
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3727-3729 ISSN: 2249-6645

www.ijmer.com 3727 | Page

Karnam Sreenu
1
, D. B. Jagannadha Rao

2

1, (Assistant Professor, Department of Information Technology, Sreenidhi Institute of Science and Technology, India
2, (Associate Professor, Department of Computer Applications, Institute of Science and Technology, India

ABSTRACT: Day by day the complexity levels of

Software system increasing. Hence more effort is required
for software organizations to develop new or rebuild

existing system of high quality. Refactoring reduces the cost

of software maintenance through changing the internal

structure of the source-code to improve the overall design

that helps the present and future developers to evolve and

understand a system. This paper describes new refactoring

methods and metrics along with the existing metrics to

identify the characteristics of bad smells “Lazy Class” and

“Temporary Field” through which the developer can be

provided with significant guidance to locate bad smells.

After identifying these bad smells, appropriate refactoring

methods can remove them.

Keywords: Software Refactoring, Bad Smells, Software

Metrics, Software Quality.

I. INTRODUCTION
 The design of source-code has become an
increasingly important part of the overall development of

software. Refactoring changes the internal code structure of

an Object-Oriented (O-O) system without affecting the

overall behavior of the system to improve the quality of the

design [1]. Refactoring is a process of making semantic-

preserving transformations of code into a form that the

software engineer finds easier to understand.

 Refactoring or the restructuring of a software

system without changing its behavior is necessary to

remove quality defects that are introduced by quick and

often unsystematic development.

Refactoring is starting to become an integrated
part of other software development processes to improve

the design, help make design changes, integrate new

functionality, and help understand the underlying design

concepts.

The process of refactoring has three distinct stages

to its application: identify where to apply a refactoring,

choose an appropriate refactoring as a solution and apply

the refactoring. Current software tools and Fowler‟s

description of refactorings only consider the final stage of

applying refactoring methods automatically and manually.

Knowing where an appropriate place and which
refactorings to apply in a system is arguably quite difficult.

 One particular motivation is to improve the design

of a software system through locating problems in the

design and using refactoring as a solution.

Fowler and Beck [1] defined bad smells that

describe a design problem that have a number of related

Refactorings that can change the structure of a system to

help improve the design. However locating bad smells

currently involves manually inspecting source-code, which

quickly becomes unfeasible as the size of the system

Increases. Providing an automatic support for the detection

of bad smells becomes quite appealing.

The motivation for this paper is to enhance the well

established refactoring process of identifying where to

apply refactorings in a system. The focus will be on
automatically identifying bad smell design problems in Java

source code. To achieve the goal a prototype tool is

developed that applies a set of software metrics on Java

systems and the results are interpreted to identify problems

in the design (i.e. bad smells).

II. BACKGROUND
2.1 BAD SMELLS

Some of the bad smells from Fowler's book [1] are
summarized below:

 Duplicate Code: The same code structure in two or

more places is a good sign that the code needs to be

refactored: if you need to make a change in one place,

you will probably need to change the other one as well,

but you might miss it.

 Long Method: Long methods should be decomposed

for clarity and ease of maintenance.

 Long Parameter List: Long parameter lists are hard to

understand. You don‟t need to pass in everything a

method needs, just enough so it can find all it needs.

 Shotgun Surgery: If a type of program change

requires lots of little code changes in various different

classes, it may be hard to find all the right places that

do need changing. May be the places that are affected

should all be brought together into one class.

 Feature Envy: This is where a method on one class

seems more interested in the attributes (usually data) of

another class than in its own class, May be the method

would be happier in the other class.

 Large Class: Classes that are trying to do too much

often have large numbers of instance variables.

 Data Class: Classes that just have data fields, and

access methods, but no real behaviour. If the data is

public, make it private.

 Lazy Class: Classes that are not doing much useful

work should be eliminated.

 Temporary Field: It can be confusing when some of

the member variables in a class are only used

occasionally.

2.2 REFACTORING METHODS

 Push down method: „Behavior on a super class is
relevant only for some of its subclasses‟. The method is

moved to those subclasses.

