On rg-Separation Axioms

S. Balasubramanian¹ C. Sandhya² and M.D.S. Saikumar³

¹Department of Mathematics, Govt. Arts College (A), Karur – 639 005, Tamilnadu

² Department of Mathematics, C.S.R. Sarma College, Ongole – 523 001, Andhraparadesh

³ Department of Mathematics, Krishnaveni Degree College, Narasaraopet – 522 601, Andhraparadesh

Abstract: In this paper we define almost rg-normality and mild rg-normality, continue the study of further properties of rgnormality. We show that these three axioms are regular open hereditary. Also define the class of almost rg-irresolute mappings and show that rg-normality is invariant under almost rg-irresolute M-rg-open continuous surjection.

AMS Subject Classification: 54D15, 54D10.

Key words and Phrases: rg-open, almost normal, midly normal, M-rg-closed, M-rg-open, rc-continuous.

I. Introduction:

In 1967, A. Wilansky has introduced the concept of US spaces. In 1968, C.E. Aull studied some separation axioms between the T₁ and T₂ spaces, namely, S₁ and S₂. Next, in 1982, S.P. Arya et al have introduced and studied the concept of semi-US spaces and also they made study of s-convergence, sequentially semi-closed sets, sequentially s-compact notions. G.B. Navlagi studied P-Normal Almost-P-Normal, Mildly-P-Normal and Pre-US spaces. Recently S. Balasubramanian and P.Aruna Swathi Vyjayanthi studied *v*-Normal Almost- *v*-Normal, Mildly-*v*-Normal and *v*-US spaces. Inspired with these we introduce rg-Normal Almost- rg-Normal, Mildly- rg-Normal, rg-US, rg-S₁ and rg-S₂. Also we examine rg-convergence, sequentially rg-compact, sequentially rg-continuous maps, and sequentially sub rg-continuous maps in the context of these new concepts. All notions and symbols which are not defined in this paper may be found in the appropriate references. Throughout the paper X and Y denote Topological spaces on which no separation axioms are assumed explicitly stated.

II. Preliminaries:

Definition 2.1: A \subset X is called g-closed[resp: rg-closed] if clA \subseteq U[resp: *s*cl(A) \subseteq U] whenever A \subseteq U and U is open[resp: semi-open] in X.

Definition 2.2: A space X is said to be

(i) $T_1(T_2)$ if for $x \neq y$ in X, there exist (disjoint) open sets U; V in X such that $x \in U$ and $y \in V$.

(ii) weakly Hausdorff if each point of X is the intersection of regular closed sets of X.

(iii) Normal [resp: mildly normal] if for any pair of disjoint [resp: regular-closed] closed sets F_1 and F_2 , there exist disjoint open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$.

(iv) almost normal if for each closed set A and each regular closed set B such that $A \cap B = \phi$, there exist disjoint open sets U and V such that $A \subset U$ and $B \subset V$.

(v) weakly regular if for each pair consisting of a regular closed set A and a point x such that $A \cap \{x\} = \phi$, there exist disjoint open sets U and V such that $x \in U$ and $A \subset V$.

(vi) A subset A of a space X is S-closed relative to X if every cover of A by semi-open sets of X has a finite subfamily whose closures cover A.

(vii) R_0 if for any point x and a closed set F with $x \notin F$ in X, there exists a open set G containing F but not x.

(viii) R_1 iff for x, $y \in X$ with $cl\{x\} \neq cl\{y\}$, there exist disjoint open sets U and V such that $cl\{x\} \subset U$, $cl\{y\} \subset V$.

(ix) US-space if every convergent sequence has exactly one limit point to which it converges. (x) pre-US space if every preconvergent sequence has exactly one limit point to which it converges.

(xi) pre- S_1 if it is pre-US and every sequence pre-converges with subsequence of pre-side points.

(xii) pre-S₂ if it is pre-US and every sequence in X pre-converges which has no pre-side point.

(xiii) is weakly countable compact if every infinite subset of X has a limit point in X.

(xiv) Baire space if for any countable collection of closed sets with empty interior in X, their union also has empty interior in

Definition 2.3: Let $A \subset X$. Then a point x is said to be a

(i) limit point of A if each open set containing x contains some point y of A such that $x \neq y$.

(ii) T₀-limit point of *A* if each open set containing x contains some point y of *A* such that $cl{x} \neq cl{y}$, or equivalently, such that they are topologically distinct.

(iii) *pre*-T₀-limit point of A if each open set containing x contains some point y of A such that $pcl\{x\} \neq pcl\{y\}$, or equivalently, such that they are topologically distinct.

Note 1: Recall that two points are topologically distinguishable or distinct if there exists an open set containing one of the points but not the other; equivalently if they have disjoint closures. In fact, the T_0 -axiom is precisely to ensure that any two distinct points are topologically distinct.

Example 1: Let $X = \{a, b, c, d\}$ and $\tau = \{\{a\}, \{b, c\}, \{a, b, c\}, X, \phi\}$. Then b and c are the limit points but not the T₀-limit points of the set $\{b, c\}$. Further d is a T₀-limit point of $\{b, c\}$.

Example 2: Let X = (0, 1) and $\tau = \{\phi, X, \text{ and } U_n = (0, 1-1/n), n = 2, 3, 4, ... \}$. Then every point of X is a limit point of X. Every point of X~U₂ is a T₀-limit point of X, but no point of U₂ is a T₀-limit point of X.

Definition 2.4: A set *A* together with all its T_0 -limit points will be denoted by T_0 -cl*A*.

Note 2: i. Every T₀-limit point of a set *A* is a limit point of the set but converse is not true. ii. In T₀-space both are same.

Note 3: R_0 -axiom is weaker than T_1 -axiom. It is independent of the T_0 -axiom. However $T_1 = R_0 + T_0$

Note 4: Every countable compact space is weakly countable compact but converse is not true in general. However, a T_1 -space is weakly countable compact iff it is countable compact.

