On wgr --Continuous Functions in Topological Spaces

A.Jayalakshmi, ¹ C.Janaki²

¹Department of Mathematics, Sree Narayana Guru College, Coimbatore, TN, India ²Department of Mathematics, L.R.G.Govt.Arts.College for Women, Tirupur, TN, India

Abstract: In this paper, we introduce new type of continuous functions called strongly wgra-continuous and perfectly wgracontinuous and study some of its properties. Also we introduce the concept of wgra-compact spaces and wgra-connected spaces and some their properties are analyzed.

Subject Classification: 54C05, 54C10.

Keywords: perfectly wgra-continuous, strongly wgra-continuous, wgra-compact spaces and wgra-connected spaces.

I. Introduction

Balachandran et al in [9, 10] introduced the concept of generalized continuous maps of a topological space. A property of gpr continuous functions was discussed by Y.Gnanambal and Balachandran K [5]. Strong forms of continuity and generalization of perfect functions were introduced and discussed by T.Noiri [11, 12]. Regular α -open set is introduced by A.Vadivel and K. Vairamanickam [14]. Rg-compact spaces and rg-connected spaces, τ^* -generalized compact spaces and τ^* -generalized connected spaces, gb-compactness and gb-connectedness introduced by A.M.Al.Shibani [1], S.Eswaran and A.Pushpalatha [4], S.S.Benchalli and Priyanka M.Bansali [2] respectively. In this paper we establish the relationship between perfectly wgra-continuous and strongly wgra-continuous. Also we introduce the concept of wgra-compact spaces and wgra-connected spaces and study their properties using wgra-continuous functions.

II. Preliminary Definitions

Definition: 2.1

A subset A of a topological space (X, τ) is called α -closed [10] if $a \subset int$ (cl (int (A)).

Definition:2.2

A subset A of a topological space (X, τ) is called ga-closed [9] if $\alpha cl (A) \subset U$, when ever $A \subset U$ and U is α -open in X. **Definition: 2.3**

A subset A of a topological space (X, τ) is called rwg-closed [14] if cl (int (A)) $\subset U$, whenever A $\subset U$ and U is regular-open in X.

Definition: 2.4

A map f: $X \rightarrow Y$ is said to be continuous [3] if $f^{-1}(V)$ is closed in X for every closed set V in Y.

Definition: 2.5

A map f: $X \rightarrow Y$ is said to be wgra- continuous [6] if $f^{-1}(V)$ is wgra-closed in X for every closed set V in Y.

Definition: 2.6

A map f: $X \rightarrow Y$ is said to be perfectly-continuous [12] if $f^{-1}(V)$ is clopen in X for every open set V in Y.

Definition: 2.7

A map f: $X \rightarrow Y$ is said to be strongly-continuous [8] if $f^{-1}(V)$ is clopen in X for every subset V in Y.

Definition: 2.8

A function f: $X \rightarrow Y$ is called wgra- irresolute [6] if every $f^{-1}(V)$ is wgra-closed in X for every wgra-closed set V of Y. **Definition: 2.9**

A function f: $X \rightarrow Y$ is said to be wgra-open [7] if f(V) is wgra-open in Y for every open set V of X.

Definition: 2.10

A function f: $X \rightarrow Y$ is said to be pre wgra-open [7] if f(V) is wgra-open in Y for every wgra-open set V of X.

Definition: 2.11

A space (X,τ) is called wgra- $T_{1\backslash 2}$ space[7] if every wgra-closed set is a-closed.

Definition: 2.12

A space (X,τ) is called T_{wgra} -space[7] if every wgra-closed set is closed.

The complement of the above mentioned closed sets are their respective open sets.

