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Abstract:  In the present paper, we construct the traveling wave solutions involving parameters of  some nonlinear PDEs in 
mathematical physics; namely  the variable coefficients KdV (vcKdV) equation, the modified dispersive water wave 

(MDWW) equations and the symmetrically coupled KdV equations by using a simple method which is called the  
𝐺 ′

𝐺
 -

expansion method, where 𝐺 = 𝐺 ξ  satisfies the second order linear ordinary differential equation. When the parameters are 
taken special values, the solitary waves are derived from the traveling waves. The traveling wave solutions are expressed by 

hyperbolic, trigonometric and rational functions. This method is more powerful and will be used in further works to establish 

more entirely new solutions for other kinds of nonlinear PDEs arising in mathematical physics. 
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I. Introduction  
In recent years, the exact solutions of nonlinear PDEs have been investigated by many authors ( see for example [1-

30] ) who are interested in nonlinear physical phenomena. Many effective methods have been presented ,such as inverse 

scattering transform method [1], B𝑎 cklund transformation [2], Darboux transformation [3], Hirota bilinear method [4], vari-

able separation approach [5], various tanh methods [6–9], homogeneous balance method [10] , similarity reductions method 

[11,12] , the reduction mKdV equation method [13], the tri-function method [14,15], the projective Riccati equation method  

[16], the Weierstrass elliptic function method [17], the Sine- Cosine method [18,19], the Jacobi elliptic function expansion 

[20,21], the complex hyperbolic function method [22], the truncated Painlev𝑒 ′ expansion [23], the F-expansion method [24], 
the rank analysis method [25] and so on. 

In the present paper, we shall use a simple method which is called the  
𝐺 ′

𝐺
 -expansion method [26,27]. This method 

is firstly proposed by the Chinese Mathematicians Wang et al [28] for which the traveling wave solutions of nonlinear equa-

tions are obtained. The main idea of this method is that the traveling wave solutions of nonlinear equations can be expressed 

by a polynomial in  
𝐺 ′

𝐺
 , where 𝐺 = 𝐺 ξ  satisfies the second order linear ordinary differential equation  𝐺" ξ + 𝜆𝐺 ′ ξ +

𝜇𝐺 ξ = 0, where 𝜉 =  𝑘 𝑥 − 𝑐𝑡  ,where 𝜆 , 𝜇, 𝑘 and 𝑐 are constants . The degree of this polynomial can be determined by 

considering the homogeneous balance between the highest order derivatives and the nonlinear terms appearing in the given 

nonlinear equations .The coefficients of this polynomial can be obtained by solving a set of algebraic equations resulted from 

the process of using the proposed method. This new method will play an important role in expressing the traveling wave 

solutions for nonlinear evolution equations via the vcKdV equation, the  MDWW equations and the symmetrically coupled 

KdV equations in terms of hyperbolic, trigonometric and rational functions. 

 

II. Description of the  
𝑮′

𝑮
 - expansion method 

Suppose we have the following nonlinear PDE:  

 

𝑃 𝑢, 𝑢𝑡 , 𝑢𝑥 , 𝑢𝑡𝑡 , 𝑢𝑥𝑥 , 𝑢𝑥𝑡 , …  = 0,                                                                          (1) 

Where 𝑢 = 𝑢(𝑥, 𝑡) is an unknown function, 𝑃 is a polynomial in 𝑢 = 𝑢(𝑥, 𝑡) and its various partial derivatives in 

which the highest order derivatives and nonlinear terms are involved. In the following we give the main steps of a deforma-

tion method:  

 Setp1. Suppose that 

𝑢 𝑥, 𝑡 = 𝑢 ξ ,     ξ = ξ 𝑥, 𝑡 .                                                                            (2) 

The traveling wave variable (2) permits us reducing (1) to an ODE for 𝑢 = 𝑢 ξ  in the form: 

𝑃(𝑢, 𝑢′, 𝑢′′ , … )  =  0,                                                                                (3) 

where   ′ =
𝑑

𝑑ξ
. 
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Setp2. Suppose that the solution Eq.(3) can be expressed by a polynomial in  
𝐺 ′

𝐺
  as follows: 

𝑢 ξ =  𝑎𝑖

𝑛

𝑖=0

 
𝐺 ′

𝐺
 
𝑖

,                                                                                           (4) 

While 𝐺 = 𝐺 ξ  satisfies the second order linear differential equation in the form: 

 𝐺" ξ + 𝜆𝐺 ′ ξ + 𝜇𝐺 ξ = 0,                                                                               (5) 

Where 𝑎𝑖 𝑖 = 0,1,… , 𝑛 , 𝜆 and 𝜇 are constants to be determined later. 