Definition 3.01: In X, a point x is said to be a rg-T₀-limit point of A if each rg-open set containing x contains some point y of A such that $rgcl{x} \neq rgcl{y}$, or equivalently; such that they are topologically distinct with respect to rg-open sets.

III. Example

Let X = {a, b, c} and $\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$. For A = {a, b}, a is *rg*-*T*₀-limit point.

Definition 3.02: A set A together with all its $rg-T_0$ -limit points is denoted by T_0 -rgcl(A)

Lemma 3.01: If x is a $rg-T_0$ -limit point of a set A then x is rg-limit point of A.

Lemma 3.02: If X is rgT_0 [resp: rT_0 -]-space then every rg- T_0 -limit point and every rg-limit point are equivalent.

Theorem 3.03: For $x \neq y \in X$,

- (i) X is a rg- T_0 -limit point of $\{y\}$ iff $x \notin rgcl\{y\}$ and $y \notin rgcl\{x\}$.
- (ii) X is not a rg- T_0 -limit point of {y} iff either $x \in rgcl \{y\}$ or $rgcl\{x\} = rgcl\{y\}$.
- (iii) X is not a rg- T_0 -limit point of {y} iff either $x \in rgcl\{y\}$ or $y \in rgcl\{x\}$.

Corollary 3.04:

- (i) If x is a $\operatorname{rg-}T_0$ -limit point of $\{y\}$, then y cannot be a $\operatorname{rg-limit}$ point of $\{x\}$.
- (ii) If $rgcl{x} = rgcl{y}$, then neither x is a $rg-T_0$ -limit point of $\{y\}$ nor y is a $rg-T_0$ -limit point of $\{x\}$.
- (iii) If a singleton set A has no $rg-T_0$ -limit point in X, then $rgclA = rgcl\{x\}$ for all $x \in rgcl\{A\}$.

Lemma 3.05: In X, if x is a rg-limit point of a set A, then in each of the following cases x becomes rg- T_0 -limit point of A ({x} $\neq A$).

- (i) $rgcl{x} \neq rgcl{y}$ for $y \in A, x \neq y$.
- (ii) $rgcl{x} = {x}$
- (iii) X is a rg- T_0 -space.
- (iv) $A \sim \{x\}$ is rg-open

IV. $rg-T_0$ AND $rg-R_i$ AXIOMS, i = 0,1:

In view of Lemma 3.5(iii), rg-T₀-axiom implies the equivalence of the concept of limit point with that of rg-T₀-limit point of the set. But for the converse, if $x \in rgcl\{y\}$ then $rgcl\{x\} \neq rgcl\{y\}$ in general, but if x is a rg-T₀-limit point of $\{y\}$, then $rgcl\{x\} = rgcl\{y\}$

Lemma 4.01: In *X*, a limit point *x* of {*y*} is a rg- T_0 -limit point of {*y*} iff $rgcl{x} \neq rgcl{y}$. This lemma leads to characterize the equivalence of rg- T_0 -limit point and rg-limit point of a set as rg- T_0 -axiom.

Theorem 4.02: The following conditions are equivalent:

- (i) X is a rg- T_0 space
- (ii) Every rg-limit point of a set A is a $rg-T_0$ -limit point of A
- (iii) Every r-limit point of a singleton set $\{x\}$ is a rg-T₀-limit point of $\{x\}$

(iv) For any x, y in X, $x \neq y$ if $x \in rgcl\{y\}$, then x is a rg- T_0 -limit point of $\{y\}$

Note 5: In a rg-T₀-space X, if every point of X is a r-limit point, then every point is rg-T₀-limit point. But if each point is a rg-T₀-limit point of X it is not necessarily a rg-T₀-space

Theorem 4.03: The following conditions are equivalent:

- (i) X is a $rg-R_0$ space
- (ii) For any x, y in X, if $x \in rgcl\{y\}$, then x is not a $rg-T_0$ -limit point of $\{y\}$
- (iii) A point rg-closure set has no $rg-T_0$ -limit point in X
- (iv) A singleton set has no rg- T_0 -limit point in X.

Theorem 4.04: In a rg- R_0 space X, a point x is rg- T_0 -limit point of A iff every rg-open set containing x contains infinitely many points of A with each of which x is topologically distinct

Theorem 4.05: X is $rg-R_0$ space iff a set A of the form $A = \bigcup rgcl\{x_{i\,i\,=\,l\,to\,n}\}$ a finite union of point closure sets has no $rg-T_0$ -limit point.

Corollary 4.06: The following conditions are equivalent:

- (i) X is a rR_0 space
- (ii) For any x, y in X, if $x \in rgcl\{y\}$, then x is not a $rg-T_0$ -limit point of $\{y\}$
- (iii) A point rg-closure set has no $rg-T_0$ -limit point in X
- (iv) A singleton set has no rg- T_0 -limit point in X.

Corollary 4.07: In an rR₀-space X,

- (i) If a point x is $rg-T_0$ -[resp: rT_0 -] limit point of a set then every rg-open set containing x contains infinitely many points of A with each of which x is topologically distinct.
- (ii) If $A = \bigcup \operatorname{rgcl}\{x_{i, i = 1 \text{ to } n}\}$ a finite union of point closure sets has no $\operatorname{rg-}T_0$ -limit point.
- (iii) If $X = \bigcup \operatorname{rgcl}\{x_{i, i = 1 \text{ to } n}\}$ then X has no $\operatorname{rg-T_0-limit}$ point.

Various characteristic properties of rg-T₀-limit points studied so far is enlisted in the following theorem.

