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I. Introduction: 
 In 1967, A. Wilansky has introduced the concept of US spaces. In 1968, C.E. Aull studied some separation axioms 

between the T1 and T2 spaces, namely, S1 and S2. Next, in 1982, S.P. Arya et al have introduced and studied the concept of 

semi-US spaces and also they made study of s-convergence, sequentially semi-closed sets, sequentially s-compact notions. 

G.B. Navlagi studied P-Normal Almost-P-Normal, Mildly-P-Normal and Pre-US spaces. Recently S. Balasubramanian and 

P.Aruna Swathi Vyjayanthi studied v-Normal Almost- v-Normal, Mildly-v-Normal and v-US spaces. Inspired with these we 

introduce rg-Normal Almost- rg-Normal, Mildly- rg-Normal, rg-US, rg-S1 and rg-S2. Also we examine rg-convergence, 

sequentially rg-compact, sequentially rg-continuous maps, and sequentially sub rg-continuous maps in the context of these 
new concepts. All notions and symbols which are not defined in this paper may be found in the appropriate references. 

Throughout the paper X and Y denote Topological spaces on which no separation axioms are assumed explicitly stated.  

 

II. Preliminaries: 

Definition 2.1: AX is called g-closed[resp: rg-closed] if clAU[resp: scl(A)  U] whenever A U and U is open[resp: 
semi-open] in X. 

 
Definition 2.2:  A space X is said to be 

(i) T1(T2) if for x  y in X, there exist (disjoint) open sets U; V in X such that xU and yV. 
(ii) weakly Hausdorff if each point of X is the intersection of regular closed sets of X.           

(iii) Normal [resp: mildly normal] if for any pair of disjoint [resp: regular-closed] closed sets F1 and F2 , there exist disjoint 

open sets U and V such that F1  U and F2  V.   

(iv) almost normal if for each closed set A and each regular closed set B  such that AB = , there exist disjoint open sets U 

and V such that AU and BV. 

(v) weakly regular if for each pair consisting of a regular closed set A and a point x such that A  {x} = , there exist 

disjoint open sets U and V such that x  U  and AV.    
(vi) A subset A of a space X is S-closed relative to X if every cover of A by semi-open sets of X has a finite subfamily 

whose closures cover A.        

(vii) R0 if for any point x and a closed set F with xF in X, there exists a open set G containing F but not x. 

(viii) R1 iff for x, y  X with cl{x}  cl{y}, there exist disjoint open sets U and V such that cl{x} U, cl{y}V. 
(ix) US-space if every convergent sequence has exactly one limit point to which it converges.  (x) pre-US space if every pre-

convergent sequence has exactly one limit point to which it converges.  

(xi) pre-S1 if it is pre-US and every sequence pre-converges with subsequence of pre-side points.      

(xii) pre-S2 if it is pre-US and every sequence in X pre-converges which has no pre-side point. 

(xiii)  is weakly countable compact if every infinite subset of X has a limit point in X. 

(xiv) Baire space if for any countable collection of closed sets with empty interior in X, their union also has empty interior in  

 

Definition 2.3: Let A X. Then a point x is said to be a  

(i)  limit point of A if each open set containing x contains some point y of A such that x  y.  

(ii) T0–limit point of A if each open set containing x contains some point y of A such that cl{x}  cl{y}, or equivalently, such 
that they are topologically distinct. 

(iii) pre-T0–limit point of A if each open set containing x contains some point y of A such that pcl{x}  pcl{y}, or 
equivalently, such that they are topologically distinct. 

 

On rg-Separation Axioms 
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Note 1: Recall that two points are topologically distinguishable or distinct if there exists an open set containing one of the 

points but not the other; equivalently if they have disjoint closures. In fact, the T0–axiom is precisely to ensure that any two 

distinct points are topologically distinct. 

 

Example 1: Let X = {a, b, c, d} and τ = {{a}, {b, c}, {a, b, c}, X, }. Then b and c are the limit points but not the T0–limit 

points of the set {b, c}. Further d is a T0–limit point of {b, c}. 
 

Example 2: Let X = (0, 1) and τ = {, X, and Un = (0, 1–1⁄n), n = 2, 3, 4,. . . }. Then every point of X is a limit point of X. 

Every point of XU2 is a T0–limit point of X, but no point of U2 is a T0–limit point of X. 
 

Definition 2.4: A set A together with all its T0–limit points will be denoted by T0–clA. 

 

Note 2: i. Every T0–limit point of a set A is a limit point of the set but converse is not true. 

 ii. In T0–space both are same. 