Setp3.  The positive integer " 𝑛 " can be determined by considering the homogeneous balance between the highest derivative 

term and the nonlinear terms appearing in Eq.(3). Therefore, we can get the value of  𝑛  in Eq.( 4). 

Setp4. Substituting Eq.( 4) into Eq.( 3) and using Eq.(5), collecting all terms with the same power of  
𝐺 ′

𝐺
  together and then 

equating each coefficient of the resulted polynomial to zero, yield a set of algebraic equations for  𝑎𝑖  , 𝜆 , 𝜇 , 𝑐 and  𝑘. 

Setp5.  Solving the algebraic equations by use of Maple or Mathematica, we obtain values for  𝑎𝑖  , 𝜆 , 𝜇 , 𝑐  and  𝑘.  

Setp6. Since the general solutions of Eq. (5) have been well known for us, then substituting the obtained coefficients and the 

general solution of Eq. (5) into Eq. (4), we have the travelling wave solutions of the nonlinear PDE (1). 

 

III. Applications of the method 

In this section, we apply the  
𝐺 ′

𝐺
 -expansion method to construct the traveling wave solutions for some nonlinear 

PDEs, namely the vcKdV equation, the MDWW equations and the symmetrically coupled KdV equations which are very 

important nonlinear evolution equations in mathematical physics and have been paid attention by many researchers.  

3.1.    Example1. The cvKdV equation 

We start with the cvKdV equation  [29] in the form: 

𝑢𝑡 + 𝑓 𝑡 𝑢𝑢𝑥 + 𝑔 𝑡 𝑢𝑥𝑥𝑥 = 0,                                                                            (6) 

Where 𝑓 𝑡 ≠ 0, 𝑔 𝑡 ≠ 0 are some given functions.This equation is well-known as a model equation describing 

the propagation of weakly-nonlinear weakly-dispersive waves in inhomogeneous media.. Obtaining exact solutions for non-
linear differential equations have long been one of the central themes of perpetual interest in mathematics and physics. To 

study the travelling wave solutions of Eq. (6), we take the following transformation 

𝑢 𝑥, 𝑡 =  𝑢 ξ ,        𝜉 =  𝑥 +
𝜔

𝛼
 𝑔 𝑡  𝑑

𝑡

0

𝑡  ,                                                                    (7) 

Where 𝜔the wave is speed and 𝛼 is a constant. By using Eq. (7), Eq.(6) is converted into an ODE 
𝜔

𝛼
𝑢′ + 2𝑢𝑢′ + 𝑢′′′ = 0,                                                                                                 (8) 

Where the functions 𝑓 𝑡  and 𝑔 𝑡  in Eq.(6) should satisfy the condition  

𝑓 𝑡 = 2𝑔 𝑡 .                                                                                                         (9) 

Integrating Eq.(8) with respect to 𝜉 once and taking the constant of integration to be zero, we obtain 
𝜔

𝛼
𝑢 + 𝑢2 + 𝑢′′ = 0,                                                                                                        (10) 

Suppose that the solution of ODE (10) can be expressed by polynomial in terms of  
𝐺 ′

𝐺
  as follows: 

𝑢 ξ =  𝑎𝑖

𝑛

𝑖=0

 
𝐺 ′

𝐺
 
𝑖

,                                                                                                        (11) 

Where  𝑎𝑖 𝑖 = 0,1,… , 𝑛  are arbitrary constants, while 𝐺 ξ  satisfies the second order linear ODE (5). Considering 

the homogeneous balance between the highest order derivatives and the nonlinear terms in Eq. (10), we get 𝑛 = 2. Thus, we 

have 

𝑢 ξ = 𝑎0 + 𝑎1
 
𝐺 ′

𝐺
 + 𝑎2

 
𝐺 ′

𝐺
 

2

,                                                                                         (12) 

Where 𝑎0 , 𝑎1 and 𝑎2  are constants to be determined later. Substituting Eq.(12) with Eq.(5) into Eq.(10) and collect-

ing all terms with the same power of    
𝐺 ′

𝐺
 . Setting each coefficients of this polynomial to be zero, we have the following 

system of algebraic equations: 
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𝐺 ′

