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On The Zeros of Certain Class of Polynomials
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Abstract: Let P(z) be a polynomial of degree n with real or complex coefficients . The aim
of this paper is to obtain a ring shaped region containing all the zeros of P(z). Our results not only generalize some known
results but also a variety of interesting results can be deduced from them.

. Introduction and Statement of Results
The following beautiful result which is well-known in the theory of distribution of zeros of polynomials is due to Enestrom
and Kakeya [9]. _
Theorem A. If P(z) =X} 3 Z! is a polynomial of degree n such that

Q) G =y == A== 0,
then all the zeros of P(z) liein [z] < 1.

In the literature ([2] ,[5] —[6], [8]-[11]) there exists some extensions and generalizations of this famous result. Aziz
and Mohammad [1] provided the following generalization of Theorem A.

Theorem B. Let P(z) =X/-0 & Z is a polynomial of degree n with real positive coefficients. If t, > t, > 0 can
be found such that
(2) a]t1t2+a]~_1 (tl - tz)a]‘_z > 0, le, 2, ;n+1, (a_1 =ap41 = 0),

then all the zeros of P(z) liein |z] < t.
Fort, = 1,t, = 0, this reduces to Enestrom-Kakeya Theorem (Theorem A).

Recently Aziz and Shah [3] have proved the following more general result which includes Theorem A as a special
case.
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Theorem C. Let P(z) = Z};O ajzf be a polynomial of degree n. If for some t > 0.
(3) Maxp, gl tayz" + (ta; — ap) z"™' + -+ (ta,_a,_1)] < M;
Where R is any positive real number, then all the zeros of P(z) lie in
M3 1

(4) lZJ SMax{m,E

The aim of this paper is to apply Schwarz Lemma to prove a more general result which includes Theorems A, B
and C as special cases and yields a number of other interesting results for various choices of parameters a,r, t; and t,. In
fact we start by proving the following result.
Theorem 1. Let P(z) = Z}’:O ajzf be a polynomial of degree n, If for some real numbers t;,t, with t; # 0,¢t; >
t, >0
() Max; g
(@t — ) +a—ays) +E (g1t +a (6 —t) — a_) 2" < M,

(6)
Ming, g lag (t; —t;) +a; tit; +B| +

Y (a ity + a6 —t) = (@-2)7| <M,

Where R is a positive real number, then all the zeros of P(z) lie in the ring shaped region.

tity lagl

, My lal 1
(7) MlanJ:R <|ﬁ|+M2 ,R) < |Z| < Max lz)=R (+—’E)

lanl
Taking t; =0, we get the following generalization and refinement of Theorem C.

Corollary 1. Let P(z) =X7_, a2 be a polynomial of degree n. If for some t > 0.
Max,,_p |@nt + a—a,_;) + )N (aj_lt - aj_z)zn_j+2| <M
Min, g [Got + B) + Zjn=+02 (aj_lt —aj_z) 7| < M,
Where R is a real positive number then all the zeros of P(z) lie in
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M 1
|Z| SMG-X|Z|:R ( 1+ lal _)

lanl "R
In case we take t=1=R in corollary 1, we get the \following interesting result.

Corollary 2. LetP(z) = Z}’zo ajzf be a polynomial of degree n,

Maxj, g {|a, + @ — a,_{| +
|(an_1 - an_z)Z+"'+(a1 _ao)Zn_1 + aOZ”| } S M’

then all the zeros of P(z) lie in the circle |z| < Max (M tlo )

lan|
If forsomea>0,a+a, = a,_; == a; =a, =0, then,
M<l|a, +a+a, 4| +la,_1 —a,_,| + -+ la; — apl + la|
=(a,+ta—a,1)+ (a1 —app) ++lag —agl + a
=a,ta
Using this observation in Corollary 2, we get the following generalization of Enestrom-Kakeya Theorem.

Corollary 3. If, P(2)= a,z" + a,_; + 2" ' + -+ a;z + a, , is a polynomial of degree n, such that for some
a=0,
at+a,=z2a_4=-.2ay,=0,
then all the zeros of P(z) lie in the circle

2
lz] <1+,
an

For @ = 0, this reduces to Theorem A.If we take a = a,_; — a, = 0, then we get Corollary 2, of ([4] Aziz and
Zarger).