 

Note 3: R0–axiom is weaker than T1–axiom. It is independent of the T0–axiom. However T1 = R0+T0 

 

Note 4: Every countable compact space is weakly countable compact but converse is not true in general. However, a T1–

space is weakly countable compact iff it is countable compact. 

 
Definition 3.01: In X, a point x is said to be a rg-T0–limit point of A if each rg-open set containing x contains some point y 

of A such that rgcl{x}  rgcl{y}, or equivalently; such that they are topologically distinct with respect to rg-open sets. 

III. Example 

 Let X = {a, b, c} and  = {, b, a, b, b, c, X. For A = {a, b}, a is rg-T0–limit point. 

 

Definition 3.02: A set A together with all its rg-T0–limit points is denoted by T0-rgcl (A) 

 

Lemma 3.01: If x is a rg-T0–limit point of a set A then x is rg-limit point of A. 

 
Lemma 3.02: If X is rgT0 [resp: rT0–]–space then every rg-T0–limit point and every rg-limit point are equivalent. 

 

Theorem 3.03: For x ≠ y X,  

(i) X is a rg-T0–limit point of {y} iff xrgcl{y} and yrgcl{x}. 

(ii) X is not a rg-T0–limit point of {y} iff either xrgcl {y} or rgcl{x} = rgcl{y}. 

(iii) X is not a rg-T0–limit point of {y} iff either xrgcl{y} or yrgcl{x}. 
 

Corollary 3.04:  

(i) If x is a rg-T0–limit point of {y}, then y cannot be a rg-limit point of {x}. 

(ii) If rgcl{x} = rgcl{y}, then neither x is a rg-T0–limit point of {y} nor y is a rg-T0–limit point of {x}. 

(iii) If a singleton set A has no rg-T0–limit point in X, then rgclA = rgcl{x} for all x rgcl{A}. 
 

Lemma 3.05: In X, if x is a rg-limit point of a set A, then in each of the following cases x becomes rg-T0–limit point of A ({x} 

≠ A). 

(i) rgcl{x}  rgcl{y} for yA, x  y. 
(ii) rgcl{x} = {x} 

(iii) X is a rg-T0–space. 

(iv) A{x} is rg-open 
  

IV. rg-T0 AND rg-Ri AXIOMS, i = 0,1: 
 In view of Lemma 3.5(iii), rg-T0–axiom implies the equivalence of the concept of limit point with that of rg-T0–

limit point of the set. But for the converse, if x rgcl{y} then rgcl{x} ≠ rgcl{y} in general, but if x is a rg-T0–limit point of 
{y}, then rgcl{x} = rgcl{y} 

 

Lemma 4.01: In X, a limit point x of {y} is a rg-T0–limit point of {y} iff  rgcl{x} ≠ rgcl{y}. 

This lemma leads to characterize the equivalence of rg-T0–limit point and rg-limit point of a set as rg-T0–axiom. 

 

Theorem 4.02: The following conditions are equivalent: 
(i) X is a rg-T0  space 

(ii) Every rg-limit point of a set A is a rg-T0–limit point of A 

(iii) Every r-limit point of a singleton set {x} is a rg-T0–limit point of {x} 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.2, Issue.6, Nov-Dec. 2012 pp-4001-4009            ISSN: 2249-6645 

www.ijmer.com                                                                            4003 | Page 

(iv) For any x, y in X, x ≠ y if x rgcl{y}, then x is a rg-T0–limit point of  {y} 
 

Note 5: In a rg-T0–space X, if every point of X is a r-limit point, then every point is rg-T0–limit point. But if each point is a 

rg-T0–limit point of X it is not necessarily a rg-T0–space 

 

Theorem 4.03: The following conditions are equivalent: 
(i) X is a rg-R0  space 

(ii) For any x, y in X, if x rgcl{y}, then x is not a rg-T0–limit point of {y} 
(iii) A  point rg-closure set has no rg-T0–limit point in X 

(iv) A singleton set has no rg-T0–limit point in X. 

 

Theorem 4.04: In a rg-R0 space X, a point x is rg-T0–limit point of A iff every rg-open set containing x contains infinitely 

many points of A with each of which x is topologically distinct 

 

Theorem 4.05: X is rg-R0 space iff a set A of the form A =  rgcl{xi i =1 to n} a finite union of point closure sets has no rg-T0–
limit point. 