𝐺
 

0

:      
𝜔𝑎0

𝛼
+ 𝑎0

2 + 𝜆𝜇𝑎1 + 2𝜇2𝑎2 = 0,    

 
𝐺 ′

𝐺
 

1

:     𝜆2𝑎1 + 2𝜇𝑎1 +
𝜔𝑎1

𝛼
+ 2𝑎0𝑎1 + 6𝜆𝜇𝑎2 = 0,  

 
𝐺 ′

𝐺
 

2

:    3𝜆𝑎1 + 𝑎1
2 + 4𝜆2𝑎2 + 8𝜇𝑎2 +

𝜔𝑎2

𝛼
+ 2𝑎0𝑎2 = 0,  

 
𝐺 ′

𝐺
 

3

:   2𝑎1 + 10𝜆𝑎2 + 2𝑎1𝑎2 = 0,  

 
𝐺 ′

𝐺
 

4

:   6𝑎2 + 𝑎2
2 = 0,                                                                                                                                                                                 (13) 

On solving the above algebraic Eqs. (13) By using the Maple or Mathematica, we have 

𝑎0 = −6𝜇,                    𝑎1 = −6𝜆,            𝑎2 = −6,              𝜔 = −𝛼𝑀,                                                      (14) 

 

Where 𝑀 = 𝜆2 − 4𝜇.  

Substituting Eq. (14) into Eq.(12) yields 

𝑢 ξ = −6𝜇 − 6𝜆  
𝐺 ′

𝐺
 − 6  

𝐺 ′

𝐺
 

2

,                                                                                              (15) 

Where 

 𝜉 = 𝑥 − 𝑀 𝑔 𝑡  𝑑
𝑡

0

𝑡 .                                                                                                                                                                          (16) 

On solving Eq.( 5), we deduce that 

𝐺 ′

𝐺
=

 
 
 
 
 

 
 
 
 

  
1

2
 𝑀 

𝐴cosh 
1
2  𝑀 ξ + 𝐵 sinh 

1
2  𝑀 ξ 

𝐴 sinh  
1
2 𝑀 ξ + 𝐵 cosh 

1
2  𝑀 ξ 

 −
𝜆

2
                if       𝑀 > 0,                                        

  
1

2
 −𝑀 

−𝐴 sin 
1
2  −𝑀 ξ + 𝐵 cos 

1
2  −𝑀 ξ 

𝐴 cos 
1
2  −𝑀 ξ + 𝐵 sin  

1
2 −𝑀 ξ 

 −
𝜆

2
        if       𝑀 < 0,                                           (17)

    
𝐵

𝐵ξ + A
−

𝜆

2
                                                              if      𝑀 = 0,                                         

  

Where 𝐴 and 𝐵 are arbitrary constants and 𝑀 = 𝜆2 − 4𝜇. 
On substituting Eq.(17) into Eq.(15), we deduce the following three types of traveling wave solutions: 

Case1.   If   𝑀 > 0 , Then we have the hyperbolic solution 

𝑢 ξ =
3𝑀

2
 1 −  

𝐴cosh  
1
2 𝑀 ξ + 𝐵 sinh  

1
2 𝑀 ξ 

𝐴 sinh  
1
2 𝑀 ξ + 𝐵 cosh  

1
2 𝑀 ξ 

 

2

 ,                                                                 (18) 

Case2.   If   𝑀 < 0 , Then we have the trigonometric solution 

𝑢 ξ =
3𝑀

2
 1 +  

−𝐴sin  
1
2 −𝑀 ξ + 𝐵 cos  

1
2 −𝑀 ξ 

𝐴 cos  
1
2 −𝑀 ξ + 𝐵 sin  

1
2 −𝑀 ξ 

 

2

 ,                                                            (19) 

Case3.   If   𝑀 = 0 , Then we have the the rational solution 

𝑢 ξ =
3

2
𝜆2 − 6  𝜇 +  

𝐵

𝐵ξ + A
 

2

 ,                                                                                                               (20) 

In particular, if we set  𝐵 =  0, 𝐴 ≠ 0,   𝜆 >  0, 𝜇 =  0, in Eq.(18), then we get 

𝑢 ξ = −
3λ2

2
csch2  

λ

2
ξ ,                                                                                                                             (21) 

While, if  𝐵 ≠  0 , 𝜆 >  0 , 𝐴2 > 𝐵2  𝑎𝑛𝑑  𝜇 =  0 , then we deduce that: 
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𝑢 ξ =
3λ2

2
sech2  

λ

2
ξ + +ξ

0
 ,                                                                                            (22) 

Where ξ
0

= tanh−1  
𝐴

𝐵
 .The solutions (21) and (22) represent the solitary wave solutions of Eq. (6).                