Theorem 4.08: In a rg- R_0 -space, we have the following:

- (i) A singleton set has no rg- T_0 -limit point in X.
- (ii) A finite set has no rg- T_0 -limit point in X.
- (iii) A point rg-closure has no set $rg-T_0$ -limit point in X
- (iv) A finite union point rg-closure sets have no set rg- T_0 -limit point in X.
- (v) For $x, y \in X, x \in T_0 rgcl\{y\}$ iff x = y.
- (vi) $x \neq y \in X$, iff neither x is rg-T₀-limit point of {y}nor y is rg-T₀-limit point of {x}
- (vii) For any $x, y \in X, x \neq y$ iff $T_0 rgcl\{x\} \cap T_0 rgcl\{y\} = \phi$.
- (viii) Any point $x \in X$ is a $rg-T_0$ -limit point of a set A in X iff every rg-open set containing x contains infinitely many points of A with each which x is topologically distinct.

Theorem 4.09: X is rg- R_1 iff for any rg-open set U in X and points x, y such that $x \in X \sim U$, $y \in U$, there exists a rg-open set V in X such that $y \in V \subset U$, $x \notin V$.

Lemma 4.10: In rg- R_1 space X, if x is a rg- T_0 -limit point of X, then for any non empty rg-open set U, there exists a non empty rg-open set V such that $V \subset U$, $x \notin rgcl(V)$.

Lemma 4.11: In a rg- regular space X, if x is a rg-T₀-limit point of X, then for any non empty rg-open set U, there exists a non empty rg-open set V such that $rgcl(V) \subset U$, $x \notin rgcl(V)$.

Corollary 4.12: In a regular space X, If x is a $rg-T_0-[resp: T_0-]$ limit point of X, then for any $U \neq \phi \in RGO(X)$, there exists a non empty rg-open set V such that $rgcl(V) \subset U$, $x \notin rgcl(V)$.

Theorem 4.13: If X is a rg-compact rg- R_1 -space, then X is a Baire Space. **Proof:** Routine

Corollary 4.14: If X is a compact $rg-R_1$ -space, then X is a Baire Space.

Corollary 4.15: Let X be a rg-compact rg- R_1 -space. If $\{A_n\}$ is a countable collection of rg-closed sets in X, each A_n having non-empty rg-interior in X, then there is a point of X which is not in any of the A_n .

Corollary 4.16: Let X be a rg-compact R_1 -space. If $\{A_n\}$ is a countable collection of rg-closed sets in X, each A_n having nonempty rg- interior in X, then there is a point of X which is not in any of the A_n .

Theorem 4.17: Let X be a non empty compact rg- R_1 -space. If every point of X is a rg- T_0 -limit point of X then X is uncountable.

Proof: Since X is non empty and every point is a rg-T₀-limit point of X, X must be infinite. If X is countable, we construct a sequence of rg-open sets {V_n} in X as follows:

Let $X = V_1$, then for x_1 is a rg-T₀-limit point of X, we can choose a non empty rg-open set V_2 in X such that $V_2 \subset V_1$ and $x_1 \notin rgclV_2$. Next for x_2 and non empty rg-open set V_2 , we can choose a non empty rg-open set V_3 in X such that $V_3 \subset V_2$ and $x_2 \notin rgclV_3$. Continuing this process for each x_n and a non empty rg-open set V_n , we can choose a non empty rg-open set V_{n+1} in X such that $V_{n+1} \subset V_n$ and $x_n \notin rgclV_{n+1}$.

Now consider the nested sequence of rg-closed sets $rgclV_1 \supset rgclV_2 \supset rgclV_3 \supset \dots \supset rgclV_n \supset \dots$ Since X is rg-compact and $\{rgclV_n\}$ the sequence of rg-closed sets satisfies finite intersection property. By Cantors intersection theorem, there exists an x in X such that $x \in rgclV_n$. Further $x \in X$ and $x \in V_1$, which is not equal to any of the points of X. Hence X is uncountable.

Corollary 4.18: Let X be a non empty rg-compact $rg-R_1$ -space. If every point of X is a $rg-T_0$ -limit point of X then X is uncountable

V. rg-T₀-IDENTIFICATION SPACES AND rg-SEPARATION AXIOMS

Definition 5.01: Let \Re be the equivalence relation on X defined by $x\Re y$ iff $rgcl\{x\} = rgcl\{y\}$

Problem 5.02: show that $x\Re y$ iff $rgcl\{x\} = rgcl\{y\}$ is an equivalence relation

Definition 5.03: $(X_0, Q(X_0))$ is called the rg-T₀-identification space of (X, τ) , where X_0 is the set of equivalence classes of \Re and $Q(X_0)$ is the decomposition topology on X_0 .

Let $P_X: (X, \tau) \rightarrow (X_0, Q(X_0))$ denote the natural map

Lemma 5.04: If $x \in X$ and $A \subset X$, then $x \in \operatorname{rgcl} A$ iff every rg-open set containing x intersects A.

Theorem 5.05: The natural map $P_X:(X,\tau) \rightarrow (X_0, Q(X_0))$ is closed, open and $P_X^{-1}(P_X(O)) = O$ for all $O \in PO(X,\tau)$ and $(X_0, Q(X_0))$ is $\operatorname{rg} T_0$

Proof: Let $O \in PO(X, \tau)$ and $C \in P_X(O)$. Then there exists $x \in O$ such that $P_X(x) = C$. If $y \in C$, then $rgcl\{y\} = rgcl\{x\}$, which implies $y \in O$. Since $\tau \subset PO(X, \tau)$, then $P_X^{-1}(P_X(U)) = U$ for all $U \in \tau$, which implies P_X is closed and open.