 

Corollary 4.06: The following conditions are equivalent: 

(i) X is a rR0 space 

(ii) For any x, y in X, if x rgcl{y}, then x is not a rg-T0–limit point of {y} 
(iii) A  point rg-closure set has no rg-T0–limit point in X 

(iv) A singleton set has no rg-T0–limit point in X. 
 

Corollary 4.07: In an rR0–space X,  

(i) If a point x is rg-T0–[resp:rT0–] limit point of a set then every rg-open set containing x contains infinitely many points of 

A with each of which x is topologically distinct. 

(ii)  If A =  rgcl{xi, i =1 to n} a finite union of point closure sets has no rg-T0–limit point. 

(iii) If X =  rgcl{xi, i =1 to n} then X  has no rg-T0–limit point. 
 

Various characteristic properties of rg-T0–limit points studied so far is enlisted in the following theorem. 

 

Theorem 4.08: In a rg-R0–space, we have the following: 

(i)  A singleton set has no rg-T0–limit point in X. 

(ii)  A finite set has no rg-T0–limit point in X. 

(iii)  A point rg-closure has no set rg-T0–limit point in X 

(iv)  A finite union point rg-closure sets have no set rg-T0–limit point in X. 

(v)  For x, y X, xT0– rgcl{y} iff x = y. 

(vi)  x ≠ y X, iff neither x is rg-T0–limit point of {y}nor y is rg-T0–limit point of {x} 

(vii)  For any x, y X, x ≠ y iff T0– rgcl{x} T0– rgcl{y} = . 

(viii) Any point xX is a rg-T0–limit point of a set A in X iff every rg-open set containing x contains  infinitely many 
 points of A with each which x is topologically distinct. 

 

Theorem 4.09:  X is rg-R1 iff for any rg-open set U in X and points x, y such that xXU, yU, there exists a rg-open set V 

in X such that yVU, xV. 
 
Lemma 4.10: In  rg-R1 space X, if x is a rg-T0–limit point of X, then for any non empty rg-open set U, there exists a non 

empty rg-open set V such that VU, x rgcl(V). 
 

Lemma 4.11: In a rg- regular space X, if x is a rg-T0–limit point of X, then for any non empty rg-open set U, there exists a 

non empty rg-open set V such that rgcl(V)U, x rgcl(V). 
 

Corollary 4.12: In a regular space X,  If x is a rg-T0–[resp: T0–]limit point of X, then for any URGO(X), there exists a 

non empty rg-open set V such that rgcl(V)U, x rgcl(V). 
 

Theorem 4.13: If X is a rg-compact rg-R1-space, then X is a Baire Space. 

Proof: Routine 

 

Corollary 4.14: If X is a compact rg-R1-space, then X is a Baire Space. 

 

Corollary 4.15: Let X be a rg-compact rg-R1-space. If {An} is a countable collection of rg-closed sets in X, each An having 

non-empty rg-interior in X, then there is a point of X which is not in any of the An. 
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Corollary 4.16: Let X be a rg-compact R1-space. If {An} is a countable collection of rg-closed sets in X, each An having non-

empty rg- interior in X, then there is a point of X which is not in any of the An. 

 

Theorem 4.17: Let X be a non empty compact rg-R1-space. If every point of X is a rg-T0–limit point of X then X is 
uncountable. 

Proof: Since X is non empty and every point is a rg-T0-limit point of X, X must be infinite. If X is countable, we construct a 

sequence of rg-open sets {Vn} in X as follows: 

Let X = V1, then for x1 is a rg-T0-limit point of X, we can choose a non empty rg-open set V2 in X such that V2 V1 and x1 

rgclV2. Next for x2 and non empty rg-open set V2, we can choose a non empty rg-open set V3 in X such that V3 V2 and x2 
rgclV3. Continuing this process for each xn and a non empty rg-open set Vn,  we can choose a non empty rg-open set Vn+1 in 

X such that Vn+1 Vn and xn rgclVn+1.  

 Now consider the nested sequence of rg-closed sets rgclV1  rgclV2  rgclV3 ……… rgclVn . . .   Since X is 
rg-compact and {rgclVn} the sequence of rg-closed sets satisfies finite intersection property. By Cantors intersection 

theorem, there exists an x in X such that x rgclVn. Further xX and xV1, which is not equal to any of the points of X. 
Hence X is uncountable. 

