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ABSTRACT:The algorithm for computation of minimal 
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I. INTRODUCTION  
 Linear Diophantine equations and also their 

systems are often present in a wide variety of sciences with 

heavy usage of computations. In order to solve many 
different systems these equations are brought to taskof 

integerlinear programming, pattern 

recognitionandmathematicalgames[2], cryptography[3], 

unification[4], parallelizationof cycles[5], etc.  In this case, 

the sets of parameters of the equations are usuallysetsof 

integers, residue ringor residue field of any number modulo 

and sets in which solutions to the equations are found in 

ringsof integers, the set ofnatural 

numbersorfinitefieldsandresidue rings.  Algorithms 

forfinding solutionsoflinearDiophantineequations system 

(SLDE) in the setof natural numbershave been described 
inmany publications [6] -[12]. In this work we will focus on 

analyzes of the computation of SLDE algorithm in a ringof 

integers. The basisof the proposedalgorithmis 

theTSSmethodusedfor the constructing the minimalsetof 

solutionsforming ahomogeneous system of 

linearDiophantineequations(HSLDE) on thesetof natural 

numbers[1]. 

 

II. PRELIMINARIES 

The systems of linear Diophantine equations. The system 

of linear Diophantine equations in a ring Z is described as 

follows: 

1 11 1 1 1

2 21 1 2 2

1 1

( ) ... ,

( ) ... ,

... ... ... ... ... ... ...

( ) ... ,

n n

n n

q q qn n q

L x a x a x b

L x a x a x b
S

L x a x a x b

   


   
 

    

 (1) 

Where: , ,ij i ia b x Z , 1,...,i n , 1,...,j q .  Solution to 

SLDE (1) we will call a vector 1 2( , ,..., )nc c c c ,  which by 

substitution in ( )iL x  for the value jx , jc transforms 

( )i iL c b  into identity for all 1,2,...,i q . SLDE is called  

Homogenous (HSLDE), where all ib  are equal to 0, 

otherwise the system is called inhomogeneous (ISLDE). 

A. 2.1. The TSS method of HSLDE solution 

Let’s consider HSLDE S  presented as (1) and 

1 (1,0,...,0)e  , 2 (0,1,...,0)e  , …, (0,...,0,1)ne   which 

are unitary vectors of canonical set base nZ . Let’s have M

as solutions set for the system S . Since it is homogeneous, 

than the zero vectors is always valid solution. Such a 

solution is called trivial and any other non- zero solution of 

S  is called non-trivial. The HSLDE is called contrary, only 

when the set M  is composed exclusively with the trivial 

solution; otherwise it is called non contrary. 

 The TSS method and its implementation for linear 

equations systems in a set of natural numbers have been 

described in detail in [1]. Let’s consider a modification of 

this method in case of the ring of integer numbers Z . 

 

The case of homogeneous linear Diophantine equation 

(HLDE). Let’s define the HLDE with the following form:  

1 1( ) ... ... 0,i i n nL x a x a x a x        (2) (2) 

Where: , , 1,...,i ia x Z i n  . 

Let’s consider a set of canonical base vectors 

1{ ,..., }nM e e  and a function 

1 1 2 2( ) ... n nL x a x a x a x     HLDE (2). Without 

limiting the generality, assume that in the function ( )L x  the 

first non-zero coefficient is 1a  and  1 0a  .  

Let’s build a set of vectors 

1 2 1 2 3 1{ ( , ,0,...,0), ( ,0, ,0,...,0),B e a a e a a    

1 1 0( ,0,0,...,0, )}q qe a a M    where 0 { : ( ) 0}r rM e L e  , 

0ja  , while, if for some ia  GCD (Great Common 

Divisor) 1 1( , ) 1a a  , than the coordinates of this vector can 

be reduced to this GCD. Selected non-zero coefficient 1a  

will be called a primary. This way, one can assume, that all 

vectors in the set B  are such, that ia  and 1a  are mutually 

simple. In other words, set B  is constructed by combining 

the first non-zero coefficient with the last non-zero 

coefficient, having different signs and being complemented 

with canonical base vectors, which correspond to zero 

coefficients HLDE (2). This kind of constructed set is 

called the TSS set or base set. It is obvious that vectors 
from the set B  are solutions of HLDE (2), and the set B  is 

closed in a respect to summation, subtraction and 

multiplication by an element from the ring Z . 