Let G, $H \in X_0$ such that $G \neq H$; let $x \in G$ and $y \in H$. Then $rgcl\{x\} \neq rgcl\{y\}$, which implies $x \notin rgcl\{y\}$ or $y \notin rgcl\{x\}$, say $x \notin rgcl\{y\}$. Since P_X is continuous and open, then $G \in A = P_X\{X \sim rgcl\{y\}\} \notin PO(X_0, Q(X_0))$ and $H \notin A$

Theorem 5.06: The following are equivalent:

(*i*) *X* is rgR_0 (*ii*) $X_0 = \{rgcl\{x\}: x \in X\}$ and (*iii*) ($X_0, Q(X_0)$) is rgT_1

Proof: (i) \Rightarrow (ii) Let $x \in C \in X_0$. If $y \in C$, then $y \in rgcl\{y\} = rgcl\{x\}$, which implies $C \in rgcl\{x\}$. If $y \in rgcl\{x\}$, then $x \in rgcl\{y\}$, since, otherwise, $x \in X \sim rgcl\{y\} \in PO(X, \tau)$ which implies $rgcl\{x\} \subset X \sim rgcl\{y\}$, which is a contradiction. Thus, if $y \in rgcl\{x\}$, then $x \in rgcl\{y\}$, which implies $rgcl\{y\} = rgcl\{x\}$ and $y \in C$. Hence $X_0 = \{rgcl\{x\}: x \in X\}$

(ii) \Rightarrow (iii) Let $A \neq B \in X_0$. Then there exists x, $y \in X$ such that $A = rgcl\{x\}$; $B = rgcl\{y\}$, and $rgcl\{x\} \cap rgcl\{y\} = \phi$. Then $A \in C = P_X(X \sim rgcl\{y\}) \in PO(X_0, Q(X_0))$ and $B \notin C$. Thus $(X_0, Q(X_0))$ is $rg \cdot T_1$

(iii) \Rightarrow (i) Let $x \in U \in RGO(X)$. Let $y \notin U$ and C_x , $C_y \in X_0$ containing x and y respectively. Then $x \notin rgcl\{y\}$, implies $C_x \neq C_y$ and there exists rg-open set A such that $C_x \in A$ and $C_y \notin A$. Since P_X is continuous and open, then $y \in B = P_X^{-1}(A) \in x \in RGO(X)$ and $x \notin B$, which implies $y \notin rgcl\{x\}$. Thus $rgcl\{x\} \subset U$. This is true for all $rgcl\{x\}$ implies $\cap rgcl\{x\} \subset U$. Hence X is $rg-R_0$

Theorem 5.07: (X, τ) is rg- R_1 iff $(X_0, Q(X_0))$ is rg- T_2 The proof is straight forward using theorems 5.05 and 5.06 and is omitted

Theorem 5.08: X is $\operatorname{rg-}T_i$; i = 0, 1, 2. iff there exists a $\operatorname{rg-}continuous$, almost-open, 1–1 function from X into a $\operatorname{rg-}T_i$ space; i = 0, 1, 2. respectively.

Theorem 5.09: If f is rg-continuous, rg-open, and x, $y \in X$ such that $rgcl{x} = rgcl{y}$, then $rgcl{f(x)} = rgcl{f(y)}$.

Theorem 5.10: The following are equivalent

(i) X is rg- T_0

(ii) Elements of X_0 are singleton sets and

(iii) There exists a rg-continuous, rg-open, 1-1 function $f: X \rightarrow Y$, where Y is rg- T_0

Proof: (i) is equivalent to (ii) and (i) \Rightarrow (iii) are straight forward and is omitted.

<u>www.ijmer.com</u> Vol.2, Issue.6, Nov-Dec. 2012 pp-4001-4009 ISSN: 2249-6645

(iii) \Rightarrow (i) Let x, y \in X such that $f(x) \neq f(y)$, which implies $rgcl\{f(x)\} \neq rgcl\{f(y)\}$. Then by theorem 5.09, $rgcl\{x\} \neq rgcl\{y\}$. Hence (X, τ) is rg-T₀

Corollary 5.11: X is $\operatorname{rg-}T_i$; i = 1,2 iff X is $\operatorname{rg-}T_{i-1}$; i = 1,2, respectively, and there exists a $\operatorname{rg-}continuous$, $\operatorname{rg-}open$, 1-1 function f:X into a $\operatorname{rg-}T_0$ space.

Definition 5.04: *f* is point–rg-closure 1–1 iff for x, $y \in X$ such that $rgcl\{x\} \neq rgcl\{y\}$, $rgcl\{f(x)\} \neq rgcl\{f(y)\}$.

Theorem 5.12: (i) If $f:X \to Y$ is point–rg-closure 1–1 and (X, τ) is rg- T_0 , then f is 1–1 (ii) If $f:X \to Y$, where X and Y are rg- T_0 then f is point–rg-closure 1–1 iff f is 1–1

The following result can be obtained by combining results for $rg-T_0$ - identification spaces, rg-induced functions and $rg-T_i$ spaces; i = 1, 2.

Theorem 5.13: X is $\operatorname{rg-R}_i$; i = 0,1 iff there exists a rg-continuous, almost-open point-rg-closure 1-1 function f: (X, τ) into a rg- R_i space; i = 0,1 respectively.

VI. rg-Normal; Almost rg-normal and Mildly rg-normal spaces

Definition 6.1: A space X is said to be rg-normal if for any pair of disjoint closed sets F_1 and F_2 , there exist disjoint rg-open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$.

Example 4: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then X is rg-normal.

Example 5: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$. Then X is rg-normal and is not normal.

Example 6: Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, X\}$ is *rg*-normal, normal and almost normal.

We have the following characterization of rg-normality.

Theorem 6.1: For a space X the following are equivalent:

(i) X is rg-normal.

(ii) For every pair of open sets U and V whose union is X, there exist rg-closed sets A and B such that $A \subset U$, $B \subset V$ and $A \cup B = X$.

(iii) For every closed set F and every open set G containing F, there exists a rg-open set U such that $F \subset U \subset rgcl(U) \subset G$.

Proof: (i) \Rightarrow (ii): Let *U* and *V* be a pair of open sets in a rg-normal space *X* such that $X = U \cup V$. Then *X*–*U*, *X*–*V* are disjoint closed sets. Since X is rg-normal there exist disjoint rg-open sets U_1 and V_1 such that $X-U \subset U_1$ and $X-V \subset V_1$. Let $A = X-U_1$, $B = X-V_1$. Then *A* and *B* are rg-closed sets such that $A \subset U$, $B \subset V$ and $A \cup B = X$.