 

Corollary 4.18: Let X be a non empty rg-compact rg-R1-space. If every point of X is a rg-T0–limit point of X then X is 

uncountable 

V. rg–T0-IDENTIFICATION SPACES AND rg–SEPARATION AXIOMS 

Definition 5.01: Let  be the equivalence relation on X defined by xy iff rgcl{x} =  rgcl{y} 
 

Problem 5.02: show that xy iff rgcl{x} = rgcl{y} is an equivalence relation 
 

Definition 5.03: (X0, Q(X0)) is called the rg-T0–identification space of (X, ), where X0 is the set of equivalence classes of  

 and Q(X0) is the decomposition topology on X0. 

Let PX: (X, ) (X0, Q(X0)) denote the natural map 
 

Lemma 5.04: If xX and A  X, then x rgclA iff every rg-open set containing x intersects A. 

 

Theorem 5.05: The natural map PX:(X,) (X0, Q(X0)) is closed, open and PX –1(PX(O)) = O for all OPO(X,) and (X0, 
Q(X0)) is  rg-T0 

Proof: Let OPO(X, ) and C PX(O). Then there exists xO such that PX(x) = C. If yC, then rgcl{y} = rgcl{x}, which 

implies yO. Since  PO(X,), then PX –1(PX(U)) = U for all U, which implies PX  is closed and open. 

Let G, HX0 such that G  H; let xG and yH. Then rgcl{x}   rgcl{y}, which implies xrgcl{y} or yrgcl{x}, say 

xrgcl{y}. Since PX is continuous and open, then GA = PX{Xrgcl{y}}PO(X0, Q(X0)) and HA 
 

Theorem 5.06: The following are equivalent:  

(i) X is rgR0 (ii) X0 = {rgcl{x}: xX} and (iii) (X0, Q(X0)) is rgT1 

Proof: (i)  (ii)  Let xCX0. If yC, then yrgcl{y} = rgcl{x}, which implies Crgcl{x}. If yrgcl{x}, then xrgcl{y}, 

since, otherwise, xXrgcl{y}PO(X,) which implies rgcl{x}Xrgcl{y}, which is a contradiction. Thus, if yrgcl{x}, 

then xrgcl{y}, which implies  rgcl{y} = rgcl{x} and yC. Hence X0 = {rgcl{x}: xX} 

(ii)(iii) Let A  BX0. Then there exists x, yX such that A = rgcl{x}; B = rgcl{y}, and rgcl{x}rgcl{y} = . Then AC 

= PX (Xrgcl{y})PO(X0, Q(X0)) and BC. Thus (X0, Q(X0)) is rg-T1 

(iii)  (i) Let xURGO(X). Let yU and Cx, Cy X0 containing x and y respectively. Then x rgcl{y}, implies Cx  Cy 

and there exists rg-open set A such that CxA and CyA. Since PX is continuous and open, then yB = PX
–1(A) xRGO(X) 

and xB, which implies yrgcl{x}. Thus rgcl{x} U. This is true for all rgcl{x} implies rgcl{x} U. Hence X is rg-R0 
 

Theorem 5.07: (X,  ) is rg-R1 iff (X0, Q(X0)) is rg-T2 
The proof is straight forward using theorems 5.05 and 5.06 and is omitted 
 

Theorem 5.08: X is rg-Ti; i = 0,1,2. iff there exists a rg-continuous, almost–open, 1–1 function from X into a rg-Ti  space ;  i 

= 0,1,2. respectively.  

 

Theorem 5.09: If is rg-continuous, rg-open, and x, yX such that rgcl{x} = rgcl{y}, then rgcl{(x)} = rgcl{(y)}. 
 

Theorem 5.10: The following are equivalent 

(i)   X is rg-T0  

(ii)  Elements of X0 are singleton sets and  
(iii)There exists a rg-continuous, rg-open, 1–1 function:X Y, where  Y is rg-T0 

Proof:  (i) is equivalent to (ii) and (i)  (iii) are straight forward and is omitted.  
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(iii)  (i)  Let x, yX such that (x)  (y), which implies rgcl{(x)}  rgcl{(y)}. Then by theorem 5.09, rgcl{x}  

rgcl{y}. Hence (X,  ) is rg-T0 

 

Corollary 5.11: X is rg-Ti ;  i = 1,2 iff X is rg-Ti –- 1 ;  i = 1,2, respectively, and there exists a rg-continuous , rg-open, 1–1 

function :X into a rg-T0  space. 
 

Definition 5.04: is point–rg-closure 1–1 iff for x, yX such that rgcl{x}  rgcl{y}, rgcl{(x)}  rgcl{(y)}. 
 

