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Abstract : Database systems are being increasingly used for 

interactive and exploratory data retrieval. In such retrieval 

queries often cause in too many answers, this phenomenon is 

referred as “information overload”. In this paper, we 

proposed a solution which can automatically categorize the 

results of SQL queries to address this problem. The proposed 
solution dynamically generate a labeled hierarchical 

category structure where users can determine whether a 

category is relevant or not by checking its label and can  

explore the relevant categories and ignore other categories 

to  reduce information overload. In the proposed solution, an 

analytical model is designed to estimate information 

overload faced by a user for a given exploration. Based on 

the model, we formulate the categorization problem as a cost 

optimization problem and develop heuristic algorithms to 

calculate the min-cost categorization. 

 

Keywords: Data Mining, Information Overload, 
Categorization, Ranking, Discretization 

 

I. Introduction 
 Database systems are being increasingly used for 

interactive and exploratory data retrieval [1, 2, 8, 14]. In 

such retrieval, queries often result in too many answers. Not 
all the retrieved items are relevant to the user, only a few 

result set is relevant to the user. Unfortunately, user needs to 

check all the retrieved items to find relevant information 

need to the user query. This phenomenon is commonly 

referred to as “information overload”. Consider a scenario, 

real-estate database that maintains information like the 

location, price, number of bedrooms etc. of each house 

available for sale. Suppose that a potential buyer is looking 

for homes in the Seattle/Bellevue Area of Washington, USA 

in the $200,000 to $300,000 price range. The above query, 

henceforth referred to as the “Homes” query, returns 6,045 

homes when executed on the MSN House&Home home 
listing database. Information overload makes it difficult for 

the user to differentiate the interesting and uninteresting 

items, which leads to a huge wastage of user‟s time and 

effort. Information overload can happen when the user is not 

certain about the query. In such a situation, user can pose a 

broad query in the beginning to avoid exclusion of 

potentially interesting results. For example, a user shopping 

for a home is often not sure of the exact neighbourhood she 

wants or the exact price range or the exact square footage at 

the beginning of the query. Such broad queries may also 

occur when the user is naïve and refrains from using 
advanced search features [8]. Finally, information overload 

is inherent when users are interested in browsing through a 

set of items instead of searching among them. 

 In the context internet text search, there has been 

two canonical ways to avoid information overload. First, 

they group the search results into separate categories. Each 

category is assigned a descriptive label examining which the 

user can determine whether the category is relevant or not. 

Then user can visit the relevant categories and ignore the 

remaining ones. Second, they present the answers to the 

queries in a ranked order. Thus, categorization and ranking 

present two complementary techniques to manage 

information overload. After browsing the categorization 

hierarchy and/or examining the ranked results, users often 

reformulate the query into a more focused narrower query. 
 Therefore, categorization and ranking are indirectly 

useful even for subsequent reformulation of the queries. 

 In contrast to the internet text search, categorization 

and ranking of query results have received much less 

attention in the database field. Recently ranking of query 

results has gained some attention. But all the existing 

methods have not critically examined the use of 

categorization of query results in a relational database. 

Hence in this paper, categorization of database query results 

presents some unique challenges that are not addressed in 

various search engines/web directories. In all the existing 
search engines, the category structures are created a priori 

and the items are tagged in advance as well. At search time, 

the search results are integrated with the pre-defined 

category structure by simply placing each search result under 

the category it was assigned during the tagging process. 

Since such categorization is independent of the query, the 

distribution of items in the categories is susceptible to skew: 

some groups can have a very large number of items and 

some very few.  

 For example, a search on „databases‟ on 

Amazon.com yields around 34,000 matches out of which 
32,580 are under the “books” category. These 32,580 items 

are not categorized any further (can be sorted based on price 

or publication date or customer rating) and the user is forced 

to go through the long list to find the relevant items. This 

defeats the purpose of categorization as it retains the 

problem of information overload. In this paper, we propose 

techniques to automatically categorize the results of SQL 

queries on a relational database in order to reduce 

information overload. Unlike the “a priori” categorization 

techniques described above, we generate a labelled 

hierarchical category structure automatically based on the 

contents of the tuples in the answer set. Since our category 
structure is generated at query time and hence tailored to the 

result set of the query at hand, it does not suffer from the 

problems of a priori categorization discussed above.  