 Pull up Method: „You have methods with identical

results on subclasses‟. In this case, the methods should

be moved to the super class.

Performance - Detection of Bad Smells In Code for Refactoring Methods

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3727-3729 ISSN: 2249-6645

www.ijmer.com 3728 | Page

 Pull up field: „Two subclasses have the same field‟. In

this case, the field in question should be moved to the

super class.

 Move field: „A field is, or will be, used by another
class more than the class on which it is defined‟.

 Rename Method: A method is renamed to make its

purpose more obvious.

 Rename Field: A field is renamed to make its purpose

more obvious.

 Move Method: „A method is, or will be, using or used

by more features of another class than the class on

which it is defined‟.

2.3 REFACTORING PROCESS

Refactoring can be divided into a number of steps
as shown below [2]:

1. Identify where the software needs to be refactored.

2. Determine which refactorings need to be applied to the

identified places.

3. Guarantee that the applied refactoring preserves

behavior.

4. Apply the refactoring.

5. Assess the effect of the refactoring on the quality

characteristics of the software or the process.

6. Maintain the consistency between the refactored program

code and other software artifacts.

III. PROPOSED WORK
 This paper provides two new refactoring methods

called Merge Class Refactoring and Replace Temp

Refactoring, also describes two metrics called Number of

Methods (NOM) and Instance Variable per Method in a

Class (IVMC). These two refactoring methods are mainly

used to reduce the lines of source code.

Also provides a bad smell description framework

and bad smell interpretation framework to collect the
information regarding bad smells. These frameworks

mainly contain three parts.

Bad Smell Description Framework:

 Bad Smell Name: It is the description of the bad smell

which is proposed by Fowler and Beck‟s.

 Characteristics of bad smell: Identifying main

characteristics from description of the above bad smell.

 Identifying any design heuristics from the

characteristics.

Bad Smell Interpretation Framework:

 Bad Smell Name: It is the description of the bad smell

which is proposed by Fowler and Beck‟s.

 Measurement Process: Describe possible measurement

techniques that when applied to Java source-code can

help identify the design problem.

 Interpretation Rules: The interpretation indicates a set

of rules on how the metrics can be used to identify

possible candidates.We are using conventional metrics

and new metrics to identify bad smells “Lazy Class”

and “Temporary Field”.

3.1 REFACTORING MODEL:

 Figure 1 describes the detail process about how the

bad smells are identified in the source code and determining

which refactoring can be applied with the help of metrics

values, then we can apply the appropriate refactoring

method on the source code.

Figure 1: Describes the detail process

3.1.1. MERGE CLASS REFACTORING:
To apply this refactoring on the source code, first

we have to identify the class to merge with the targeted

class. To do this refactoring we are calculating some metric

values to find out the lazy class which is not doing much

work.

Lazy Class: To identify this bad smell the following are

possible interpretation rules:

if NOM = 0

if (LOC < LOCThreshold)

if (DIT > 1)

LOC: Lines of Code
DIT: Depth of Inheritance

If the above rules are true then we can directly

apply the merge class refactoring. That is the class which

satisfies the above conditions can be merged with the

targeted class.

Example:

Class Person

{

 String name;

 int getTelNumber();

}

Class TelNumber
{

 int areacode;

 String number;

 int getTelNumber();

 int getAreaCode();

}

On the above two classes we can apply the metrics to find

out the lazy class, in which the lazy class is class “Person”.

So, it is merged with targeted class name called “Person”.

Class Person

{
 String name;

 int areacode;

 String number;

 int getTelNumber();

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3727-3729 ISSN: 2249-6645

www.ijmer.com 3729 | Page

 int getAreaCode();

}

Conditions:
I. If some classes have the same number of methods (NOM)

then we should calculate Lines of Code for (LOC) those

classes to know or decide which class has to be merged

with targeted class.

II. The Merge Class Refactoring Method can be directly

applied on the source code by calculating the Number of

Methods (NOM) metric when there is no inheritance

mechanism in the source code.

IV. We should calculate the Depth of Inheritance

(DIT) metric to apply the Merge Class Refactoring

Method on the source code when the inheritance

mechanism will present in the source code.