Theorem 5.12: (i)If :X Y is point– rg-closure 1–1 and (X,  ) is rg-T0 , then  is 1–1 

(ii)If:X Y, where X and Y are rg-T0  then  is point– rg-closure 1–1 iff  is 1–1 

The following result can be obtained by combining results for rg-T0– identification spaces, rg-induced functions and rg-Ti 

spaces;  i = 1,2. 

 

Theorem 5.13: X is rg-Ri ;  i = 0,1 iff there exists a rg-continuous , almost–open  point– rg-closure 1–1 function : (X,  ) 
into a rg-Ri  space;  i = 0,1 respectively. 

 

VI. rg-Normal; Almost rg-normal and Mildly rg-normal spaces 

Definition 6.1: A space X is said to be rg-normal if for any pair of disjoint closed sets F1 and F2 , there exist disjoint rg-open 

sets U and V such that F1  U and F2  V. 

 

Example 4:  Let X = {a, b, c} and τ = {φ, {a}, {b, c}, X }. Then X is rg-normal. 

Example 5:  Let X = {a, b, c, d} and τ = {φ, {b, d}, {a, b, d}, {b, c, d}, X}. Then X is rg-normal and is not 

normal. 

Example 6: Let X = a, b, c, d with  = {, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X} is rg-normal, 
normal and almost normal. 

We have the following characterization of rg-normality. 

 
Theorem 6.1: For a space X the following are equivalent: 

(i)   X is rg-normal. 

(ii)  For every pair of open sets U and V whose union is X, there exist rg-closed sets A and B such that AU, B V and AB 
= X. 

(iii) For every closed set F and every open set G containing F, there  exists a rg-open set U such that FUrgcl(U)G. 

Proof: (i)(ii): Let U and V be a pair of open sets in a rg-normal space X such that X = UV. Then X–U, X–V are disjoint 

closed sets. Since X is rg-normal there exist disjoint rg-open sets U1 and V1 such that X–UU1 and X-VV1. Let A = X–U1, B 

= X–V1. Then A and B are rg-closed sets such that AU, BV and AB = X. 

(ii) (iii): Let F be a closed set and G be an open set containing F. Then X–F and G are open sets whose union is X. Then 

by (b), there exist rg-closed sets W1 and W2 such that W1   X–F and W2  G and    W1W2 = X. Then F X–W1, X–G  X–

W2 and (X–W1)(X–W2) = . Let U = X–W1 and V= X–W2. Then U and V are disjoint rg-open sets such that FUX–VG. 

As X–V is rg-closed set, we have rgcl(U) X–V and FUrgcl(U)G. 

(iii)  (i): Let F1 and F2 be any two disjoint closed sets of X. Put G = X–F2, then F1G = . F1G where G is an open set. 

Then by (c), there exists a rg-open set U of X such that F1  U  rgcl(U) G. It follows that F2  X–rgcl(U) = V, say, then 

V is rg-open and UV = . Hence F1 and F2 are separated by rg-open sets U and V. Therefore X is rg-normal. 

 

Theorem 6.2: A regular open subspace of a rg-normal space is rg-normal. 

 

Definition 6.2: A function f:XY is said to be almost–rg-irresolute if for each x in X and each rg-neighborhood V of f(x), 

rgcl(f –1(V)) is a rg-neighborhood of x. 
Clearly every rg-irresolute map is almost rg-irresolute. 

The Proof of the following lemma is straightforward and hence omitted. 

 

Lemma 6.1: f is almost rg-irresolute iff f-1(V)  rg-int(rgcl(f-1(V))))  for every VRGO(Y). 

 

Lemma 6.2: f is almost rg-irresolute iff f(rgcl(U))  rgcl(f(U)) for every URGO(X). 

Proof: Let URGO(X). If yrgcl(f(U)). Then there exists V RGO(y) such that Vf(U) = . Hence f -1(V)U= . Since 

URGO(X), we have rg-int(rgcl(f-1(V)))rgcl(U) = . By lemma 6.1, f -1(V) rgcl(U) =  and hence  Vf(rgcl(U)) = . 

This implies that yf(rgcl(U)). 
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Conversely, if VRGO(Y), then W = X- rgcl(f-1(V))) RGO(X). By hypothesis, f(rgcl(W)) rgcl (f(W))) and hence X- rg-

int(rgcl(f-1(V))) = rgcl(W)f-1(rgcl(f(W)))f(rgcl[f(X-f-1(V))]) f –1[rgcl(Y-V)] = f -1(Y-V) = X-f-1(V). Therefore f-1(V) rg-
int(rgcl(f-1(V))). By lemma 6.1, f is almost rg-irresolute. 