 This paper discusses how such categorization 

structures can be generated on the fly to best reduce the 

information overload. We begin by identifying the space of 

categorizations and develop an understanding of the 

exploration models that the user may follow in navigating 

the hierarchies. Such understanding helps us compare and 

contrast the relative goodness of the alternatives for 
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categorization. This leads to an analytical cost model that 

captures the goodness of a categorization. Such a cost model 

is driven by the aggregate knowledge of user behaviours that 

can be gleaned from the workload experienced on the 
system. Finally, we show that we can efficiently search the 

space of categorizations to find a good categorization using 

the analytical cost models. Our solution is general and 

presents a domain-independent approach to addressing the 

information overload problem. We perform extensive 

experiments to evaluate our cost models as well as our 

categorization algorithm. 

 The rest of the paper is organized as section 2: 

discuss about the related work, section 3: discuss about 

basics of categorization section 4: presents the Proposed 

Solution, section 5: discuss about cost model, section 6: 

categorization algorithm, section 7: discuss about 
Experimental setup, section 8: concludes the paper. 

 

II. Related Work 
OLAP and Data Visualization: Our work on categorization 

is related to OLAP as both involve presenting a hierarchical, 

aggregated view of data to the user and allow to drilldown/ 

roll-up the categories [13]. However, in OLAP, the user 

needs to manually specify the grouping attributes and 

grouping functions [13] in our work, those are determined 
automatically. Information visualization deals with visual 

ways to present information [6]. It can be thought as a step 

after categorization to the further reduce information 

overload: given the category structure proposed in this paper, 

we can use visualization techniques visually display the tree 

[6]. 

 

Data Mining: The space in which the clusters are discovered 

is usually provided there whereas, in categorization, we need 

to find that space. Second, existing clustering algorithms 

deal with either exclusively categorical [11] or exclusively 
numeric spaces [17] in categorization, the space usually 

involves both categorical and numeric attributes. Third, the 

optimization criteria are different while it is minimizing 

inter-cluster distance in clustering to decrease information 

overload. Our work differs from classification where the 

categories are already given their along with a training 

database of labelled tuples and we need predict the label of 

future, unlabeled tuples [12]. 

 

Discretization/Histograms:  The discretization assumes that 

there is a class assigned to each numeric value and uses the 

entropy minimization heuristic [10]. On the other hand, the 
histogram bucket selection is based on minimization of 

errors in result size estimation [5, 15]. 

 

Ranking:  Ranked retrieval has traditionally been used in 

Information Retrieval in the context of keyword searches 

over text/unstructured data [3] but has been proposed in the 

context of relational databases recently [2,4,14]. Ranking is a 

powerful technique for reducing information overload and 

can be used effectively in complement with categorization. 

Although categorization has been studied extensively in the 

text domain [9, 16] to the best of our knowledge, this is the 
first proposal for automatic categorization in the context of 

relational databases. 

 

III. Basics of Categorization 
Space of Categorizations 
 Let R be a set of tuples. R can either be a base 

relation or a materialized view or it can be the result of a 

query Q. We assume that R does not contain any aggregated 

or derived attributes, i.e., Q does not contain any GROUP 

BYs or attribute derivations (Q is a SPJ query). A 

hierarchical categorization of R is a recursive partitioning of 

the tuples in R based on the data attributes and their values. 

We define a valid hierarchical categorization T of R 

inductively as follows. 

 

Base Case: Given the root or “ALL” node (level 0) which 
contains all the tuples in R, we partition the tuples in R into 

an ordered list of mutually disjoint categories (level 1 

nodes2) using a single attribute.  