3.1.2. REPLACE TEMP REFACTORING

We have a temp that is assigned to once with a

simple expression, and the temp is getting in the way of

other refactoring‟s. Replace all references to that temp with

the expression.

To apply this refactoring on the source code, first

we have to identify the instance variable, that is not

important in the source code. To do this the following

interpretation rule is used.

if IVMC<=2
The above statement will be true when the instance

variables which are declared in the code are not used more

than two times. If the above rule is satisfied then we are

ready apply the replace temp refactoring on the source

code. By applying this refactoring on the source code we

can remove the unused or unimportant instance variables so

that the lines of the source code will be decreased.

Example1:

double random = ran.number();

return (random<=1);

In the above code “random” variable is treated as
temporary variable, without its presence also the program is

working correctly without changing its external behaviour.

So, after applying the refactoring method the code will

modified as following:

return (ran.number()<=1);

Example2:

The following code snippet also shows how the

replace temp refactoring will occur to remove the instance

variables which are not used more than two times.

Before Refactoring
int a=10, b=20, c=0;

c=a + b;

After First Refactoring

int a=10, b=20, c=0;

c=10 + b;

After Second Refactoring

int a=10, b=20, c=0;

c=10 + 20;

Conditions:

I. To apply this refactoring on the source code, first we
have to identify the instance variable, that is not important

in the source code.

II. The IVMC<=2 condition will be true when the instance

variables which are declared in the code are not used more

than two times.

V. IMPLEMENTATION
We have implemented the above mentioned

metrics (NOM, LOC, DIT, and IVMC) in java [5] to find

out the bad smells in the source code. If number of methods

are equal in “Class A” and “Class B” then we have to

calculate the Lines of Code for “Class A” and “Class B”,

based on these two values we have applied the appropriate

Refactoring method. By using these implemented metric

values we have applied the appropriate Refactoring method
on the source code to remove the bad smell from the

existing code or to improve the structure of the existing

source code.

VI. CONCLUSION

The Merge Class Refactoring method and Replace

Temp Refactoring method will be identified by providing

metric values based on Number of Methods (NOM),

Instance Variable per Method in Class (IVMC) and some

existing metrics like Lines of Code (LOC), Depth of
Inheritance (DIT) [3]. By identifying these metric values

we can apply the above two refactoring methods directly on

the source code to reduce the total number of lines of code

(LOC) and to improve the structure of existing code.

REFERENCES
[1] Fowler M., Refactoring: Improving the Design of Existing

Code, 1st ed: Addison-Wesley, ISBN 0-201-48567-2, 1999.
[2] T. Mens, T. Tourwe. “A Survey of Software Refactoring,”

IEEE Transactions on Software Engineering, Vol. 30, No.2,
February 2004.

[3] Shyam R. Chidamber and Chris F. Kemerer ”A Metrics
Suite for Object Oriented Design”IEEE Transactions on

Software Engineering, vol. 20, no. 6, June 1994.
[4] Rapu D., Ducasse S., Girba T., and Marinescu R., "Using

history information to improve design flaws detection,"
presented at Eighth European Conference on Software
Maintenance and Reengineering, Tampere, Finland, 2004,
pp. 223-232.

[5] Naughton Schildt, The Complete Reference Java2 Third
Edition.

AUTHOR‟S PROFILE

Mr. Karnam Sreenu has completed his M. Tech

in Software Engineering from College of

Engineering, Ananthapur. He is having around

four years of experience. He is working as

Assistent Professor in Sreenidhi Institute of

Science and Technology, Ghatakeswar, Hyderabad. He is

mainly interested in Software Engineering and algorithms.

Mr. D. B. Jagannadha Rao has completed his M.

Tech in Computer Science from College of

Engineering, Ananthapur. He is having around
nine years of experience. He is working as

Associate Professor in Sreenidhi Institute of Science and

Technology, Ghatakeswar, Hyderabad. He is especially

interested in Mobile Ad-hoc Networks, Software

Engineering and its routing algorithms.