  
Theorem 6.3: If f is M-rg-open continuous almost rg-irresolute, X is rg-normal, then Y is rg-normal.  

Proof: Let A be a closed subset of Y and B be an open set containing A. Then by continuity of f, f
-1

(A) is closed and f
-1

(B) is 

an open set of X such that f-1 (A)  f-1(B). As X is rg-normal, there exists a rg-open set U in X such that f-1(A)  U  

rgcl(U) f-1(B). Then f(f-1(A)) f(U)  f(rgcl(U))   f(f-1(B)). Since f is M-rg-open almost rg-irresolute surjection, we obtain 

A f(U)  rgcl(f(U))  B. Then again by Theorem 6.1 the space Y is rg-normal. 

 

Lemma 6.3: A mapping f  is M-rg-closed iff for each subset B in Y and for each rg-open set U in X containing f-1(B), there 

exists a rg-open set V containing B such that f-1(V)U. 

 
Theorem 6.4: If f is M-rg-closed continuous, X is rg-normal space, then Y is rg-normal. 

Proof of the theorem is routine and hence omitted. 

 

Theorem 6.5: If f is an M-rg-closed map from a weakly Hausdorff rg-normal space X onto a space Y such that f-1(y) is S-

closed relative to X for each yY, then Y is rg-T2. 

Proof: Let y1  y2Y. Since X is weakly Hausdorff, f -1(y1) and f -1(y2) are disjoint closed subsets of X by lemma 2.2 [12.]. 

As X is rg-normal, there exist disjoint Vi RGO(X, f -1(yi)) for i = 1, 2. Since f is M-rg-closed, there exist disjoint 

UiRGO(Y, yi) and f
 -1

(Ui)  Vi for i = 1, 2. Hence Y is rg-T2. 
 

Theorem 6.6: For a space X we have the following: 

(a) If X is normal then for any disjoint closed sets A and B, there exist disjoint rg-open sets U, V such that AU and BV; 
(b) If X is normal then for any closed set A and any open set V containing A, there exists an rg-open set U of X such that 

AUrgcl(U) V. 

 

Definition 6.2: X is said to be almost rg-normal if for each closed set A and each regular closed set B with AB = , there 

exist disjoint U; VRGO(X) such that AU and BV. 
Clearly, every rg-normal space is almost rg-normal, but not conversely in general. 

 

Example 7:  Let X = {a, b, c} and τ = {φ, {a}, {a, b}, {a, c}, X}. Then X is almost rg-normal and rg-

normal. 

Theorem 6.7: For a space X the following statements are equivalent: 

(i)   X is almost rg-normal 

(ii)  For every pair of sets U and V, one of which is open and the other is regular open whose union is X, there exist rg-closed 

sets G and H such that GU, HV and GH = X. 

(iii) For every closed set A and every regular open set B containing A, there is a rg-open set V such that AVrgcl(V)B. 

Proof: (i)(ii) Let U and VRO(X) such that UV = X. Then (X-U) is closed set and (X-V) is regular closed set with 

(X-U)(X-V) = . By almost rg-normality of X, there exist disjoint rg-open sets U1 and V1 such that X-U  U1 and X-V  

V1. Let G = X- U1 and H = X-V1. Then G and H are rg-closed sets such that GU, HV and GH = X. 

(ii)  (iii) and (iii)  (i) are obvious. 
 

One can prove that almost rg-normality is also regular open hereditary. 

Almost rg-normality does not imply almost rg-regularity in general. However, we observe that every almost rg-normal rg-R0 

space is almost rg-regular. 

 

Theorem 6.8: Every almost regular, rg-compact space X is almost rg-normal. 

 

Recall that a function f : X Y is called rc-continuous if inverse image of regular closed set is regular closed. 

 

Theorem 6.9: If f is continuous M-rg-open rc-continuous and almost rg-irresolute surjection from an almost rg-normal space 

X onto a space Y, then Y is almost rg-normal. 

 

Definition 6.3: X is said to be mildly rg-normal if for every pair of disjoint regular closed sets F1 and F2 of X, there exist 

disjoint rg-open sets U and V such that F1  U and F2   V.  

 

Example 8: Let X = a, b, c, d with  = {, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X} is Mildly rg-normal. 

 

Theorem 6.10: For a space X the following are equivalent. 
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(i)    X is mildly rg-normal.  

(ii)   For every pair of regular open sets U and V whose union is X, there exist rg-closed sets G and H such that G  U, H  

V and GH = X. 
(iii)  For any regular closed set A and every regular open set B containing A, there exists a rg-open set U such that 

AUrgcl(U)B. 