 

Inductive Step: Given a node C at level (l-1), we partition 

the set of tuples tset(C) contained in C into an ordered list of 

mutually disjoint subcategories (level l nodes) using a single 

attribute which is same for all nodes at level (l-1). We 

partition a node C only if C contains more than a certain 

number of tuples. The attribute used is referred to as the 

categorizing attribute of the level l nodes and the 

subcategorizing attribute of the level (l-1) nodes. 
Furthermore, once an attribute is used as a categorizing 

attribute at any level, it is not repeated at a later level, i.e., 

there is a 1:1 association between each level of T and the 

corresponding categorizing attribute. We impose the above 

constraints to ensure that the categorization is simple, 

intuitive and easily understandable to the user. 

Associated with each node C is a category label and a tuple-

set as defined below: 

 

Category Label: The predicate label(C) describing node C. 

For example, the first child of root (rendered at the top) has 
label „Neighbourhood ∈  {Redmond, Bellevue}‟ while the 

first child of the above category has label „Price: 200K–

225K‟. 

 

Tuple-Set: The set of tuples tset(C) (called the tuple-set of 

C) contained in C either appearing directly under C (if C is a 

leaf node) or under its subcategories (if C is a non-leaf 

node). Formally, tset(C) is the set of tuples, among the ones 

contained in the parent of C, which satisfy the predicate 

label(C). In other words, tset(C) is the subset of tuples in R 

that satisfies the conjunction of category labels of all nodes 

on the path from the root to C 
 The label of a category unambiguously describes to 

the user which tuples, among those in the tuple set of the 

parent of C, appear under C. Hence, user can determine 

whether C contains any item that is relevant or not by 

looking just at the label and hence decide whether to explore 

or ignore C. 

 

IV. Proposed Model 
 We present two models capturing two cases in data 
exploration. One scenario is that the user explores the result 

set R using the category tree T until finds relevant tuple t 

∈R. For example, the user may want to find every home 

relevant to her in the “Homes” query. In order to ensure that 

user finds every relevant tuple and needs to examine every 
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tuple and every category label except the ones that appear 

under categories she deliberately decides to ignore. Another 

scenario is that the user is interested in just one (or two or a 

few) tuple(s) in R so she explores R using T till she finds 
that one (or few) tuple(s). For example, a user may be 

satisfied if she finds just one or two homes that are relevant 

to her. For the purpose of modeling, we assume that, in this 

case, the user is interested in just one tuple, i.e., the user 

explores the result set until finds the first relevant tuple. We 

consider these two cases because they both occur commonly 

and they differ in their analytical models. 

 

Exploration Model for ‘All’ case 

Figure 1 describes the exploration model for all case the user 

starts the exploration by exploring the root node. Given user 

has decided to explore the node C, if C is a non-leaf node, 
user non-deterministically chooses one of the two options 

 

Option ‘SHOWTUPLES’: Browse through the tuples in 

tset(C). Note that the user needs to examine all tuples in 

tset(C) to make sure that she finds every tuple relevant to 

her. 

 

Option ‘SHOWCAT’: Examine the labels of all the n 

subcategories of C, exploring the ones relevant to her and 

ignoring the rest. More specifically, she examines the label 

of each subcategory Ci starting from the first subcategory 
and non-deterministically chooses to either explore it or 

ignore it. If user chooses to ignore Ci, simply proceeds and 

examines the next label (of Ci+1). If user chooses to explore 

Ci, it does so recursively based on the same exploration 

model, i.e., by choosing either „SHOWTUPLES‟ or 

„SHOWCAT‟ if it is an internal node or by choosing 

„SHOWTUPLES‟ if it is a leafnode. After she finishes the 

exploration of Ci, user goes ahead and examines the label of 

the next subcategory of C (of Ci+1).  Note that we assume 

that the user examines the subcategories in the order it 

appears under C it can be from top to bottom or from left to 

right depending on how the tree is rendered by the user 
interface. 

If C is a leaf node, „SHOWTUPLES‟ is the only option 

(option „SHOWCAT‟ is not possible since a leaf node has no 

subcategories). 