90 Next we present the following interesting result which includes Theorem A as a special case.

Theorem 2. Let P(2) = Z}Loajzf be a polynomial of degree n, If for some real numbers with t; #

0,t; >t, =0
€)) Max, |37 o(ajtst, + aj_1(t; — t;) —a;_5)2" | < M,
then all the zeros of P(z) lie in the region
9) lz| <n,

Where,

_ 2M;
{lan (t1—t2) an—112+4 lay IM3 }1/2 —|ay (t1—t2)— an 1l

(10) n

Taking t, = 0, we get the following result
Corollary 4. Let P(2) = Z};O ajzf be a polynomial of degree n, If for some t > 0,
Max;-g|Xo(@j-1t —a;; )z" | < M,
then all the zeros of P(z) lie in the region
lz| <7,

Where,

2M3
{|an t—an_1l 244 lay M3 }1/2 —lapt—an_1l

Remark. Suppose polynomial P(z) = X7_, a;z , satisfies the conditions of
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Theorem A, then it can be easily verified that from Corollary 4.
Ms =a,1,
then all the zeros of P(z) lie in
Zan—l

lz] <
\/(an — a1 ) z+ 4anan—1 - (an —an—1 )

_ 2an-1 =1
- 4

N 2an-1
which is the conclusion of Enestrom-Kekaya Theorem.
Finally , we prove the following generalization of Theorem 1 of ([2], Aziz and Shah).

Theorem 3. Let P(z) = Z}’:Oajzf be a polynomial of degree n, Ifa, § are complex numbers and with t; #
0,t, arereal numberswitht; >t, = 0 and
(11) MaX|Z|=R|(an (tl - tz) + a — an_l)Z + Z;lzo a]tl tz + aj_l(tl_tz) - aj_z )Zn_]_2| S M4

and,
(12) MaX|Z|=R|(an (tl - tz) + B - an_l)Z + Zjnizz a]tl tz + aj_l(tl_tz) - aj_z )Z]| S MS

Where a_,_a_; =0 =a,,; = a,,, and Risany positive real number, then all the zeros of P(z) lie in the ring shaped
region.

(13) Min (r2, R) < |z| < max (rl,%)
Where
(14) "= - - 2[|a|R2Ian(tlz_tz)—an_1+a|+Mg] 2
{(a|R2M4+R2(My—lanDlan (t1—t2)+a—an—1 | 2+4(lalR%|ay (t1-t2)+a—an—11+MF)(lan |IRZMy) } 1/2—
(lalR?My + R*(M, — la, Dla, (t_t,) + @ — a,_41)
and
(15) 1 2[R21BII aqtity+ag(tq—tz )+B| —M2]

r2 R%{lagtitz+ag(t1—t2)+B(lagle1ts —Ms)—|BIMs }+

{R* (laytity + ay(t1_t; ) + Bl(lagltst, — Ms))?

+4(lag|( Mst ;) (R?IBllastyty + ag(ti-t,) + B | + M2) } /2
Taking a = 0,8 = 0, in Theorem 3, we get the following.

Corollary 5. Let P(z) = Z};O ajzf be a polynomial of degree n, If ,t; # 0 and t, are real numbers with t; > t, =
Max|z|=R|Z;l:11 atit, + a_(t-ty) — aj—z)zn_j+2| <My,
Max\, _p|Z7(ajtst, + aj_q (ty_ty) —aj_,)zl| < M;,
Where R is any positive real number . then all the zeros of P(z) lie in the ring shaped region
min (r,R) < |z| < max (rl,%)

Where

_ 2M7
{RH(t1-t2) an—an—1]2Mg—lay|) 2+4lay [RZMF} /2| (t1—t2)an —an—1|(Ms—la, DR?

n

rn =
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1 1
m[{R4la1t1t2 + ao(tl— tz )l Z(MS - |a0|t1t2) 2 + 4M53R2|a0|t1t2}2 -
R*(Ms — laylt;t,)|aytyt, + ag(t; —t,)l]

The result was also proved by Shah and Liman [12].

1. LEMMAS
For the proof of these Theorems, we need the following Lemmas. The first Lemma is due to Govil, Rahman and
Schmesser [7].
LEMMA. 1. If f(z)isanalyticin [z]| <1,f(0) = awherelal <1,f'(0) = b,|f(2)| < 1,0n |z| = 1,then for |z| <
1.