III. Strongly Wgr D-Continuous and Perfectly Wgr D-Continuous Functions

Definition: 3.1

A function $f:(X,\tau) \to (Y,\sigma)$ is called strongly wgra-continuous if $f^{-1}(V)$ is open in (X,τ) for every wgra-open set V of (Y,σ) . **Definition: 3.2**

A function $f:(X,\tau) \to (Y,\sigma)$ is called perfectly wgra-continuous if $f^{-1}(V)$ is clopen in (X,τ) for every wgra-open set V of (Y,σ) .

Definition: 3.3

A function $f:(X,\tau) \to (Y,\sigma)$ is called strongly wgra- irresolute if $f^{(1)}(Y)$ is open in (X,τ) for every wgra-open set V of (Y,σ) . **Definition: 3.4**

A function $f:(X,\tau) \to (Y,\sigma)$ is called strongly rwg-continuous if $f^{-1}(V)$ is open in (X,τ) for every rwg-open set V of (Y,σ) . **Definition: 3.5**

A function $f:(X,\tau) \to (Y,\sigma)$ is called perfectly rwg-continuous if $f^{-1}(V)$ is clopen in (X,τ) for every rwg-open set V of (Y,σ) . Theorem: 3.6

If a function $f:(X,\tau) \to (Y,\sigma)$ is perfectly wgra-continuous, then f is perfectly continuous.

Proof

Let F be any open set of (Y,σ) . Since every open set is wgra-open. We get that F is wgra-open in (Y,σ) . By assumption, we get that $f^{1}(F)$ is clopen in (X,τ) . Hence f is perfectly continuous.

Theorem: 3.7

If f: $(X,\tau) \rightarrow (Y,\sigma)$ is strongly wgra-continuous, then it is continuous.

Proof

Let U be any open set in (Y,σ) . Since every open set is wgra-open, U is wgra-open in (Y,σ) . Then $f^{1}(U)$ is open in (X,τ) . Hence f is continuous.

Remark: 3.8

Converse of the above theorem need not be true as seen in the following example.

Example: 3.9

Let $X=\{a,b,c,d\},\tau=\{\phi,X,\{a\},\{c,d\},\{a,c,d\}\}$ and $\sigma=\{\phi,Y,\{a\},\{b,c\},\{a,b,c\}\}$. Define $f:X \to Y$ by f(a)=a, f(b)=d, f(c)=c, f(cf(d)=b. Here f is continuous, but it is not strongly wgra-continuous.

Theorem: 3.10

Let (X,τ) be any topological space and (Y,σ) be a T_{worr} -space and f: $(X,\tau) \to (Y,\sigma)$ be a map. Then the following are equivalent:

(i) f is strongly wgra-continuous.

(ii) f is continuous.

Proof

(i) \Rightarrow (ii) Let U be any open set in (Y, σ). Since every open set is wgr α -open, U is wgr α -open in (Y, σ). Then f¹(U) is open in (X,τ) . Hence f is continuous.

(ii) \Rightarrow (i) Let U be any wgra-open set in (Y, σ). Since (Y, σ) is a T_{wgra}-space, U is open in (Y, σ). Since f is continuous. Then f ¹(U) is open in (X,τ) . Hence f is strongly wgr α -continuous.

Theorem: 3.11

If f: $(X,\tau) \rightarrow (Y,\sigma)$ is strongly rwg -continuous, then it is strongly wgra- continuous.

Proof

Let U be any wgra-open set in (Y,σ) . By hypothesis, $f^{-1}(U)$ is open and closed in (X,τ) . Hence f is strongly wgra-continuous. Remark: 3.12

Converse of the above theorem need not be true as seen in the following example.

Example: 3.13

Let X={a,b,c}, $\tau=\sigma=\{\phi, X, \{a\}, \{b\}, \{a,b\}\}$. Define map f:X \rightarrow Y is an identity map. Here f is strongly wgra-continuous, but it is not strongly rwg-continuous.

Theorem: 3.14

Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a map.Both (X,τ) and (Y,σ) are T_{werg} -space. Then the following are equivalent:

(i)f is wgrα-irresolute.