3.2. Example 2. The MDWW equation 

In this subsection, we study the MDWW equations [30] in the forms: 

𝑢𝑡 = −
1

4
𝑣𝑥𝑥 +

1

2
 𝑢𝑣 𝑥  ,                                                                                                          (23) 

𝑣𝑡 = −𝑢𝑥𝑥 − 2𝑢𝑢𝑥 +
3

2
𝑣𝑣𝑥 .                                                                                                    (24) 

The traveling wave variables below 

𝑢 𝑥, 𝑡 =  𝑢 ξ ,        𝑣 𝑥, 𝑡 =  𝑣 ξ ,           𝜉 = 𝑘 𝑥 + 𝜔𝑡 ,                                                                (25) 

permit us converting the equations (23) and (24) into ODEs for  𝑢 𝑥, 𝑡 = 𝑢 ξ  and 𝑣 𝑥, 𝑡 = 𝑣 ξ  as follows:  

−
1

4
𝑘𝑣 ′′ +

1

2
 𝑢𝑣 ′ − 𝜔𝑢′ = 0,                                                                                                     (26) 

−𝑘𝑢′′ − 2𝑢𝑢′ +
3

2
𝑣𝑣 ′ − 𝜔𝑣 ′ = 0,                                                                                               (27) 

Where 𝑘 and 𝜔 are the wave number and the wave speed, respectively. On integrating Eqs.(26) and (27) with respect to 𝜉 

once, yields 

k1 −
1

4
𝑘𝑣 ′ +

1

2
 𝑢𝑣 − 𝜔𝑢 = 0,                                                                                                       (28) 

k2 − 𝑘𝑢′ − 𝑢2 +
3

4
𝑣2 − 𝜔𝑣 = 0,                                                                                                       (29) 

Where  k1 and  k2 is an integration constants.  

Suppose that the solutions of the ODEs (28) and (29) can be expressed by polynomials in terms of   
𝐺 ′

𝐺
  as follows: 

𝑢 ξ =  𝑎𝑖

𝑛

𝑖=0

 
𝐺 ′

𝐺
 
𝑖

,                                                                                                           (30) 

𝑣 ξ =  𝑏𝑖

𝑚

𝑖=0

 
𝐺 ′

𝐺
 
𝑖

.                                                                                                            (31) 

 

Where 𝑎𝑖 𝑖 = 0,1,… , 𝑛  and 𝑏𝑖 𝑖 = 0,1,… , 𝑚  are arbitrary constants, while 𝐺 ξ  satisfies the second order linear 

ODE (5).Considering the homogeneous balance between the highest order derivatives and the nonlinear terms in Eqs.(28) 

and (29), we get  𝑛 = 𝑚 = 1. Thus, we have 

𝑢 ξ = 𝑎0 + 𝑎1
 
𝐺 ′

𝐺
 ,       𝑎1 ≠ 0,                                                                                      (32) 

𝑣 ξ = 𝑏0 + 𝑏1
 
𝐺 ′

𝐺
 ,       𝑏1 ≠ 0,                                                                                      (33) 

 

Where 𝑎0 , 𝑎1 , 𝑏0 and 𝑏1 are arbitrary constants to be determined later. Substituting Eqs.(32),(33) with Eq.(5) into 

Eqs.(28) and (29), collecting all terms with the same power of  
𝐺 ′

𝐺
  and setting them to zero, we have the following system of 

algebraic equations:  

 
𝐺 ′

𝐺
 

0

:    𝜔𝑎0 +
𝑎0𝑏0

2
+

1

4
𝑘𝜇𝑏1 + 𝑘1 = 0, 

 
𝐺 ′

𝐺
 

1

:  𝜔𝑎1 +
𝑎1𝑏0

2
+

1

4
𝑘𝜆𝑏1 +

𝑎0𝑏1

2
= 0, 

 
𝐺 ′

𝐺
 

2

:  
𝑘𝑏1

4
+

𝑎1𝑏1

2
= 0,                                   
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𝐺 ′

𝐺
 

0

:   − 𝑎0
2 + 𝑘𝜇𝑎1 + 𝜔𝑏0 +

3𝑏0
2

4
+ 𝑘2 = 0, 

 
𝐺 ′

𝐺
 

1

:   𝑘𝜆𝑎1 − 2𝑎0𝑎1 + 𝜔𝑏1 +
3𝑏0𝑏1

2
= 0, 

 
𝐺 ′

𝐺
 

2

:    𝑘𝑎1 − 𝑎1
2 +

3𝑏1
2

4
= 0.                                                                                        (34) 

Solving the above algebraic Eqs.(34) by using the Maple or Mathematica, yields 

𝑎0 =
1

2
 𝜆𝑎1 − ω ,              𝑎1 =   𝑎1 ,            𝑏𝑜 = 𝜆𝑎1 − ω,                        𝑏1 = 2𝑎1 , 

(35) 
   
  𝑘1

=
1

4
 𝜔2 − 𝑀𝑎1

2 ,                           
   
  𝑘1

=
1

2
 𝜔2 − 𝑀𝑎1

2 ,               𝑘 = −2𝑎1 . 