(1-laDlz| 2 +lb|lz|+lal1-lal)
lal(1=laDlz] 2+IblIzl+(1—lal)

lf@)| <

The example

Shows that the estimate is sharp.
form Lemma 1, one can easily deduce the following:
LEMMA. 2. If £ (z)isanalyticin |z| <R, f(0)=0,f© = band|f(2)| <M,
for |z| = R, then

M|z| M|z|+R?|b|
L —_ <
lf(2) < FERYRATE for |z]| <R

1. PROOFS OF THE THEOREMS.
Proof of Theorem . 1 Consider
(16) F(2) = (t; + 2)(t; — 2)P(2)

= —a,2"" + (a, (t; — t;) — a,_)z""
+(aytit; +a,_ 1 (6 — ) —a,_; )z"
+ot(aytity a0(t; — ) ) z +ag ity
Let
G() +z7F (2)
= —a, +(a,(t; —t;) — ay_1)z + (aytity + a1 (& — t5) — ay_3)z* + -
cH(agtity + ag(ty — t)z" T + agty ty)z™
=—a,—az+(a,(t; —t,)+a—a,_1)z
+Haytity + ap_y (t — ;) — a,_5)z% + -
vt (gt ty + ag(t; — t)z" T + apty ty) 22
=—(a, +az) + H(2)
Where,

H@2)= z{(a,(t; —t) + a —a,_) + Z?:o(aj tit, + a1 (t; —t;) — aj—Z)Zn_j}
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Clearly H(0)=0 and Max,— |H(z)| < RM;,
We first assume that |a,,| < R(M; + |al)
Now for |z| < R, by using Schwarz Lemma, we have
17) 1G(@)| =|-(a, + az) + H(z)|
= |a,| — lallz| — [H(2)|
= la,| — lallz| — |M;lz|
= lay| = (My + lal)lz|

> o,if

This shows that all the zeros of G(z) lie in |z] > —2xL
My+|al

Replacing z byi and noting that F(z) = z"*2G G) it follows that all the zeros of F(z) lie in

M .
|z| s%l"" if, la,| < R (M + |al)

Since all the zeros of P(z) are also the zeros of F(z), we conclude that all the zeros of P(z) lie in

(18) 2| < el

My+|al

Now assume |a,,| > R (M; + |al), then for |z| < R, we have from (17).

|G(@)| = |a,| — lallz| = H(Z)
> la,| — la|R — MR
= la,| — (la] + M)R > 0,

Thus G(z) # 0 for |z| < R, from which it follows as before that all the zeros of F(z) and hence all the zeros of P(z) lie
in|z| < % Combining this with (18), we infer that all the zeros of P(z) lie in

lan| 1,
19. lz| < max{ i _
M1+|a| R

Now to prove the second part of the Theorem, from (16) we can write F(z) as

F(2)= (t; + 2)(t; —2)P(2)

agtity + (artity + ag(ty — 1))z + = + (2, (t; — tp) —a,_; )z"+! —a,z"*2
Zagtit, — Pz + (artyty +ag(ty —tp) + Bz + -+ (a,(t; —t;) —a,_; )z"*' —a,z"*?
= aptit, — Pz + T(2)
Where
T(2)= Z{(a1t1tz +ag(ti—t) + ) + Z?:zz atity +a;_y (t,—t)a_, 32771
Clearly T(0)=0, and Max,—x|T(2)| < RM,
We first assume that |ayt; t,| < Bl + M,
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Now for |z| < R, by using Schwasr lemma, we have
[F(z)| = |agt ity | — [Bllz] — |T(2)]

> |agt; ty | — IBllz] — M, |Z]

>0, if,
aptits
20z <
|z < [Bl4+M (=R
This shows that F(z) #0, for [z| < % , hence all the zeros of F(z) lie in

|Z| > lagtytal
- |ﬁ|+M2

But all the zeros of P(z) are also the zeros of F(z), we conclude that all the zeros of P(z) lie in

20 |Z| > |a0 t1 t2|

[Bl+M2
Now we assume |a, t; t,| >|Bl + M,, then for |z| < R, we have
[F(2)| = lagt,t| — IBllz] — [T(2)
= |lagt t,| — IBIR — MR
> [t tya0l = (1Bl + M )R
>0,

This shows that all the zeros of F(z) and hence that of P(z) lie in

lz| > R

Combining this with (20) , it follows that all the zeros of P(z) lie in

21 |z| = min (%,R)

Combining (19) and (20), the desired result follows.
Proof of Theorem 2:-  Consider
22. F(z)=(t;, + 2)(t; — 2)P(2)
=, +2)(t, —2)( az" +a,_1z2" 1+t az+ay)
=—a,z""? + (a, (t;_t, ) —a,_1 )z" + -+ aytyt,
Let
23. G(2) = 2" *?F ()
=—a, +(a,(t; —t;) —a,- )z +
(antity = an_1 (t; — ty)a,_3)z* + H(z)
Where