(ii) \Rightarrow (iii): Let *F* be a closed set and *G* be an open set containing *F*. Then *X*–*F* and *G* are open sets whose union is *X*. Then by (b), there exist rg-closed sets W_1 and W_2 such that $W_1 \subset X$ –*F* and $W_2 \subset G$ and $W_1 \subset W_2 = X$. Then $F \subset X - W_1$, $X - G \subset X - W_2$ and $(X - W_1) \cap (X - W_2) = \phi$. Let $U = X - W_1$ and $V = X - W_2$. Then *U* and *V* are disjoint rg-open sets such that $F \subset U \subset X - V \subset G$. As *X*–*V* is rg-closed set, we have $rgcl(U) \subset X - V$ and $F \subset U \subset rgcl(U) \subset G$.

(iii) \Rightarrow (i): Let F_1 and F_2 be any two disjoint closed sets of *X*. Put $G = X - F_2$, then $F_1 \cap G = \phi$. $F_1 \subset G$ where *G* is an open set. Then by (c), there exists a rg-open set *U* of *X* such that $F_1 \subset U \subset rgcl(U) \subset G$. It follows that $F_2 \subset X - rgcl(U) = V$, say, then *V* is rg-open and $U \cap V = \phi$. Hence F_1 and F_2 are separated by rg-open sets *U* and *V*. Therefore *X* is rg-normal.

Theorem 6.2: A regular open subspace of a rg-normal space is rg-normal.

Definition 6.2: A function $f:X \rightarrow Y$ is said to be almost–rg-irresolute if for each x in X and each rg-neighborhood V of f(x), $rgcl(f^{-1}(V))$ is a rg-neighborhood of x.

Clearly every rg-irresolute map is almost rg-irresolute.

The Proof of the following lemma is straightforward and hence omitted.

Lemma 6.1: *f* is almost rg-irresolute iff $f^{1}(V) \subset \text{rg-int}(rgcl(f^{1}(V))))$ for every $V \in RGO(Y)$.

Lemma 6.2: *f* is almost rg-irresolute iff $f(rgcl(U)) \subset rgcl(f(U))$ for every $U \in RGO(X)$.

Proof: Let $U \in RGO(X)$. If $y \notin rgcl(f(U))$. Then there exists $V \in RGO(y)$ such that $V \cap f(U) = \phi$. Hence $f^{-1}(V) \cap U = \phi$. Since $U \in RGO(X)$, we have rg-int $(rgcl(f^{1}(V))) \cap rgcl(U) = \phi$. By lemma 6.1, $f^{-1}(V) \cap rgcl(U) = \phi$ and hence $V \cap f(rgcl(U)) = \phi$. This implies that $y \notin f(rgcl(U))$.

Conversely, if $V \in RGO(Y)$, then W = X- $rgcl(f^{1}(V))) \in RGO(X)$. By hypothesis, $f(rgcl(W)) \subset rgcl(f(W)))$ and hence X- $rgcl(rgcl(f^{1}(V))) = rgcl(W) \subset f^{1}(rgcl(f(W))) \subset f(rgcl(f(X-f^{1}(V)))) \subset f^{-1}[rgcl(Y-V)] = f^{-1}(Y-V) = X-f^{1}(V)$. Therefore $f^{1}(V) \subset rgcl(rgcl(f^{1}(V)))$. By lemma 6.1, *f* is almost rg-irresolute.

Theorem 6.3: If *f* is M-rg-open continuous almost rg-irresolute, X is rg-normal, then Y is rg-normal.

Proof: Let A be a closed subset of Y and B be an open set containing A. Then by continuity of $f, f^1(A)$ is closed and $f^1(B)$ is an open set of X such that $f^1(A) \subset f^1(B)$. As X is rg-normal, there exists a rg-open set U in X such that $f^1(A) \subset U \subset rgcl(U) \subset f^1(B)$. Then $f(f^1(A)) \subset f(U) \subset f(rgcl(U)) \subset f(f^1(B))$. Since f is M-rg-open almost rg-irresolute surjection, we obtain $A \subset f(U) \subset rgcl(f(U)) \subset B$. Then again by Theorem 6.1 the space Y is rg-normal.

Lemma 6.3: A mapping f is M-rg-closed iff for each subset B in Y and for each rg-open set U in X containing $f^{1}(B)$, there exists a rg-open set V containing B such that $f^{1}(V) \subset U$.

Theorem 6.4: If f is M-rg-closed continuous, X is rg-normal space, then Y is rg-normal. Proof of the theorem is routine and hence omitted.

Theorem 6.5: If *f* is an M-rg-closed map from a weakly Hausdorff rg-normal space X onto a space Y such that $f^{1}(y)$ is S-closed relative to X for each $y \in Y$, then Y is rg-T₂.

Proof: Let $y_1 \neq y_2 \in Y$. Since X is weakly Hausdorff, $f^{-1}(y_1)$ and $f^{-1}(y_2)$ are disjoint closed subsets of X by lemma 2.2 [12.]. As X is rg-normal, there exist disjoint $V_i \in RGO(X, f^{-1}(y_i))$ for i = 1, 2. Since f is M-rg-closed, there exist disjoint $U_i \in RGO(Y, y_i)$ and $f^{-1}(U_i) \subset V_i$ for i = 1, 2. Hence Y is rg-T₂.

Theorem 6.6: For a space *X* we have the following:

(a) If *X* is normal then for any disjoint closed sets A and B, there exist disjoint rg-open sets U, V such that $A \subset U$ and $B \subset V$; (b) If *X* is normal then for any closed set A and any open set V containing A, there exists an rg-open set U of X such that $A \subset U \subset rgcl(U) \subset V$.