Lemma 1. Let 1 2( , ,..., )qx c c c - be a some solution of 

HLDE (2), than, if x B , than x  can be represented as a 

nonnegative linear combination in the form: 

1 2 1 3 2 1... q qa x c e c e c e     , 

where: , 1,..., 1ie B i q   .  

Proof.If 1( ,..., )qx c c M  , than the vector has a following 

representation: 

The Computational Algorithm for Supported Solutions Set of 

Linear Diophantine Equations Systems in a Ring of Integer 

Numbers 
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1 2 1 3 2 1

2 1 3 3 2 1 1

1 1 2 1 1 1 1 2

...

( ... , ,..., )

( , ,..., ) ( , ,..., )

q q

q q q

q q

a x c e c e c e

c a c a c a c a c a

c a c a c a a c c c

    

    

 

 

Due to the fact that x  is a solution of HLDE (2), i.e.  

1 1 2 2 3 3 ... q qa c a c a c a c     . 

Note, that if a vector 
je  from B  is a canonical base vector 

and the j -th coordinate of the vector x  is equal to 
jc , than 

in the vector x  representation, the vector 
je  enters with a 

coefficient 
1 ja c . Lemma proved.  

The proved lemma results with the following conclusion.  

Conclusion  1. If among the coefficients HLDE is even one 
coefficient equal 1, than the set B  is a base of all HLDE 

solutions set. Then indeed, the elements of the set B  have 

the form: 

1 2 2

3 1

0

{ ( ,1,0, ...,0),

( ,0,1,0, ...,0),

( ,0,0, ...,0,1)}

q

q

e a e

a e

a M



  

 

 

, 

i.e. if in the distribution of any solution x  into vectors of 

the set B  the basic coefficient is equal one, then this 

means, that the set B  will be the base.  
Example 1.  Let’s build TSS HLDE  

1( ) 3 2 0L x x y z u v     
 

The base set or the TSS base of the HLDE has the 

following form:
 

1 2

3

4

( 1,3,0,0,0),

(1,0,3,0,0),

( 2,0,0,3,0),

( 1,0,0,0,3)

e e

e

e

  



 



 

The solutions LJRD 1 2(0,2,3,0,1), (1,1,0, 2,0)x x    have 

the representation 1 1 2 43 2 3x e e e   , 2 1 33 2x e e  . 

All the solutions to any set of HLDE is presented as a set: 

1 2

3

4

{ (1, 3,0,0,0),

(0,1,1,0,0),

(0, 2,0,1,0),

(0, 1,0,0,1)}

B e e

e

e

   



 



 

In this vector’s base 1x and 2x  have the representation: 

1 2 43x e e  , 2 1 32x e e  . 

The case of homogenous system of linear Diophantine 

equations. Let’s consider the HSLDE: 

1 11 1 1

2 21 1 2

1 1

( ) ... 0,

( ) ... 0,

... ... ... ... ... ... ...

( ) ... 0,

n n

n n

q q qn n

L x a x a x

L x a x a x
S

L x a x a x

   


   
 

    

 

Where: ,ij ia x Z , 1,...,i q , 1,...,j n . 

Let’s build the base set 
1 1 1

1 1 2 1{ , ,..., }qB e e e  for the first 

equation 1( ) 0L x   and let’s calculate values 1

2 ( )i iL e b  

where 1

1,i ie B b Z  . Then, let’s create an equation: 

1 1 1 1... ... 0i i q qb y b y b y                        (4) (4) 

Then let’s build its base set '

1 1 2{ ,..., }qB s s  . Vectors 
is  

from '

iB  corresponds to solutions vectors 2 2

2 1 2{ ,..., }qB e e   

HSLDE 
1 2( ) 0 ( ) 0L x L x   . 

Lemma 2. Vectors set B2 describes the base set of HSLDE 

1 2( ) 0 ( ) 0L x L x   , i.e. any solution x  of this system has 

a representation 
2 2

1 1 2 2... q qkx l e l e    , where: 2

2ie B , 

il Z , 1,..., 2i q  . 

