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Abstract: The principal objectives of this paper are (i) to study the development of a general theory for evaluating 

supercritical and subcritical Hopf bifurcation in any nonlinear differential equations, and (ii) to determine supercritical and 

subcritical Hopf bifurcations in a rigorous manner on the the Field-Körös-Noyen or FKN model:  
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Where fq, , ,  are adjustable parameters? 
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I. Introduction 
 There has been considerable interest recently in sustained oscillation in chemically reacting systems represented by 

a set of nonlinear differential equations. These oscillations can be periodic in which case the concentrations of some species 

undergo regular variations with time or they can be non-periodic in which case the reactor never approaches a globally 
attracting limit cycle. This later condition has been termed chemical chaos. 

 Many of these studies have been carried out with the well known Belouson-Zhabotinskii reaction. Periodic 

chemical reaction such as the Belousov-Zhabotinski reaction provide wonderful example of relaxation oscillation in science 

[3, 9]. The BZ reaction is one of the first oscillating reactions which is studied systematically [1]. Although there are many 

reactions involved in the BZ reaction they can be rationally reduced to 5 key reactions, with known values for the rate 

constants, which capture the basic elements of the mechanism. These five reactions can then be represented by a 3-chemical 

system in which the overall rate constants can be assigned with reasonable confidence. The model is known as the Field-

Körös-Noyen or FKN model [6]:  
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We first highlight some related concepts for completeness of our exploration.   

 

II. Limit cycles 
  A cyclic or periodic solution of a nonlinear dynamical system corresponds to a closed loop trajectories in the state 

space. A trajectory point on one of these loops continues to cycle around that loop for all time. These loops are called cycles, 

and if trajectories in the neighborhood to the cycle are attracted toward it, we call the cycle a limit cycle. Some limit cycles 

are shown in the figure 1, where (a) shows an inner limit cycle, (b) an outer limit cycle, (c) a stable limit cycles, (d) an 

unstable limit cycle, and (e) and (f) periodic orbit that may be called  saddle limit cycles [4, 7]. 

 

 
Fig1.  Periodic orbits and limit cycles. 

Existence of Hopf-Bifurcations on the Nonlinear FKN Model 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.2, Issue.6, Nov-Dec. 2012 pp-4195-4200             ISSN: 2249-6645 

www.ijmer.com                                                                           4196 | Page 

III. The Hopf bifurcation theorem in continuous-time 
 In this discussion we will restrict our discussion on second-order systems of nonlinear ordinary differential 
equations, although almost all the results and discussions given below can be extended to general nth-order systems. We 

consider the system: 

                                                           
2  ),;(  x x

x
b

dt

d
                                                         (1.1) 

where b denotes a real parameter on an interval I. We assume that the system is well defined, with certain smoothness on the 

nonlinear vector field  , and has a unique solution for each given initial value x x )( 0t  for each fixed b I .We also 

assume that the system has an equilibrium point )(
*

bx  and that the associated Jacobian 
*

xxx 





J  has a single pair of 

complex conjugate eigenvalues  .ImRe(b)(b),    Now suppose that this pair of eigenvalues has the largest real 

part of all the eigenvalues and is such that in a small neighborhood of a bifurcation value ,cb  (i) 0Re   if ,cbb    (ii) 

0Im ,0Re    if cbb  and (iii) 0Re   if .cbb  Then, in a small neighborhood of  ,, cc bbb   the steady 

state is unstable by growing oscillations and, at least, a small amplitude limit cycle periodic solution exists about the 

equilibrium point. The appearance of periodic solutions (all depend on the particular nonlinear function  ) out of an 

equilibrium state is called Hopf bifurcation. When the parameter b  is continuously varied near the criticality ,cb  periodic 

solutions may emerge for cbb 
 
(this case is referred to as supercritical bifurcation) or for cbb    (which is referred to 

as subcritical bifurcation) [2, 6, 8].

       Armed with these concepts, we now concentrate to our main study and investigation. 

 

IV. The principal investigation 

 We consider a two-dimensional system 
2),(,  ),; (  yx bb x xx   where   depends smoothly on 

the real variable parameter b  such that for each b  near the origin )0 ,0(  there is an equilibrium point )(* bx  with the 

Jacobian matrix )),(( * bbD xx   having a complex conjugate pair of eigenvalues  ibb )(),(  which cross the 

imaginary axis as the parameter b  passes through ).0 ,0(  Using complex coordinate ,iyxz   the system can be 

expressed in the variable z as 

            
                        2

1
2

11
2

1 ...  zzMzCzzBzAηzz                                 (1.2)
                                 

where 1111 ,,, MCBA  are complex constants. By making a suitable change of variables the system can be transformed to a 

normal form:  

                                                
 ),()( 42

wowaww                                                  (1.3)
 

where aw,
 
are both complex numbers. We write .,  ;  lkilka  The behavior of the system (1.3) is most 

conveniently studied using polar coordinate .irew   From this we obtain, .  ii irerew   Hence 

)Re(1 wwrr    and )Im(2 wwr    and then  (1.3) implies  

                                         )(  ),( 243 rorokrr                                                 (1.4) 

Supercritical and subcritical Hopf bifurcation occur according as 0k  and 0k  respectively. If ,0k
 
considering 

high order terms we can draw the same conclusion [2]. 