Definition 6.2: X is said to be almost rg-normal if for each closed set A and each regular closed set B with $A \cap B = \phi$, there exist disjoint U; $V \in RGO(X)$ such that $A \subset U$ and $B \subset V$.

Clearly, every rg-normal space is almost rg-normal, but not conversely in general.

Example 7: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then X is almost rg-normal and rg-normal.

Theorem 6.7: For a space X the following statements are equivalent:

(i) X is almost rg-normal

(ii) For every pair of sets U and V, one of which is open and the other is regular open whose union is X, there exist rg-closed sets G and H such that $G \subset U$, $H \subset V$ and $G \cup H = X$.

(iii) For every closed set A and every regular open set B containing A, there is a rg-open set V such that $A \subset V \subset rgcl(V) \subset B$. **Proof:** (i) \Rightarrow (ii) Let $U \in \tau$ and $V \in RO(X)$ such that $U \cup V = X$. Then (X-U) is closed set and (X-V) is regular closed set with $(X-U) \cap (X-V) = \phi$. By almost rg-normality of X, there exist disjoint rg-open sets U₁ and V₁ such that $X-U \subset U_1$ and $X-V \subset V_1$. Let $G = X - U_1$ and $H = X - V_1$. Then G and H are rg-closed sets such that $G \subset U$, $H \subset V$ and $G \cup H = X$. (ii) \Rightarrow (iii) and (iii) \Rightarrow (i) are obvious.

One can prove that almost rg-normality is also regular open hereditary. Almost rg-normality does not imply almost rg-regularity in general. However, we observe that every almost rg-normal rg- R_0 space is almost rg-regular.

Theorem 6.8: Every almost regular, *rg*-compact space X is almost rg-normal.

Recall that a function $f: X \rightarrow Y$ is called rc-continuous if inverse image of regular closed set is regular closed.

Theorem 6.9: If f is continuous M-rg-open rc-continuous and almost rg-irresolute surjection from an almost rg-normal space X onto a space Y, then Y is almost rg-normal.

Definition 6.3: X is said to be mildly rg-normal if for every pair of disjoint regular closed sets F_1 and F_2 of X, there exist disjoint rg-open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$.

Example 8: Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, X\}$ is Mildly *rg*-normal.

Theorem 6.10: For a space X the following are equivalent.

(i) X is mildly rg-normal.

(ii) For every pair of regular open sets U and V whose union is X, there exist rg-closed sets G and H such that $G \subset U, H \subset V$ and $G \cup H = X$.

(iii) For any regular closed set A and every regular open set B containing A, there exists a rg-open set U such that $A \subset U \subset rgcl(U) \subset B$.

(iv) For every pair of disjoint regular closed sets, there exist rg-open sets U and V such that $A \subset U$, $B \subset V$ and $rgcl(U) \cap rgcl(V) = \phi$.

Proof: This theorem may be proved by using the arguments similar to those of Theorem 6.7.

Also, we observe that mild rg-normality is regular open hereditary.

Definition 6.4: A space X is weakly rg-regular if for each point x and a regular open set U containing $\{x\}$, there is a rg-open set V such that $x \in V \subset clV \subset U$.

Example 9: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$. Then X is weakly *rg*-regular.

Example 10: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then X is not weakly *rg*-regular.

Theorem 6.11: If $f: X \to Y$ is an M-rg-open rc-continuous and almost rg-irresolute function from a mildly rg-normal space X onto a space Y, then Y is mildly rg-normal.

Proof: Let A be a regular closed set and B be a regular open set containing A. Then by rc-continuity of f, $f^{-1}(A)$ is a regular closed set contained in the regular open set $f^{1}(B)$. Since X is mildly rg-normal, there exists a rg-open set V such that $f^{1}(A) \subset V \subset rgcl(V) \subset f^{-1}(B)$ by Theorem 6.10. As f is M-rg-open and almost rg-irresolute surjection, $f(V) \in RGO(Y)$ and $A \subset f(V) \subset rgcl(f(V)) \subset B$. Hence Y is mildly rg-normal.

Theorem 6.12: If $f: X \rightarrow Y$ is rc-continuous, M-rg-closed map and X is mildly rg-normal space, then Y is mildly rg-normal.

VII. rg-US spaces:

Definition 7.1: A point y is said to be a

(i) *rg*-cluster point of sequence $\langle x_n \rangle$ iff $\langle x_n \rangle$ is frequently in every *rg*-open set containing x. The set of all *rg*-cluster points of $\langle x_n \rangle$ will be denoted by *rg*-cl(x_n).

(ii) *rg*-side point of a sequence $\langle x_n \rangle$ if y is a *rg*-cluster point of $\langle x_n \rangle$ but no subsequence of $\langle x_n \rangle$ *rg*-converges to y.

Definition 7.2: A sequence $\langle x_n \rangle$ is said to be *rg*-converges to a point x of X, written as $\langle x_n \rangle \rightarrow^{rg} x$ if $\langle x_n \rangle$ is eventually in every *rg*-open set containing x.

Clearly, if a sequence $\langle x_n \rangle$ *r*-converges to a point x of X, then $\langle x_n \rangle$ *rg*-converges to x.

Definition 7.3: A subset F is said to be

(i) sequentially rg-closed if every sequence in F rg-converges to a point in F.

(ii) sequentially rg-compact if every sequence in F has a subsequence which rg-converges to a point in F.

Definition 7.4: X is said to be

(i) rg-US if every sequence $\langle x_n \rangle$ in X rg-converges to a unique point.

(ii) rg-S₁ if it is rg-US and every sequence $\langle x_n \rangle$ rg-converges with subsequence of $\langle x_n \rangle$ rg-side points.

(iii) rg-S₂ if it is rg-US and every sequence $\langle x_n \rangle$ in X rg-converges which has no rg-side point.