 

 
Figure 1: Flow chart model of exploration of node C in 

‘All’ case 

Exploration Model for ‘One’ Scenario 

The user starts the exploration by exploring the root node. 

Given that the user has decided to explore a node C, user 

non-deterministically choose one of the two options 

 
Option ‘SHOWTUPLES’:  Check the tuples in tset(C) 

starting from the first tuple in tset(C) till user finds the first 

relevant tuple. In this paper, we do not assume any particular 

ordering/ranking when the tuples in tset(C) are presented to 

the user. 

 

Option ‘SHOWCAT’: Examine the labels of the 

subcategories of C starting from the first subcategory till the 

first one she finds interesting. As in the „ALL‟ case, user 

checks the label of each subcategory Ci starting from the 

first one and non-deterministically chooses to either explore 

it or ignore it. If user chooses to ignore Ci, simply proceeds 
and checks the next label. If user chooses to explore Ci, it 

does so recursively based on the same exploration model. 

We assume that when she drills down into Ci, user finds at 

least one relevant tuple in tset (Ci); so, unlike in the „ALL‟ 

case, the user does not need to examine the labels of the 

remaining subcategories of C. 

 

V. Cost Estimation 
 Since we want to generate the tree imposes the least 
possible information overload on the user, we need to 

estimate the information overload that a user will face during 

an exploration using a given category T. 

 

Cost Model for ‘ALL’ case 

Let us first consider the „ALL‟ case. Given a user 

exploration X using category tree T, we define information 

overload cost, or simply cost (denoted by Cost All(X, T)), as 

the total number of items examined by the user during X. 

This definition is based on the assumption that the time spent 

in finding the relevant tuples is proportional to the number of 
items the user needs to examine  more the number of items 

user needs to examine, more the time wasted in finding the 

relevant tuples, higher the information overload. 

 

Cost Model for ‘ONE’ Scenario 

The information overload cost CostOne (T) that a user will 

face, on average during an exploration using a given 

category tree T is the number of items that a user will need 

to examine till user finds the first relevant tuple. Let us 

consider the cost CostOne(C) of exploring the subtree rooted 

at C given that the user has chosen to explore C, CostOne 

(T) is simply CostOne (root). If the user goes for option 
„SHOWTUPLES‟ for C and frac (C) denotes the fraction of 

tuples in tset(C) that she needs to examine, on average, 

before she finds the first relevant tuple, the cost, on average, 

is frac(C)*|tset(C)|. If user goes for option „SHOWCAT‟, the 

total cost is (K*i + CostOne (Ci)) if Ci is the first 

subcategory of C explored by the user (since the user 

examines only i labels and explores only Ci). 

 

 
 

 

 

 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.2, Issue.6, Nov-Dec. 2012 pp-4497-4501             ISSN: 2249-6645 

www.ijmer.com                                                                 4500 | Page 

VI. Categorization Algorithm 
 Since we know how to compute the information 
overload cost Cost All (T) of a given tree T, we can 

enumerate all the permissible category trees on R, compute 

their costs and pick the tree Topt with the minimum cost. 

This enumerative algorithm will produce the cost-optimal 

tree but could be prohibitively expensive as the number of 

permissible categorizations may be extremely large. 

  Hence we present our preliminary ideas to reduce 

the search space of enumeration. First we present our 

techniques in the context of 1-level categorization i.e., a root 

node pointing to a set of mutually disjoint categories which 

are not subcategorized any further.  
 

Reducing the Choices of Categorizing Attribute 

 Since the presence of a selection condition on an 

attribute in a workload query reflects the user‟s interest in 

that attribute, attributes that occur infrequently in the 

workload can be discarded right away while searching for 

the min-cost tree. Let A be the categorizing attribute chosen 

for the 1-level categorization. If the occurrence count 

NAttr(A) of A in the workload is low, the SHOWTUPLES 

probability Pw(root) of the root node will be high. Since the 

SHOWTUPLES cost of a tree is typically much higher than 

its SHOWCAT cost and the choice of partitioning affects 
only the SHOWCAT cost, a high SHOWTUPLES 

probability implies that the cost of the resulting tree would 

have a large first component (Pw(root)*|tset(root)|) which 

would contribute to a higher total cost. Therefore, it is 

reasonable to consider eliminating such low occurring 

attributes without considering any of their partitioning. 