Substituting Eq.(35) into Eqs.(32) and (33) we obtain 

𝑢 ξ =
1

2
 𝜆𝑎1 − ω + 𝑎1

 
𝐺 ′

𝐺
 ,                                                                                     (36) 

𝑣 ξ = 𝜆𝑎1 − ω + 2𝑎1
 
𝐺 ′

𝐺
 ,      ,                                                                                  (37) 

where 

       𝜉 = −2𝑎1(𝑥 + ω𝑡).                                                                                                  (38) 

From Eqs.(17),(36) and (37), we deduce the following three types of traveling wave solutions: 

Case1.   If   𝑀 > 0 , then we have the hyperbolic solution 

𝑢 ξ =
1

2
 𝑎1 𝑀 

𝐴cosh  
1
2 𝑀 ξ + 𝐵 sinh  

1
2 𝑀 ξ 

𝐴 sinh  
1
2  𝑀 ξ + 𝐵 cosh 

1
2 𝑀 ξ 

 − 𝜔 ,                                                            (39) 

𝑣 ξ = 𝑎1 𝑀  
𝐴cosh  

1
2 𝑀 ξ + 𝐵 sinh  

1
2 𝑀 ξ 

𝐴 sinh  
1
2 𝑀 ξ + 𝐵 cosh  

1
2 𝑀 ξ 

 − 𝜔.                                                                   (40) 

Case2.   If   𝑀 < 0 , then we have the trigonometric solution 

𝑢 ξ =
1

2
 𝑎1 −𝑀 

−𝐴sin  
1
2 −𝑀 ξ + 𝐵 cos  

1
2 −𝑀 ξ 

𝐴 cos 
1
2 −𝑀 ξ + 𝐵 sin 

1
2  −𝑀 ξ 

 − 𝜔 ,                                                 (41) 

𝑣 ξ = 𝑎1 −𝑀  
−𝐴sin  

1
2 −𝑀 ξ + 𝐵 cos  

1
2 −𝑀 ξ 

𝐴 cos  
1
2 −𝑀 ξ + 𝐵 sin  

1
2 −𝑀 ξ 

 − 𝜔.                                                        (42) 

Case3.   If   𝑀 = 0 , then we have the rational solution 

 

𝑢 ξ = 𝑎1  
𝐵

𝐵ξ + A
 −

𝜔

2
,                                                                                                                             (43) 

𝑣 ξ = 2𝑎1  
𝐵

𝐵ξ + A
 − 𝜔.                                                                                                                           (44) 

In particular if  𝐵 = 0, 𝐴 ≠ 0,   𝜆 > 0 and  𝜇 = 0, then we deduce from Eqs.(39) and (40) that: 

𝑢 ξ =
1

2
 𝑎1𝜆 coth  

λ

2
ξ − 𝜔 ,                                                                                                                 (45) 

𝑣 ξ = 𝑎1𝜆 coth  
λ

2
ξ − 𝜔,                                                                                                                        (46) 

While, if  𝐵 ≠  0 ,    𝐴2 > 𝐵2 ,   𝜆 >  0 𝑎𝑛𝑑  𝜇 =  0 , then we deduce that: 
 

𝑢 ξ =
1

2
 𝑎1𝜆 tanh  

λ

2
ξ + ξ

0
 − 𝜔 ,                                                                                                       47  
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𝑣 ξ = 𝑎1𝜆 tanh 
λ

2
ξ + ξ

0
 − 𝜔,                                                                                                          48  

Whereξ
0

= tanh−1  
𝐴

𝐵
 . The solutions (45)- (48) represent the solitary wave solutions of  Eqs.(23) and (24). 

3.3. Example 3. The symmetrically coupled KdV equations 

In this subsection, we consider the symmetrically coupled KdV equations [31] in the forms: 

𝑢𝑡 = 𝑢𝑥𝑥𝑥 + 𝑣𝑥𝑥𝑥 + 6𝑢𝑢𝑥 + 4𝑢𝑣𝑥 + 2𝑢𝑥𝑣 = 0,                                                                            (49) 

𝑣𝑡 = 𝑢𝑥𝑥𝑥 + 𝑣𝑥𝑥𝑥 + 6𝑣𝑣𝑥 + 4𝑣𝑢𝑥 + 2𝑣𝑥𝑢 = 0.                                                                            (50) 

 

The traveling wave variable (25) permits us converting Eqs.(49) and (50) into the following ODEs:  