Proof. Let’s have x to be any solution to HSLDE 

1 2( ) 0 ( ) 0L x L x   . Because x  is a solution
1( ) 0L x  , 

and taking into account lemma 1, x  can be represented as: 
1 1

1 1 1 1... q qdx a e a e    , 

Where: 1

1ie B , 
ia Z , 1,..., 1i q  . Then, due to the fact 

that x  is the solution 
2 ( ) 0L x  we obtain: 

2 1 1 1 1( ) ... 0q qL dx a b a b     , 

Where
1

2 ( )j jb L e , 1,..., 1j q  .  Respectively, vector 

1 1( ,..., )qa a a   is a solution of HLDE (4) and due to 

lemma 1 we get: 

1 1 2 2... q qka d s d s    , 

Where: '

1is B , id Z , 1,..., 2i q  , and k  - is the main 

coefficient of given HLDE . Thus: 
2 2

1 1 2 2... q qkdx d e d e     

where 2

2ie B , 1,..., 2i q  . 

The lemma 2 proved.  

The following theorem can be proven with a help of 
mathematical induction, directly from lemma 1 and 2.  

Theorem1.  TSS HSLDE 1B  (2) is built using the 

described above manner and it is a base of all solutions set 

of a given HSLDE. 

Example 2. Let’s describe the base set of HSLDE: 

1 1 2 3 4 5

2 1 2 3 4 5

( ) 3 2 0,

( ) 2 3 0 2 0.

L x x x x x x
S

L x x x x x x

     
 

     
 

The base set for the first equation was described in a first 

example.  
1 1

1 1 2

1

3

1

4

{ (1, 3,0,0,0),

(0,1,1,0,0),

(0, 2,0,1,0),

(0, 1,0,0,1)}.

B e e

e

e

   



 



 

Values  2L x  for a given vectors respectively equal to: -7, 

3, -7, 1. let’s construct the equation 

1 2 3 47 3 7 0y y y y      and let’s transform the base set of 

this HLDE:  
'

1 1 2 3{ (3,7,0,0), ( 1,0,1,0), ( 1,0,0,7)}.B s s s       

These vectors correspond with TSS vectors (base set): 
2 2

2 1 2

2

3

{ (3, 2,7,0,0),

( 1,1,0,1,0), ( 1, 4,0,0,7)}.

B e e

e

   

   
 

If during the construction of the base equation 

1 2 3 47 3 7 0y y y y     we perform combining in 

accordance with the last value (ie. in respect to -1), we will 

obtain such a base for a set of all solutions of a given 

HSLDE: 
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2 2 2

1 2 3{ (1,4,0,0,7), (0, 2,1,0,3), (0,5,0,1, 7)}.e e e      

 In regards to conclusion 1, the theorem 1 result can 

be detailed. Indeed, since the coefficients values in the 

equation 
1 11 1 12 2 1( ) ... 0n nL x a x a x a x      are mutually 

simple, it is always possible to have number one among the 

values
1( )L x . Without limiting the generality of 

considerations we assume that GCD
11 12 13( , , ) 1a a a  , i.e. 

the first three factors are mutually simple in 
1( )L x . Then 

there are such numbers
1 2 3, ,d d d , that in vector 

1 2 3( , , ,0,...,0)y d d d  values 
1( ) 1.L y  once we obtain 

this, let’s calculate the value 
1( )L x  for the canonical base 

vectors. First let’s construct a base set 
1B  by combining the 

spare vector y  with the other vectors in order to obtain the 

base set. Let’s note now that vectors from 
1B  have the 

form:  

1 11 1 2 12 2 3 13 3' , ' , ' ,e a y e e a y e e a y e          

4 14 4 1' ,..., ' ,n n ne a y e e a y e       

where 
ie – canonical base vectors; 

ija – coefficient in an 

equation 
1( ) 0.L x   

Vectors 'ie  can be presented also in the following form: 

1 11 1 11 2 11 3

2 12 1 12 2 12 3

3 13 1 13 2 13 3

4 14 1 14 2 14 3

' ( 1, , ,0,...,0),

' ( , 1, ,0,...,0),

' ( , , 1,0,...,0),

' ( , , ,1,...,0),

......................................................

e a d a d a d

e a d a d a d

e a d a d a d

e a d a d a d

    

    

    

   

1 1 1 2 1 3

.....

' ( , , ,0,...,1).n n n ne a d a d a d   

 

In this form the following theorem take places.  

Theorem 2. TSS HLDE 1B , is  a set base of all solutions 

for a given HLDE 1( ) 0L x   and is constructed using the 

method described above. The complexity of base 

construction is proportional to the value 3l , where l  - is a 

maximal number of numbers m  and n , n  - the number of 

unknowns in HLDE, and m - the maximum length of the 

binary representation of HLDE coefficients. 