(iv)  For every pair of disjoint regular closed sets, there exist rg-open sets U and V such that AU, BV and rgcl(U) 

rgcl(V) = . 
Proof:  This theorem may be proved by using the arguments similar to those of Theorem 6.7. 

           Also, we observe that mild rg-normality is regular open hereditary. 

 

Definition 6.4:  A space X is weakly rg-regular if for each point x and a regular open set U containing {x}, there is a rg-open 

set V such that xV  clV  U. 

 

Example 9: Let X = {a, b, c} and  = {, b,a, b,b, c, X. Then X is weakly rg-regular. 

 

Example 10: Let X = {a, b, c} and  = {, a,b,a, b, X. Then X is not weakly rg-regular. 

 

Theorem 6.11: If f : X  Y is an M-rg-open rc-continuous and almost rg-irresolute function from a mildly rg-normal space 
X onto a space Y, then Y is mildly rg-normal. 

Proof:  Let A be a regular closed set and B be a regular open set containing A. Then by rc-continuity of f,   f –1(A) is a 

regular closed set contained in the regular open set f
-1

(B). Since X is mildly rg-normal, there exists a rg-open set V such that 

f-1(A) V rgcl(V)  f –1(B)  by Theorem 6.10. As f is M-rg-open and almost rg-irresolute surjection, f(V)RGO(Y) and 

A f(V)  rgcl(f(V)) B. Hence Y is mildly rg-normal. 
 

Theorem 6.12: If f:XY is rc-continuous, M-rg-closed map and X is mildly rg-normal space, then Y is mildly rg-normal. 

VII. rg-US spaces: 
Definition 7.1: A point y is said to be a 

(i) rg-cluster point of sequence <xn> iff <xn> is frequently in every rg-open set containing x.  The set of all rg-cluster points 

of <xn> will be denoted by rg-cl(xn). 

(ii)  rg-side point of a sequence <xn> if y is a rg-cluster point of <xn> but no subsequence of <xn> rg-converges to y. 

 

Definition 7.2:A sequence <xn> is said to be rg-converges to a point x of X, written as <xn> rg x if <xn> is eventually in 
every rg-open set containing x. 
Clearly, if a sequence <xn> r-converges to a point x of X, then <xn> rg-converges to x. 

 

Definition 7.3: A subset F is said to be  

(i)  sequentially rg-closed if every sequence in F rg-converges to a point in F. 

(ii) sequentially rg-compact if every sequence in F has a subsequence which rg-converges to a point in F. 

 

Definition 7.4: X is said to be 

(i)  rg-US if every sequence <xn> in X rg-converges to a unique point. 

(ii) rg-S1 if it is rg-US and every sequence <xn> rg-converges with subsequence of <xn> rg-side points. 

(iii) rg-S2 if it is rg-US and every sequence <xn> in X rg-converges which has no rg-side point. 

 

Definition 7.5: A function f is said to be sequentially rg-continuous at xX if f(xn) 
rg f(x) whenever <xn>

rg x. If f is 

sequentially rg-continuous at all xX, then f is said to be sequentially rg-continuous. 

 

Theorem 7.1: We have the following: 
(i)    Every rg-T2 space is rg-US. 

(ii)   Every rg-US space is rg-T1. 

(iii)  X is rg-US iff the diagonal set is a sequentially rg-closed subset of X x X. 

(iv)  X is rg-T2 iff it is both rg-R1 and rg-US. 

(v)   Every regular open subset of a rg-US space is rg-US. 

(vi)  Product of arbitrary family of rg-US spaces is rg-US. 

(vii) Every rg-S2 space is rg-S1 and every rg-S1 space is rg-US. 

 

Theorem 7.2: In a rg-US space every sequentially rg-compact set is sequentially rg-closed. 

Proof: Let X be rg-US space.  Let Y be a sequentially rg-compact subset of X.  Let <xn> be a sequence in Y. Suppose that 

<xn> rg-converges to a point in X-Y.  Let <xnp> be subsequence of <xn> that rg-converges to a point y  Y since Y is 

sequentially rg-compact.  Also, let a subsequence <xnp> of <xn> rg-converge to x  X-Y.  Since <xnp> is a sequence in the 
rg-US space X, x = y. Thus, Y is sequentially rg-closed set. 
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Theorem 7.3: If f and g are sequentially rg-continuous and Y is rg-US, then the set A = {x | f(x) = g(x)} is sequentially rg-

closed. 