 Specifically, we eliminate the uninteresting 

attributes using the following simple heuristic: if an attribute 

A occurs in less than a fraction x of the queries in the 

workload, i.e., NAttr (A)/N < x, we eliminate A. The 

threshold x will need to be specified by the system 
designer/domain expert. For example, for the home 

searching application, if we use x=0.4, only 6 attributes, 

namely neighborhood, price, bedroomcount, bathcount, 

property-type and square footage, are retained from among 

53 attributes in the MSN House2Home dataset.  

 

VII. Experimental Evaluation 
 To evaluate the performance of the proposed model, 

we present the results of an extensive empirical study we 
have conducted to evaluate the accuracy of our cost models 

in modeling information overload and evaluate our cost-

based categorization algorithm and compare it with 

categorization techniques that do not consider such cost 

models. Our experiments consist of a real-life user study as 

well as a novel, large-scale, simulated, cross-validated user-

study. For both studies, our dataset comprises of a single 

table called ListProperty which contains information about 

real homes that are available for sale in the whole of United 

States. The ListProperty contains 1.7 million rows (each row 

is a home) and, in addition to other attributes, has the 

following non-null attributes: location (neighborhood, city, 
state, zip code), price, bedroomcount, bathcount, year-built, 

property-type (whether it is a single family home or condo 

etc.) and square-footage. 

 

Accurate Cost Model: There is a strong positive correlation 

between the estimated average exploration cost and actual 

exploration cost for various users. This indicates that our 

workload-based cost models can accurately model 
information overload in real life. 

 

Better Categorization Algorithm: Our cost-based 

categorization algorithm produces significantly better 

category trees compared to techniques that do not consider 

such analytical models. 

 

Table 1: Pearson’s Correlation between estimated cost 

and actual cost 

Subset Correlation 

1 0.39 

2 0.98 

3 0.32 

4 0.48 

5 0.16 

6 0.16 

7 0.19 

8 0.76 

All 0.90 

 

 To further confirm the strength of the positive 

correlation between the estimated and actual costs, we 

compute the Pearson Correlation Coefficient for each subset 

separately as well as together in Table 1. The overall 

correlation (0.9) indicates almost perfect linear relationship 

while the subset correlations show either weak (between 0.2 
and 0.6) or strong (between 0.6 and 1.0) positive correlation. 

This shows that our cost models accurately model 

information overload faced by users in real-life. 

 

 
Figure 2: Correlation between actual cost and estimated 

cost 

 

 

 
Figure 3: Cost of various techniques 
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 Figure 2 plots the estimated cost against the actual 

cost for the 800 explorations. The plot along with the trend 

line (best linear fit with intercept 0 is y = 1.1002x) shows 

that the actual cost incurred by users has strong positive 
correlation with the estimated average cost. 

 Figure 3 compares the proposed technique with the 

Attr-cost and No cost techniques based on the fractional cost 

averaged over the queries in a subset. 

 

VIII. Conclusion 
 Database systems are being increasingly used for 

interactive and exploratory data retrieval. In such retrieval 

queries often cause in too many answers, this phenomenon is 
referred as “information overload”. In this paper, we 

proposed a solution which can automatically categorize the 

results of SQL queries to address this problem. The proposed 

solution dynamically generate a labeled hierarchical category 

structure where users can determine whether a category is 

relevant or not by checking its label and can  explore the 

relevant categories and ignore other categories to  reduce 

information overload. In the proposed solution, an analytical 

model is designed to estimate information overload faced by 

a user for a given exploration. Based on the model, we 

formulate the categorization problem as a cost optimization 

problem and develop heuristic algorithms to calculate the 
min-cost categorization. Our proposed cost-based 

categorization algorithm produces significant better category 

trees compared to techniques that do not consider such cost-

models.  
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