H(z) = z*{(a, ti1t, — a1 (& — ) — @y ) + -+ apty t2"}

Clearly H(0)=0 = H(0), since |[H(z)| < M3R? for |z| =R
WWW.ijmer.com
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We first assume,

24 |an| < MR? + Rlan (tl - tZ) - an—ll

Then by using Lemma 2. To H(z), it follows that

M3lz| M3lz|

<
Hlz| < RZ M3

Max, g [H(z)|

Hence from(23) we have

|z] *M
1G@)| = la,| = la, (t; = t) = a1zl = =52 R?
>0, if
M3|Z| 2 + |an(t1 - tz) - an_1||Z| - |an| < 0
That is if,
25, |Z| < {lan(tl_tZ)_an—1|2+4|an|M}1/2_|an(t1_t2)_an—1|
2M3
:l <R
r

If

la, (t; = t;) — ay_11* +4la,IM3 < (2M3R + |a, (t; — t;) — a, 4 |?
Which implies
la,| < M35R? + Rla, (t; — t;) — a,_4|
Which is true by (24)..Hence all the zeros of G(z) lie in |Z| > r. since
F(z) = z""2G(2),
It follows that all the zeros of F(z) and hence that of P(z) lie in |z| < r. We now assume.
26. la,| < M35R? + R |a, (t; — t;) — a,_41,
then for |z| < R, from (23) it follows that
IG@)| = lay| = la, (& — ;) — a4 |z] = [H(@)]
2 la,| = R la,(t; — ;) — ay_4| = R*M;
>0, by (26).

This shows that all the zeros of G(z) lie in |Z| > R, and hence all the zeros of F(z) = z"*2 G(%) lie in

Iz] < %, but all the zeros of P(z) are also the zeros of F(z) , therefore it follows that all the zeros of P(z) lie in

1Z| <

| =

27.  From (25) amd (27) , we conclude that all the zeros of P(z) lie in
|Z] < max(r, %)
Which completes the proof of Theorem 2.

28. PROOF OF THEOREM 3. Consider the polynomial
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F(z) = (t; + 2)(t; — 2)P(2)
=(tit, + (ty —t)z—2z*)(a,z" +a,_1z" '+ +az+ay)
= —a,z""% + (a, (t;_t; ) —a,_1 )z"* 4+ + (a,tyt,

+(a,_q (t_ty ) —a,_q )z" ™+ +

(aptity +a; (t_t; ) —ag)z® + (artyty +a (t_t; )z + agtyty)
We have,
G(2) = 2"*2F(3)
=ra, + (a,(t; —t) —ay_1)z + (a,tit, + a,_1(t; — t,) —a,_, )z*
+...+(a1t1t2 + ao (tl_tz ))Zn+1 + a0t1t2 Zn+2
=—a,—az+(a,(t; —t;)+a—a,_1)z+
(an t1t2 + an_1 (tl_tz ) - an_z)Z2+. . +
(artity + ag (ti_ty ))z"* + agtyt, 2+
29. = —a, —az+ H(2)
Where
H(Z) = {(an( tl_tz ) + a— an_1 )Z + + a0t1t2 Zn+2 )}
We first assume that
30. la,| = |alR + M,
Then for |z| < R, we have
3L 1G@)| = la,| — lallz| — [H(2)!
Since
[H(z)| <M, for|z| <R
Therefore for |z|<R, from (31) with the help of (30), we have
IG(2)|>|a,|— |xIR — M,
therefore , all the zeros of G(z) lie in |z| = R, in this case. Since F(z) = z" 2 GG) therefore all the zeros of G(z) lie in

1Z] < % . As all the zeros of P(z) are the zeros of F(z), it follows that all the zeros of P(z) lie in
32. Il < ¢
Now we assume |a,| < |a|R + M, clearly H(o) = 0 and H() = (a,( t;—t;) —
a — a,_q ), Since by (11), [H(z)| < M,, for |z| = R,
therefore it follows by Lemma2. that
M4 |Z| (M4 |Z| + RZ Ian( tl_tZ) - an_l + al)

H(z)| <
( ) RZ M4 + Ian( tl_tZ) - an_1 + a”Zl

for [z| <R
Using this in (31), we get,

M
1G(2)| = la,| — lal|z] — — 'Z'(

M4 | z| + RZ |an(( t1_t2) —Qap—1 + al)