Definition 7.5: A function *f* is said to be sequentially *rg*-continuous at $x \in X$ if $f(x_n) \rightarrow^{rg} f(x)$ whenever $\langle x_n \rangle \rightarrow^{rg} x$. If *f* is sequentially *rg*-continuous at all $x \in X$, then *f* is said to be sequentially *rg*-continuous.

Theorem 7.1: We have the following:

(i) Every rg-T₂ space is rg-US.

(ii) Every rg-US space is rg-T₁.

(iii) X is rg-US iff the diagonal set is a sequentially rg-closed subset of X x X.

- (iv) X is rg-T₂ iff it is both rg-R₁ and rg-US.
- (v) Every regular open subset of a *rg*-US space is *rg*-US.
- (vi) Product of arbitrary family of rg-US spaces is rg-US.

(vii) Every rg-S₂ space is rg-S₁ and every rg-S₁ space is rg-US.

Theorem 7.2: In a rg-US space every sequentially rg-compact set is sequentially rg-closed.

Proof: Let X be *rg*-US space. Let Y be a sequentially *rg*-compact subset of X. Let $\langle x_n \rangle$ be a sequence in Y. Suppose that $\langle x_n \rangle$ *rg*-converges to a point in X-Y. Let $\langle x_n \rangle$ be subsequence of $\langle x_n \rangle$ that *rg*-converges to a point $y \in Y$ since Y is sequentially *rg*-compact. Also, let a subsequence $\langle x_{np} \rangle$ of $\langle x_n \rangle$ *rg*-converge to $x \in X$ -Y. Since $\langle x_{np} \rangle$ is a sequence in the *rg*-US space X, x = y. Thus, Y is sequentially *rg*-closed set.

Theorem 7.3: If *f* and *g* are sequentially *rg*-continuous and Y is *rg*-US, then the set $A = \{x | f(x) = g(x)\}$ is sequentially *rg*-closed.

Proof: Let Y be *rg*-US. If there is a sequence $\langle x_n \rangle$ in A *rg*-converging to $x \in X$. Since f and g are sequentially *rg*-continuous, $f(x_n) \rightarrow^{rg} f(x)$ and $g(x_n) \rightarrow^{rg} g(x)$. Hence f(x) = g(x) and $x \in A$. Therefore, A is sequentially *rg*-closed.

VIII. Sequentially sub-rg-continuity:

Definition 8.1: A function *f* is said to be

(i) sequentially nearly rg-continuous if for each point $x \in X$ and each sequence $\langle x_n \rangle \rightarrow^{rg} x$ in X, there exists a subsequence $\langle x_{nk} \rangle$ of $\langle x_n \rangle$ such that $\langle f(x_{nk}) \rangle \rightarrow^{rg} f(x)$.

(ii) sequentially sub-rg-continuous if for each point $x \in X$ and each sequence $\langle x_n \rangle \rightarrow^{rg} x$ in X, there exists a subsequence $\langle x_{nk} \rangle$ of $\langle x_n \rangle$ and a point $y \in Y$ such that $\langle f(x_{nk}) \rangle \rightarrow^{rg} y$.

(iii) sequentially rg-compact preserving if f(K) is sequentially rg-compact in Y for every sequentially rg-compact set K of X.

Lemma 8.1: Every function *f* is sequentially sub-rg-continuous if Y is a sequentially rg-compact. **Proof:** Let $\langle x_n \rangle \rightarrow^{rg} x$ in X. Since Y is sequentially rg-compact, there exists a subsequence $\{f(x_{nk})\}$ of $\{f(x_n)\}$ rg-converging to a point $y \in Y$. Hence *f* is sequentially sub-rg-continuous.

Theorem 8.1: Every sequentially nearly rg-continuous function is sequentially rg-compact preserving.

Proof: Assume *f* is sequentially nearly rg-continuous and K any sequentially rg-compact subset of X. Let $\langle y_n \rangle$ be any sequence in *f* (K). Then for each positive integer n, there exists a point $x_n \in K$ such that $f(x_n) = y_n$. Since $\langle x_n \rangle$ is a sequence in the sequentially rg-compact set K, there exists a subsequence $\langle x_n \rangle$ of $\langle x_n \rangle$ rg-converging to a point $x \in K$. By hypothesis, *f* is sequentially nearly rg-continuous and hence there exists a subsequence $\langle x_j \rangle$ of $\langle x_{nk} \rangle$ such that $f(x_j) \rightarrow f(x)$. Thus, there exists a subsequence $\langle y_j \rangle$ of $\langle y_n \rangle$ rg-converging to $f(x) \in f(K)$. This shows that f(K) is sequentially rg-compact set in Y.

Theorem 8.2: Every sequentially *s*-continuous function is sequentially rg-continuous.

Proof: Let *f* be a sequentially *s*-continuous and $\langle x_n \rangle \rightarrow^s x \in X$. Then $\langle x_n \rangle \rightarrow^s x$. Since *f* is sequentially *s*-continuous, $f(x_n) \rightarrow^s f(x)$. But we know that $\langle x_n \rangle \rightarrow^s x$ implies $\langle x_n \rangle \rightarrow^{rg} x$ and hence $f(x_n) \rightarrow^{rg} f(x)$ implies *f* is sequentially rg-continuous.

Theorem 8.3: Every sequentially rg-compact preserving function is sequentially sub-rg-continuous.

Proof: Suppose *f* is a sequentially rg-compact preserving function. Let x be any point of X and $\langle x_n \rangle$ any sequence in X rgconverging to x. We shall denote the set $\{x_n | n = 1, 2, 3, ...\}$ by A and $K = A \cup \{x\}$. Then K is sequentially rg-compact since $(x_n) \rightarrow^{rg} x$. By hypothesis, *f* is sequentially rg-compact preserving and hence *f*(K) is a sequentially rg-compact set of Y. Since $\{f(x_n)\}$ is a sequence in *f*(K), there exists a subsequence $\{f(x_{nk})\}$ of $\{f(x_n)\}$ rg-converging to a point $y \in f(K)$. This implies that *f* is sequentially sub-rg-continuous.