 

V. Determination of the indicator of bifurcations: k 
 Here we are interested in finding the expression for k, whose sign determines the supercritical and subcritical Hopf 

bifurcation. For this we need the term in .2 zz  In order to eliminate the quadratic terms, we apply the transformation 

.z 22 zzzzw  
 
Then we expand ,w  keeping only terms upto second order (and noting, for example that the 

difference between 
2z  and 

2w  is third order, so 
2z  can be replaced by 

2w  etc.). We have  
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where cubic terms are neglected other than .2 zz  We eliminate the quadratic terms by putting 

.3/  ,/-i  ,// 1111  iCBiAA   
 Then we obtain  

  ,3/2// 22
1

2
1111 wwCiBiBiAMww    

where again cubic terms are neglected other than ,2ww
 
and terms of order higher than 3. We conclude that 
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VI. Extension to three order differential equations 
      Let us assume that we have a three-dimensional system:  

3),,(,),,(  ), (  zyxzyx T
x xx   

 which has an equilibrium point for which there is one negative eigenvalue and an imaginary pair. The behavior of 

the system near the equilibrium point can be analyzed by a reduction of the system to a two-dimensional one, as follows. 

First we choose coordinates so that the equilibrium point is the origin and so that the linearised system is  

zzρvv                 ,
 
 

where v  is a real variable and z  is complex, and .  ,0  i   

We can now express the system as  
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 If the equation for v were of the form ),( zvvfvv    then the plane v = 0 would be invariant, in the sense that 

solutions starting on this plane stay on it, and we could restrict attention to the behavior on this plane. What we do below is 

to find a change of variables which converts the system into one which is sufficiently close to this form. We try the change 

of variables 

real. is     where,22 bzazbzazwv   

We obtain  
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neglecting terms of order 3 and higher. Then if we choose  

)2(   ia   

and                                                      b  

We have 

... zwwzww   

which is of the desired form (as far as of second-order, which turns out to be sufficient). Putting 0w , in the equation for 

,z  and retaining only terms of order second and those involving ,2 zz  we obtain 
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Supercritical and subcritical Hopf bifurcation occur according as 0k   and 0k  respectively. If ,0k
 
considering 

high order terms we can draw the same conclusions. 

 

VII. Our main study 
      For our main study we consider the Field-Körös-Noyen or FKN model:  
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For our purpose, the parameters are fixed as in the FKN model as given below [6]: 

 

5.0   ,0008.0108   ,0002.0102   ,00005.0105 445   fq  

With these parameter values the equilibrium points ),,( *** zyx  of the system (1.5) are given by setting the left-hand sides 

zero and solving the resulting system of equations, to get 
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These numerical solutions are found with the help of  MATHEMATICA. Out of these  equilibrium points 

)5000250404019999.0  ,7500150202009999.1  ,5000250404019999.0(  ***  zyx  

 is suitable for our purpose. 

       Let us take a linear transformation which moves the equilibrium point to the origin. We take 
** y  v, yxxu 

and 
* z zw  . 

Then the system (1.5) becomes  
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The matrix of linearized system is then of the form    
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The eigenvalues 21,,   of M are  
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 as the diagonal matrix. Then we obtain 
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      In order to make the linearized system into a diagonal form, we make the coordinate change by ,1DUM 
 where U is 

the column matrix, 
ThgfU ],,[ . 

Now
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in equations (1.6) and (1.7), we get  
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Finally, under the stated transformation (as described in General theory) the system becomes
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(1.10)                                          ...0.0)103448.31012175.4(        
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 From above, we obtain 

 = Coefficient of f in (1.9) = ,0727652.0  

p = Coefficient of fg  in (1.10) = ,08439.1384633.0 i  

 = Coefficient of gh  in (1.9) = ,1077936.3107189.2 89 i  

q = Coefficient of fh  in (1.10) = ,93.842117.1923 i  

 = Coefficient of 
2g in (1.9) = ,171325211121 i  

d = Coefficient of hg 2
in (1.10) = ,0  

r = Coefficient of 
2g in (1.10) = ,133792164870 i  

s = Coefficient of gh  in (1.10) = ,1093249.11012326.2 89 i  

 =Imaginary part of eigenvalues = 37957.1986  
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 Using the above values we can calculate the value of k as  
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 Hence, we have a supercritical Hopf bifurcation. Similarly, we can study the Hopf bifurcation of a given system for 

different values of the parameters. 

 

VIII. Conclusion 
     We think, our method is quite suitable for obtaining Hopf Bifurcation for any order nonlinear differential equations, if 

Hopf bifurcation exists.  
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