Proof. Having 1 2( , ,..., )nx c c c - is the solution of HLDE 

1( ) 0.L x   Then vector x  has the following representation:  

1 1 2 2 3 3 4 4' ' ' ' ... 'n nx c e c e c e c e c e        

1 11 1 1 2 12 1 3 13 1 4 14 1 1 1[( ... ],n nc a d c c a d c a d c a d c a d         

1 11 2 2 12 2 2 3 13 2 4 14 2 1 2[ ... ],n nc c a d c a d c c a d c a d c a d        

1 11 3 2 12 3 3 13 3 3 4 14 3

1 3 4

[

... ], ,..., )n n n

c a d c a d c a d c c a d

c a d c c

    

  
 

1 2 3 4( , , , ,..., )nc c c c c  

because  11 1 12 2 1( ) ... 0.n nL x a c a c a c      

 The given algorithm complexity is described as a 

complexity of the extended Euclidean algorithm, defined 

along with the GCD and linear combination representing 

this GCD. It is obvious (see [3]), that the complexity is 

expressed as a value of ( log ),O m m  where m  - is the length 

of the binary representation of the maximal HLDE 

coefficient. Algorithm this is used no more than n  times 

and it is measured as a form of ( log ).O mn m  Building the 

base 
1B  requires no more than 3n  operations. As a result, 

the summary measure of the time complexity is described 

as a value 3( ),O l  where max( , ).l m n  

The theorem is proved.  

The above theorem leads to the following conclusion. 

Conclusion 2. The time complexity of constructing all 

solutions base set for the HSLDE with the form (5) is 

proportional to a value 3( ),O ql where: q - is a number of 

equations HSLDE, and max( , ).l m n  

 

III. THE TSS METHOD OF ISLDE SOLUTION 
 Having S  be the ISLDE with the form of (1) and 

0.qb   Executing the free segments eliminations in the 

first 1q   equations, we transform the input ISLDE into the 

following form:  

1 11 1 1

2 21 1 2

1 11 1 1

1 1

' ( ) ' ... ' 0,

' ( ) ' ... ' 0,

...'

' ( ) ' ... ' 0,

' ( ) ' ... ' .

n n

n n

q q q n n

q q qn n q

L x a x a x

L x a x a x

S

L x a x a x

L x a x a x b

  

   


   



 
    


   

  (5) 

 
Let’s build the HSLDE base solutions set, composed of the 

first 1q   equations of the system (5). Having vectors 

1{ ,..., }.ks s we specify ( ) , 1,..., .q j jL s a j k   For this 

values the following theorem is true.  

Theorem 3. The ISLDE with the form (1) is consistent only 

if the ISLDE 
1 1 2 2 ... k k qa y a y a y b     has at least one 

solution in the set of integer numbers set.  

Proof. If equation 
1 1 2 2 ... k k qa y a y a y b     has solution 

1 2( , ,..., ),kc c c , then it is obvious that vector 

1 1 2 2 ... k ks c s c s c s     is a SNLRS solution. 

If ISLDE is consistent and 1 2( , ,..., )ns k k k  then its 

solution s  is presented in the linear combination form 

constructed of the first 1q   homogenous equations of the 

system (5), i.e..: 

1 1 2 2 ... .k ks c s c s c s     

Then 1 1 2 2( ) ...q k k qL s c a c a c s b      should has at least 

one solution, because s  is a solution of ISLDE.  

The theorem is proved.  

It is known that generalized solution of ISLDE has the form 

1

,
k

i i

i

y x a x


  where: x  – is a partial solution of ISLDE, 

ix  - is a base solution of a given HSLDE, ia  - any integer 

numbers, and  k  - is the number of base solutions. In this 

case, for a comprehensive solution of the ISLDE we should 

construct its HSLDE base and find one of the ISLDE 

solutions. Finding such a solution, as a result from the 

above considerations, is reduced into finding the solution of 

the equation 1 1 2 2 ... .k k qa y a y a y b     This solution can 

be found with the use of the least coefficients method.  

Example 3. The consistency of the ISLDE should be 

checked: 
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1 1 2 3 4 5

2 1 2 3 4 5

( ) 2 3 0 1,

( ) 3 0 2.

L x x x x x x
S

L x x x x x x

     
 

      
 

The transformed ISLDE has the following form:  

1 1 2 3 4 5

2 1 2 3 4 5

' ( ) 7 5 3 2 0,
'

( ) 3 0 2.

