

jijiijii
ij







































22

2

2

2

2

2

2

2

2

2

2

2

2

)()(   

i

j

y

j

xy

j

xij W
y

W

yx

W

x

W
)(

2

22

2

2














  , 

To solve the system of equations (7) Gaussian elimination or the method of least squares and other methods 

depending on the properties of the matrix are applied. To determine the critical load the QL – method  is  applied. 

We find the solution of equation (8) under condition (9) with the help of a variety of numerical methods: for example, by the 

central difference method or the Newmark method, or  the method of quadrature sums or,others [4]. 

It should be noted that in  the formation of the matrix, computation of the coordinate functions and their  the  n-th  order 

derivatives’ values, is  carried out by the card  operations [5, 12]. Here the integrals are computed by the n-point Gauss 

formula [4]. 
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The above-described numerical  algorithm  allows  to optimize the plate-like structure s of  both constant and variable 

thickness. 

 
Thus, the computational algorithm of plate structures  optimization consists of  the following steps: 

1. Objective function formation. 

2. Functional limitations formation. 

3. The parameters restrictions  formation. 

4. The direct calculation. 

5. Strength, stiffness, stability and  other  conditions checking. 

 

In its  turn, the direct phase calculation  consists of: 

- Constructing a sequence of coordinate functions, satisfying the boundary conditions of the problem; 

- The  solving  equation  matrix elements formation ;  

- The equation   calculation.  
It should be noted that the resolving equations can be algebraic or differential, depending on the problems considered in the 

static or dynamic formulation. 

As mentioned above, the problem of engineering design  optimizing  will be put as a problem of mathematical programming. 

Starting from the equation (1), we consider the optimization of weight plates,  where  XF    is the weight of a plate of 

isotropic material under the action of the external  load  q. Functional limitations, taking into account in  the engineering 

designs optimization , as well as a numerical  optimization algorithm of  complex configuration lamellar structures  are  

described in detail in [4-9,11,14,15]. As the optimized option we take  the  plate thickness, constant in the plate range. 

 

IV. Experimental   calculations. 
Task 1.  The  tightly clamped round the whole contour  plate under uniform external pressure q = 10 kg. weight  

optimization. The  radius of the plate is  R = 100 cm, elastic modulus is 
210 /62 смкгE   , Poisson's ratio  is 

3.0 ,permitted deflection is  1][ W см  cm and equivalent stress is 
2/2550][ ñìêãýêâ  , the gravity (specific 

weight) is   .101,],[min,)(,/87 maxmax

23 смhсмWWhRhGсмг экв

экв    

Optimization was carried out up to 01.0 . We obtained the following results: 

./99.2549,8206.0

,6571.4,19.1141

2

maxmax

min

смкгсмW

смhкгG

экв 




 

This problem has an exact solution: 

.
64

)1(12
3

24

max
Eh

qR
W


  

With  the  calculated value of  h, we have : 

.8446.0max смW   

The accuracy of the obtained approximate solution is satisfactory. 

Task  2. Optimization of the entire ring  rigidly clamped at both the contours  plate under uniform external  pressure  

intensity  
 

2/10 смкгq  . 

The outer radius of the plate R = 100 cm, inner - r = 50 cm. The other parameters are the same as in  Task  1: 

  min)( 22  rRhhG   

The results are : 
2

maxmin /82.2549,0837.2,95.382 ñìêãñìhêãG ýêâ    

Task  3. Optimization  round the whole  ring (Fig. 1). All parameters are the same as in Task  2. We obtained the following 

results: 

.
 

2

maxmin /99.2549,126.1,48.134 смкгсмhкгG экв    

 
Fig. 1 
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Task  4. A  square with round neck  weight optimization (Fig. 2). 

Initial data for the square with a round neck weight optimization calculation: 

.101],[],[

,/10,50,200,200,)()(

maxmax

22

смhсмWW

смкгqсмrсмbсмahrabhG

экв

экв 






  

The results of the calculation:  ./07.2546,9767.3,07.296 2

maxmin смкгсмhкгG экв    

 
Fig.2 

Task 5. Weight optimization of the figure  shown in  Fig. 3 Baseline data: 

.101],[],[

,20,200,200,)3()(

maxmax

2

ñìhñìWW

ñìrñìbñìahrabhG

ýêâ

ýêâ 







 We obtained the following results: 

./9998.2549,1262.0,5689.2,96.725 2

maxmaxmin смкгсмWсмhкгG экв    

 
Fig. 3 

Tasks 1 and 2 have the exact solutions and are given only for the algorithm [5] performance monitoring possibility. 

According to the solved problems, the main limitation (with the taken values  ][][],[ Wиэкв    )  is the strength  

limitation, and the algorithm provided a high degree  approximation to the boundary. A variety of forms of plates indicates 

wide opportunity of applying the algorithm to solve optimization problems of plates of complex configuration [4, 15]. 

 

V.  Conclusion 
Thus, the proposed technique allows to optimize on the weight the calculation experiments of complex configuration design 

plates. 
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