Theorem 8.4: A function $f: X \to Y$ is sequentially rg-compact preserving iff $f_{/K}: K \to f(K)$ is sequentially sub-rg-continuous for each sequentially rg-compact subset K of X.

Proof: Suppose *f* is a sequentially rg-compact preserving function. Then f(K) is sequentially rg-compact set in Y for each sequentially rg-compact set K of X. Therefore, by Lemma 8.1 above, $f_{/K}$: $K \rightarrow f(K)$ is sequentially rg-continuous function.

Conversely, let K be any sequentially rg-compact set of X. Let $\langle y_n \rangle$ be any sequence in f(K). Then for each positive integer n, there exists a point $x_n \in K$ such that $f(x_n) = y_n$. Since $\langle x_n \rangle$ is a sequence in the sequentially rg-compact set K, there exists a subsequence $\langle x_{nk} \rangle$ of $\langle x_n \rangle$ rg-converging to a point $x \in K$. By hypothesis, $f_{/K}: K \rightarrow f(K)$ is sequentially sub-rg-continuous and hence there exists a subsequence $\langle y_{nk} \rangle$ of $\langle y_n \rangle$ rg-converging to a point $y \in f(K)$. This implies that f(K) is sequentially rg-compact set in Y. Thus, f is sequentially rg-compact preserving function.

The following corollary gives a sufficient condition for a sequentially sub-rg-continuous function to be sequentially rg-compact preserving.

Corollary 8.1: If f is sequentially sub-rg-continuous and f(K) is sequentially rg-closed set in Y for each sequentially rg-compact set K of X, then f is sequentially rg-compact preserving function.

IX. Acknowledgments:

The authors would like to thank the referees for their critical comments and suggestions for the development of this paper.

References:

- [1.] S.P. Arya and M.P. Bhamini, A note on semi-US spaces, Ranchi Uni. Math. J. Vol. 13 (1982), 60-68.
- [2.] S.Arya and T.Nour, Characterizations of s-normal spaces, I.J.P.A.M., 21(1990), 717-719.
- [3.] Ashish Kar and P.Bhattacharyya, Some weak separation axioms, Bull.Cal.Math.Soc.,82(1990)415-422.
- [4.] C.E. Aull, Sequences in topological spaces, Comm. Math. (1968), 329-36.

www.ijmer.com

ISSN: 2249-6645

www.ijmer.com

- [5.] S. Balasubramanian and P. Aruna Swathi Vyjayanthi, On *v*-separation axioms Inter. J. Math. Archive, Vol 2, No. 8(2011) 1464-1473.
- [6.] S. Balasubramanian and M. Lakshmi Sarada, gpr-separation axioms, Bull. Kerala Math. Association, Vol 8. No.1 (2011)157 – 173.
- [7.] Chawalit Boonpak-Generalized continuous functions from any topological space into product, Naresuan University journal (2003)11(2)93-98.
- [8.] H.F. Cullen, Unique sequential limits, Boll. UMI, 20 (1965) 123-127.
- [9.] Charles Dorsett, semi-T₁, semi-T₂ and semi-R₁ spaces, Ann. Soc. Sci. Bruxelles, 92 (1978) 143-158.
- [10.] K.K. Dube and B.L. namdeo, T₀-Limit point of a set and its implications, J.Tripura Math. Soc, Vol.9 (2007)85-96.
- [11.] W.Dunham, T_{1/2} Spaces, Kyungpook Math. J.17 (1977), 161-169.
- [12.] G.L.Garg and D.Sivaraj, presemiclosed mappings, Periodica Math.Hung., 19(2)(1988),97-106.
- [13.] S. R. Malghan and G. B. Navalagi, Almost-p-regular, p-completely regular and almost -p-completely regular spaces, Bull. Math. Soc. Sci. Math., R.S.R. Tome 34(82),nr.4 (1990),317-326.
- [14.] S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci., Bruxelles, 89 (1975), 395-402.
- [15.] G.B.Navalagi, Further properties of preseparation axioms, (Unpublished)
- [16.] G. B. Navalagi, P-Normal Almost-P-Normal, Mildly-P-Normal, Topology Atlas.
- [17.] G. B. Navalagi, Pre-US Spaces, Topology Atlas.
- [18.] T.Noiri, Almost continuity and some separation axioms, Glasnik Mat.,9(29)(1974),131-135.
- [19.] T. Noiri, Sequentially subcontinuous functions, Accad. Naz. Dei. Lincei. Estratto dei. Rendiconti. Della Classe di Sci. Fis. Mat. Nat. Series. VIII, Vol. LVIII, fase. 3 (1975), 370-376.
- [20.] Norman Levine, Semi-open sets and semi continuity in topological spaces, Amer.Math. Monthly, 70(1963), 36-41.
- [21.] Norman Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.3-21.
- [22.] Paul and Bhattacharyya, On p-normal spaces, Soochow Jour.Math., Vol.21. No.3, (1995), 273-289
- [23.] V.K.Sharma, generalized separation axioms, Acta Cienceia Indica
- [24.] V.K.Sharma, semigeneralized separation axioms, Acta Cienceia Indica
- [25.] M. K. Singal and S. P. Arya, On almost normal and almost completely regular spaces, Glasnik Mat.,5(25)(1970),141-152.
- [19.] M. K. Singal and A. R. Singal, Mildly normal spaces, Kyungpook Math. J., 13(1)(1973)27-31.
- [26.] P. Sundaram and K.Balachandran, Generalized continuous mappings in topological Spaces, Bull. Fukuoka Univ.Ed.PartIII, 42(1993),1
- [27.] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc., 60(1976)335-338.
- [28.] A. Wilansky, Between T₁ and T₂, Amer. Math. Monthly. 74 (1967), 261-266.