−𝜔𝑢′ + 𝑘2 𝑢′′′ + 𝑣 ′′′ + 6𝑢𝑢′ + 4𝑢𝑣 ′ + 2𝑢′𝑣 = 0,                                                                     (51) 

−𝜔𝑣 ′ + 𝑘2 𝑢′′′ + 𝑣 ′′′ + 6𝑣𝑣 ′ + 4𝑣𝑢′ + 2𝑣 ′𝑢 = 0.                                                                     (52) 
 

Considering the homogeneous balance between highest order derivatives and nonlinear terms in Eqs.(51) and (52), we have 

𝑢 ξ = 𝑎0 + 𝑎1
 
𝐺 ′

𝐺
 + 𝑎2

 
𝐺 ′

𝐺
 

2

,              𝑎2 ≠ 0,                                                                     (53) 

𝑣 ξ = 𝑏0 + 𝑏1
 
𝐺 ′

𝐺
 + 𝑏2

 
𝐺 ′

𝐺
 

2

,               𝑏2 ≠ 0,                                                                     (54) 

 

Where  𝑎0 , 𝑎1 , 𝑎2 , 𝑏0 , 𝑏1 and 𝑏2 are arbitrary constants to be determined later. Substituting Eqs.(53) and (54) with 

Eq.(5) into Eqs.(51) and (52), collecting all terms with the same power of  
𝐺 ′

𝐺
  and setting them to zero, we have the follow-

ing system of algebraic equations: 

 
𝐺 ′

𝐺
 

0

:    − 𝑘2𝜆2𝜇𝑎1 − 2𝑘2𝜇2𝑎1 + 𝜇𝜔𝑎1 − 6𝜇𝑎0𝑎1 − 6𝑘2𝜆𝜇2𝑎2 − 𝑘2𝜆2𝜇𝑏1 − 2𝑘2𝜇2𝑏1 − 4𝜇𝑎0𝑏1 − 6𝑘2𝜆𝜇2𝑏2 = 0, 

 
𝐺 ′

𝐺
 

1

:     − 𝑘2𝜆3𝑎1 − 8𝑘2𝜆𝜇𝑎1 + 𝜆𝜔𝑎1 − 6𝜆𝑎0𝑎1 − 6𝜇𝑎1
2 − 14𝑘2𝜆2𝜇𝑎2 − 16𝑘2𝜇2𝑎2 + 2𝜇𝜔𝑎2 − 12𝜇𝑎0𝑎2 − 𝑘2𝜆3𝑏1 −

                   8𝑘2𝜆𝜇𝑏1 − 4𝜆𝑎0𝑏1 − 6𝜇𝑎1𝑏1 − 14𝑘2𝜆2𝜇𝑏2 − 16𝑘2𝜇2𝑏2 − 8𝜇𝑎0𝑏2 = 0,  

 
𝐺 ′

𝐺
 

2

:   − 7𝑘2𝜆2𝑎1 − 8𝑘2𝜇𝑎1 + 𝜔𝑎1 − 6𝑎0𝑎1 − 6𝜆𝑎1
2 − 8𝑘2𝜆3𝑎2 − 52𝑘2𝜆𝜇𝑎2 + 2𝜆𝜔𝑎2 − 12𝜆𝑎0𝑎2 − 18𝜇𝑎1𝑎2 −

               7𝑘2𝜆2𝑏1 − 8𝑘2𝜇𝑏1 − 4𝑎0𝑏1 − 6𝜆𝑎1𝑏1 − 8𝜇𝑎2𝑏1 − 8𝑘2𝜆3𝑏2 − 52𝑘2𝜆𝜇𝑏2 − 8𝜆𝑎0𝑏2 − 10𝜇𝑎1𝑏2 = 0,  

 
𝐺 ′

𝐺
 

3

:   − 12𝑘2𝜆𝑎1 − 6𝑎1
2 − 38𝑘2𝜆2𝑎2 − 40𝑘2𝜇𝑎2 + 2𝜔𝑎2 − 12𝑎0𝑎2 − 18𝜆𝑎1𝑎2 − 12𝜇𝑎2

2 − 12𝑘2𝜆𝑏1 − 6𝑎1𝑏1 −

                8𝜆𝑎2𝑏1 − 38𝑘2𝜆2𝑏2 − 40𝑘2𝜇𝑏2 − 8𝑎0𝑏2 − 10𝜆𝑎1𝑏2 − 12𝜇𝑎2𝑏2 = 0,  

 
𝐺 ′

𝐺
 

4

:   − 6𝑘2𝑎1 − 54𝑘2𝜆𝑎2 − 18𝑎1𝑎2 − 12𝜆𝑎2
2 − 6𝑘2𝑏1 − 8𝑎2𝑏1 − 54𝑘2𝜆𝑏2 − 10𝑎1𝑏2 − 12𝜆𝑎2𝑏2 = 0,  