Proof: Let Y be rg-US. If there is a sequence <xn> in A rg-converging to x  X. Since f and g are sequentially rg-

continuous, f(xn) 
rg f(x) and g(xn) 

rg g(x). Hence f(x) = g(x) and xA. Therefore, A is sequentially rg-closed. 

VIII. Sequentially sub-rg-continuity: 
Definition 8.1: A function f is said to be 

(i)    sequentially nearly rg-continuous if for each point xX and each sequence <xn> rg x in X, there exists a subsequence 

<xnk> of  <xn> such that <f(xnk)>
 rg f(x). 

(ii)  sequentially sub-rg-continuous if for each point xX and each sequence <xn> rg x in X, there exists a subsequence 

<xnk> of <xn> and a point yY such that <f(xnk)> rg y. 
(iii) sequentially rg-compact preserving if f(K) is sequentially rg-compact in Y for every sequentially rg-compact set K of X. 

 

Lemma 8.1: Every function f is sequentially sub-rg-continuous if Y is a sequentially rg-compact. 

Proof: Let <xn> rg x in X. Since Y is sequentially rg-compact, there exists a subsequence {f(xnk)} of {f(xn)} rg-converging 

to a point yY. Hence f is sequentially sub-rg-continuous. 

 

Theorem 8.1: Every sequentially nearly rg-continuous function is sequentially rg-compact preserving. 

Proof: Assume f is sequentially nearly rg-continuous and K any sequentially rg-compact subset of X. Let <yn> be any 

sequence in f (K). Then for each positive integer n, there exists a point xn  K such that f(xn) = yn. Since <xn> is a sequence 

in the sequentially rg-compact set K, there exists a subsequence <xnk> of <xn> rg-converging to a point x  K. By 

hypothesis, f is sequentially nearly rg-continuous and hence there exists a subsequence <xj> of <xnk> such that f(xj)
 rg f(x). 

Thus, there exists a subsequence <yj> of <yn> rg-converging to f(x)f(K). This shows that f(K) is sequentially rg-compact 
set in Y. 

 

Theorem 8.2: Every sequentially s-continuous function is sequentially rg-continuous. 

Proof: Let f be a sequentially s-continuous and <xn> s xX. Then <xn> s x. Since f is sequentially s-continuous, f(xn)
s 

f(x). But we know that <xn>
s x implies <xn> rg x and hence f(xn)

 rg f(x) implies f is sequentially rg-continuous. 

 

Theorem 8.3: Every sequentially rg-compact preserving function is sequentially sub-rg-continuous. 

Proof: Suppose f is a sequentially rg-compact preserving function. Let x be any point of X and <xn> any sequence in X rg-

converging to x. We shall denote the set {xn | n= 1,2,3, …} by A  and K = A  {x}. Then K is sequentially rg-compact since 

(xn) 
rg x. By hypothesis, f is sequentially rg-compact preserving and hence f(K) is a sequentially rg-compact set of Y. Since 

{f(xn)} is a sequence in f(K), there exists a subsequence {f(xnk)} of {f(xn)} rg-converging to a point yf(K). This implies that 
f is sequentially sub-rg-continuous. 

 

Theorem 8.4: A function f: X Y is sequentially rg-compact preserving iff f/K: K  f(K) is sequentially sub-rg-continuous 
for each sequentially rg-compact subset K of X.  

Proof: Suppose f is a sequentially rg-compact preserving function. Then f(K) is sequentially rg-compact set in Y for each 

sequentially rg-compact set K of X. Therefore, by Lemma 8.1 above, f/K: K f(K) is sequentially rg-continuous function.  
Conversely, let K be any sequentially rg-compact set of X. Let <yn> be any sequence in f(K). Then for each positive integer 

n, there exists a point xnK such that f(xn) = yn. Since <xn> is a sequence in the sequentially rg-compact set K, there exists a 

subsequence <xnk> of <xn> rg-converging to a point x  K. By hypothesis, f /K: K f(K) is sequentially sub-rg-continuous 

and hence there exists a subsequence <ynk> of <yn> rg-converging to a point y f(K).This implies that f(K) is sequentially 
rg-compact set in Y. Thus, f is sequentially rg-compact preserving function. 

The following corollary gives a sufficient condition for a sequentially sub-rg-continuous function to be sequentially rg-

compact preserving. 

 

Corollary 8.1: If f  is sequentially sub-rg-continuous and f(K) is sequentially rg-closed set in Y for each sequentially rg-

compact set K of X, then f is sequentially rg-compact preserving function. 
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