L x x x x x x
S

L x x x x x x

     
 

      
 

The HLDE 
1( ) ' 0L x   base is combined with the vectors 

(in this case the computation of GCD coefficients is not 

necessary, because coefficient equals 1): 

(1,0,0,0,7),(0,1,0,0, 5),(0,0,1,0,3),(0,0,0,1,2).  

Values 
2 ( )L x  for these vectors equals: -4, 6, -2, -2. The 

greatest common divisor of these values equals 2 and is a 

divisor of the free member 
2 2.b    As a result the ISLDE 

has a solution, this is it is consistent.  

If the system is determined:  

1 1 2 3 4 5

2 1 2 3 4 5

' ( ) 7 5 3 2 0,
'

( ) 3 0 3,

L x x x x x x
S

L x x x x x x

     
 

      
 

Therefore it has not solutions in a ring of integer numbers, 

because GCD (-4, 6, -2, -2) = 2  and doesn’t divide the free 

member -3 and then the equation 4 6 2 2 3x y z u       

has no solutions.  

 In conclusion, we find that the given 

measurements of the time complexity can be more detailed, 

if we follow all the details of the processed calculations in 

the TSS algorithm.  In this work it is limited to determining 

the polynominality of these algorithms. 

 

IV. THE EXAMPLE USE OF THE ALGORITHM IN THE 

INTERCONNECTION NETWORK DESIGNING 

PROCESS 
 Let’s consider the problem of designing the 

interconnection network with the configuration presented in 

the Fig. 1.  

 

 

Fig. 1. The designed interconnection network configuration 

schema. 

 

The designed interconnection network has 10 inputs 

1 10x x and two panels with outputs 1 3y y and 4 7y y  

respectively. We should power supply the minimal amount 

of inputs, in order to satisfy the following conditions:     

1 10y   , 2 20y  , 3 5y   , 4 20y   , 5 50y  , 6 10y   , 

7 20y   [V]. To solve this problem we construct the 

following equations system: 

1 2 3 9

3 4 5 10

2 6 7 9

1 3 7 10

3 5 6 9

1 4 5 7 8 9

2 3 4 6 7 8

10

20

5

20

20

10

20

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x x x

x x x x x x

    


   
     


    
    

       


     

 

Such equations system has the following solutions: 
0 (0,80, 50, 35,5, 45,0,0, 40,30)x      . Therefore, we 

obtain that: 
1 0x  ,

2 80x  ,
3 50x   ,

4 35x   ,
5 5x  , 

6 45x   ,
7 0x  ,

8 0x  ,
9 40x   ,

10 30x  [V]. This means 

that inputs 
1 7 8, ,x x x  may not be connected to any outputs. 

The solutions of the homogenous equations system, which 

corresponds to a given inhomogeneous equations system 

may be described as follows:  

 

( 1,11, 6,21, 3, 7, 23,46, 4,30)e        ,  

( 1,11, 6,22, 3, 7, 24,48, 4,31)s        , 

(8, 90,49, 175,25,54,192, 383,33, 249)t      , 

(5, 169,92, 329,47,107,361, 720,62, 468)r      . 

Using these solutions the interconnection network designer 

has a choice, because he can select a special variant which 

suits him best. Thus, the interconnection network designer 

can use the general solution equation of a given equations 
system:  

0 ,x x ae bs ct dr      

Where , , ,a b c d  are arbitrary integers? 

 

V. CONCLUSION 

 In this paper we have presented the algorithm for 

computation the minimal supported set of solutions and 

base solutions of linear Diophantine equations systems in a 

ring of integer numbers. Linear Diophantine equations and 

their systems are often found in a wide variety of sciences 

which have heavy usage of computations. Solving the 
Diophantine equations is one of the main issues in 

computing the data, dependences in algorithm’s code 

especially nested loop programs with memory access which 

very often occurs in numerical computing. Recently, the 

Diophantine equations are used to obtain an accurate and 

predictable computational model in many multi-disciplinary 

scientific fields especially in bimolecular networks studies. 

 The most crucial task in such models is to check 

the model’s correctness – model validation problem. In the 

validation process finding of basic state equations is the 

most important task which may be checked by existence of 

integer solutions of Diophantine equations systems. 
Moreover, one of the motivations of this problem comes 

from the coding theory which may be implemented in many 

different fields of cryptography, encryption and users 

authentication (symmetric-key encryption and public-key 

cryptosystems) where the nonuniqueness of Diophantine 

equations solutions is analyzed. Thus, the proposed 

research is an actual scientific problem.
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