 
𝐺 ′

𝐺
 

5

:    − 24𝑘2𝑎2 − 12𝑎2
2 − 24𝑘2𝑏2 − 12𝑎2𝑏2 = 0,  

 
𝐺 ′

𝐺
 

0

:     − 𝑘2𝜆2𝜇𝑎1 − 2𝑘2𝜇2𝑎1 − 6𝑘2𝜆𝜇2𝑎2 − 𝑘2𝜆2𝜇𝑏1 − 2𝑘2𝜇2𝑏1 + 𝜇𝜔𝑏1 − 2𝜇𝑎0𝑏1 − 6𝑘2𝜆𝜇2𝑏2 = 0,  

 
𝐺 ′

𝐺
 

1

:     − 𝑘2𝜆3𝑎1 − 8𝑘2𝜆𝜇𝑎1 − 14𝑘2𝜆2𝜇𝑎2 − 16𝑘2𝜇2𝑎2 − 𝑘2𝜆3𝑏1 − 8𝑘2𝜆𝜇𝑏1 + 𝜆𝜔𝑏1 − 2𝜆𝑎0𝑏1 − 6𝜇𝑎1𝑏1 − 6𝜇𝑏1
2 −

                14𝑘2𝜆2𝜇𝑏2 − 16𝑘2𝜇2𝑏2 + 2𝜇𝜔𝑏2 − 4𝜇𝑎0𝑏2 = 0,  

 
𝐺 ′

𝐺
 

2

:     − 7𝑘2𝜆2𝑎1 − 8𝑘2𝜇𝑎1 − 8𝑘2𝜆3𝑎2 − 52𝑘2𝜆𝜇𝑎2 − 7𝑘2𝜆2𝑏1 − 8𝑘2𝜇𝑏1 + 𝜔𝑏1 − 2𝑎0𝑏1 − 6𝜆𝑎1𝑏1 − 10𝜇𝑎2𝑏1 −

                 6𝜆𝑏1
2 − 8𝑘2𝜆3𝑏2 − 52𝑘2𝜆𝜇𝑏2 + 2𝜆𝜔𝑏2 − 4𝜆𝑎0𝑏2 − 8𝜇𝑎1𝑏2 − 18𝜇𝑏1𝑏2 = 0,  

 
𝐺 ′

𝐺
 

3

:     − 12𝑘2𝜆𝑎1 − 38𝑘2𝜆2𝑎2 − 40𝑘2𝜇𝑎2 − 12𝑘2𝜆𝑏1 − 6𝑎1𝑏1 − 10𝜆𝑎2𝑏1 − 6𝑏1
2 − 38𝑘2𝜆2𝑏2 − 40𝑘2𝜇𝑏2 + 2𝜔𝑏2 −

                4𝑎0𝑏2 − 8𝜆𝑎1𝑏2 − 12𝜇𝑎2𝑏2 − 18𝜆𝑏1𝑏2 − 12𝜇𝑏2
2 = 0,  

 
𝐺 ′

𝐺
 

4

:     − 6𝑘2𝑎1 − 54𝑘2𝜆𝑎2 − 6𝑘2𝑏1 − 10𝑎2𝑏1 − 54𝑘2𝜆𝑏2 − 8𝑎1𝑏2 − 12𝜆𝑎2𝑏2 − 18𝑏1𝑏2 − 12𝜆𝑏2
2 = 0,  

 
𝐺 ′

𝐺
 

5

:     − 24𝑘2𝑎2 − 24𝑘2𝑏2 − 12𝑎2𝑏2 − 12𝑏2
2 = 0.                                                                                                                         55   
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 Solving the above algebraic Eqs.(55) by using the Maple or Mathematica, we have  

𝑎0 = 𝑏0 = 0,            𝑎1 = −
𝜔𝜆

𝜆2 + 8𝜇
,          𝑎2 = −

𝜔

𝜆2 + 8𝜇
,           𝑏1 = −

𝜔𝜆

𝜆2 + 8𝜇
, 

(56) 

           𝑏2 = −
𝜔

𝜆2 + 8𝜇
,         𝑘 = ± 

ω

2𝜆2 + 16𝜇
. 