R2 M, + [a,(( t;—ty) —a,_4 + allz]
>0, if
la, IR*(My + la, (( t;—ty) — a,_y + allz]) — |z|{|a|R?
My + la, (t1=t;) — a,_1 + allz]) + My(M,z| + R?
|an( tl_tZ) —ap_1 + (ZI ) } >0,
this implies,

(IalR? Ja, ( t;=t; ) — ay—q + al + MP)|z|* + { [alR*M, +
R*Myla, (t; — t;) —a,_g+o| ... R*Myla,( t;—t; ) — a,_; +al}
|z| — |a,|R*M, < 0,
This gives,
IG(2)| > 0,if
|z| < [(JaIR*M, + R*(M, — la,Dla, (t;—t;) — ay_q +al )*+.
. A(lalR?[a, (t—ty) — ay_q + al + My?)(la, IR?M,)]

(la|RZM4+R2 (M4 —la, ))lay (t1—tp)—a, 1+l
2(lalR2|ay (t1—tp)~ap_1+al+M4?)
1

I'll
So, |z| < R,if
(lalR®M, + (M, = [a,[R®)]a, (t;—t;) —a,—; + al )* +
WWW.ijmer.com 4370 | Page
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{lolR?[a, (t;—t,) — a1 + al + My* Hla, IR*M,}
<{2lalla,(t;—t,) — a,_; + a|R + |a|RZM, + 2RM,?
+(M, = a,IRM)a, (t;=t;) — a,_; + al )? }

That is if,
la, IR?M,, < R%(JalR?|a, (t;—t,) — @y_q + al + M%) +
(lalR*M,) + (M, — |2, IR*)la, (t;—t;) — a1 +al )R

Which gives

la,IM; < My{laIR + M, — la,| + R|lalR?|la, (t;—t;) — @,y + al + M,* |

{la|R? + M, —a,, }
Which is true because a, <|a|R + My,

Consequently , all the zeros of G(z) lie in |z| = % as F(z) = z""1G( i ), we conclude that all the zeros of
F(z) lie |z| < r, , since every zero of P(z) is also a zero of F(z), it follows that all the zeros of P(z) lie in

33. lz]| <

Combining this with (32) it follows that all the zeros of P(z) lie in
1
34. |z| < max (rl’E)
Again from (28) it follows that
F(z) = lagtit, — Pz + (@rtity (t-ty ) + Bz + -+ (@, (t1—t3)
—. an—l)zn+2 _ anZn+2|
35. = |a0t1t2| - |,8||Z| - |T(Z)|
Where,
T@) =a,z""% + (a,(t—t;)— ap_1)z" T +.. +
(agtyt; +ag (t1-t; )+ Bz
Clearly T(0)=0, and T(0) (a;t;t, +ao (t;1_t, ) + )
Since by (12), |T(z)| < M;s for [z] =R
using Lemma 2. To T(z), we have

Ms|z|
R2

F(z) = |aptyt, | = IBllz] — (Ms |z| + R?|ay tyty| 4+ ag (ty-t, ) + Bz

=-(R¥Bllastytal + ag (-t ) + B | + Ms?) |zl +
{laitity] + ag (ti-t; ) + B [(R*lagt;ty| — R*Ms) — BIR*Ms}|z| + MsR?|a; t; t, |
R*(Ms + lastyt, +a (ty-t; ) + Bllz])
>0, if,
(RBllaytital + ag (616, )+ B | + Msz)|Z|2 —{laitytal + ag (t_t; )+ B |
(R%|agt;t,| — R2M;) — |BIR®M; }z| — R?Mslaqlt t, < 0,
Thus, [F(z)| > 0, if

lz| < —R*{last;t, + ag (ty_t; ) + B [(lagltyt; — M5)||[3|M5 }
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—{R4(|a1t1t2| + ap (-t )+ B |(apltyt, — M5)||B|M5 )?

+4(R2|B||a1t1t2 +ap (ti_t )+ B+ Msz)(R2M5|ao|t1tz) 372 -
2(R2IBllaststyl + ag (-t ) + B 1+ Ms?) ’

Thus it follows by the same reasoning as in Theorem 1, that all the zeros of F(z) and hence that of P(z) lie in

36. |z| = min(r; R)

[1]
[2]
[3]

[4]
[5]
[6]
[7]

[8]
[9]
[10]

[11]
[12]

Combining (34) and (36) , the desired result follows.
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