   Substituting Eq.(56) into Eqs.(53) and (54) yields 

𝑢 ξ = −
𝜔𝜆

𝜆2 + 8𝜇
 
𝐺 ′

𝐺
 −

𝜔

𝜆2 + 8𝜇
 
𝐺 ′

𝐺
 

2

,                                                                                (57) 

𝑣 ξ = −
𝜔𝜆

𝜆2 + 8𝜇
1

 
𝐺 ′

𝐺
 −

𝜔

𝜆2 + 8𝜇
 
𝐺 ′

𝐺
 

2

,                                                                             (58) 

      Where 

       𝜉 = ± 
ω

2𝜆2+16𝜇
(𝑥 + ω𝑡).                                                                                                  (59)  

      From Eqs. (17), (57) and (58), we deduce the following three types of traveling wave solutions: 

Case 1.   If   𝑀 > 0 , Then we have the hyperbolic solution 

𝑢 ξ =
𝜔

4 𝜆2 + 8𝜇 
 𝜆2 − 𝑀 

𝐴 cosh 
1
2 𝑀 ξ + 𝐵 sinh  

1
2 𝑀 ξ 

𝐴 sinh 
1
2  𝑀 ξ + 𝐵 cosh 

1
2 𝑀 ξ 

 

2

 ,                                                    (60) 

𝑣 ξ =
𝜔

4 𝜆2 + 8𝜇 
 𝜆2 − 𝑀 

𝐴cosh 
1
2 𝑀 ξ + 𝐵 sinh 

1
2  𝑀 ξ 

𝐴 sinh 
1
2  𝑀 ξ + 𝐵 cosh 

1
2  𝑀 ξ 

 

2

 .                                                   (61) 

Case2.   If   𝑀 < 0 , Then we have the trigonometric solution 

𝑢 ξ =
𝜔

4 𝜆2 + 8𝜇 
 𝜆2 + 𝑀 

𝐴cosh 
1
2 𝑀 ξ + 𝐵 sinh 

1
2  𝑀 ξ 

𝐴 sinh 
1
2  𝑀 ξ + 𝐵 cosh 

1
2  𝑀 ξ 

 

2

 ,                                                   (62) 

𝑣 ξ =
𝜔

4 𝜆2 + 8𝜇 
 𝜆2 + 𝑀 

𝐴cosh 
1
2  𝑀 ξ + 𝐵 sinh 

1
2  𝑀 ξ 

𝐴 sinh  
1
2 𝑀 ξ + 𝐵 cosh 

1
2  𝑀 ξ 

 

2

 .                                                  (63) 

Case3.   If   𝑀 = 0 , Then we have the rational solution 

𝑢 ξ =
𝜔

4 𝜆2 + 8𝜇 
 𝜆2 − 4  

𝐵

𝐵ξ + A
 

2

 ,                                                                                                          (64) 

𝑣 ξ =
𝜔

4 𝜆2 + 8𝜇 
 𝜆2 − 4  

𝐵

𝐵ξ + A
 

2

 .                                                                                                         (65) 

 

In particular if  𝐵 =  0, 𝐴 ≠ 0,   𝜆 >  0 and 𝜇 =  0, then we deduce from Eq.(60) and Eq.(61) that: 

𝑢 ξ =
−𝜔

4
csch2  

λ

2
ξ ,                                                                                                                                    (66) 

𝑣 ξ =
−𝜔

4
csch2  

λ

2
ξ ,                                                                                                                                   (67) 

while, if  𝐵 ≠  0 ,   𝐴2 > 𝐵2 ,   𝜆 >  0 𝑎𝑛𝑑  𝜇 =  0 , then we deduce that: 

𝑢 ξ =
𝜔

4
sech2  

λ

2
ξ + +ξ

0
 ,                                                                                                                       (68) 

𝑣 ξ =
𝜔

4
sech2  

λ

2
ξ + +ξ

0
 ,                                                                                                                     (69) 

Where ξ
0

= tanh−1  
𝐴

𝐵
 . The solutions (66) - (69) represent the solitary wave solutions of Eqs. (49) and (50).  
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IV. Conclusion 
In this work, we have seen that three types of traveling wave solutions in terms of hyperbolic, trigonometric and ra-

tional functions for the vcKdV equation, the  MDWW equations and the symmetrically coupled KdV equations are success-

fully found out by using the  
𝐺 ′

𝐺
 -expansion method. From our results obtained in this paper, we conclude that the  

𝐺 ′

𝐺
 -

expansion method is powerful, effective and convenient. The performance of this method is reliable, simple and gives many 

new solutions. The  
𝐺 ′

𝐺
 -expansion method has more advantages: It is direct and concise. Also, the solutions of the proposed 

nonlinear evolution equations in this paper have many potential applications in physics and engineering. Finally, this method 

provides a powerful mathematical tool to obtain more general exact solutions of a great many nonlinear  PDEs in mathemat-

ical physics. 
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