(ii) f is strongly wgrα-continuous.

(iii) f is continuous.

(iv) f is wgrα-continuous.

Proof

Straight forward.

Theorem: 3.15

If $f:(X,\tau) \to (Y,\sigma)$ is strongly wgra-continuous and A is open subset of X, then the restriction

f $|A:A \rightarrow Y$ is strongly wgra-continuous.

Proof

Let V be any wgra-closed set of Y. Since f is strongly wgra-continuous, then $f^{-1}(V)$ is open in (X,τ) . Since A is open in X,(f|A)⁻¹(V)=A \cap f¹(V) is open in A. Hence f|A is strongly wgra-continuous.

Theorem: 3.16

If a function $f:(X,\tau) \to (Y,\sigma)$ is perfectly wgra-continuous, then f is strongly wgra-continuous.

Proof

Let F be any wgra-open set of (Y,σ) . By assumption, we get that $f^{1}(F)$ is clopen in (X,τ) , which implies that $f^{1}(F)$ is closed and open in (X,τ) . Hence f is strongly wgra-continuous.

Remark: 3.17

Converse of the above theorem need not be true as seen in the following example.

Example: 3.18

Let $X=\{a,b,c\}, \tau=\{\varphi,X,\{a\},\{c\},\{a,c\}\}=\sigma$. Define $f:X \rightarrow Y$ by f(a)=a, f(b)=b, f(c)=c. Here f is strongly wgra-continuous, but it is not perfectly wgra-continuous.

Theorem: 3.19

If f: $(X,\tau) \rightarrow (Y,\sigma)$ is perfectly rwg-continuous, then it is perfectly wgra-continuous.

Proof

As f is strongly continuous, $f^{1}(U)$ is both open and closed in (X,τ) for every wgra-open set U in (Y,σ) . Hence f is perfectly wgra-continuous.

Remark: 3.20

The above discussions are summarized in the following diagram.

Theorem: 3.21

Let (X,τ) be a discrete topological space and (Y,σ) be any topological space .Let $f: (X,\tau) \rightarrow (Y,\sigma)$ be a map. Then the following statements are equivalent:

(i) f is strongly wgr α -continuous.

(ii) f is perfectly wgr α -continuous.

Proof

(i) \Rightarrow (ii) Let U be any wgra-open set in (Y, σ).By hypothesis f¹(U) is open in (X, τ).Since(X, τ) is a discrete space, f¹(U) is also closed in (X, τ). f¹(U) is both open and closed in (X, τ). Hence f is perfectly wgra- continuous.

(ii) \Rightarrow (i) Let U be any wgra-open set in (Y, σ). Then $f^{1}(U)$ is both open and closed in (X, τ). Hence f is strongly wgracontinuous.

Theorem:3.22

If $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\mu)$ are perfectly wgr α -continuous ,then their composition

 $g \circ f:(X,\tau) \rightarrow (Z,\mu)$ is also perfectly wgr α -continuous.

Proof

Let U be a wgra-open set in (Z,μ) . Since g is perfectly wgra-continuous, we get that $g^{-1}(U)$ is open and closed in (Y,σ) . As any open set is wgra-open in (X,τ) and f is also strongly wgra-continuous, $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is both open and closed in (X,τ) . Hence $g \circ f$ is perfectly wgra-continuous.

Theorem:3.23

If $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\mu)$ be any two maps. Then their composition $g \circ f: (X,\tau) \to (Z,\mu)$ is

(i) wgrα-irresolute if g is strongly wgrα-continuous and f is wgrα-continuous.

(ii) Strongly wgrα-continuous if g is perfectly wgrα-continuous and f is continuous.

(iii) Perfectly wgra-continuous if g is strongly wgra-continuous and f is perfectly wgra-continuous.

Proof

(i)Let U be a wgra-open set in (Z,μ) . Then $g^{-1}(U)$ is open in (Y,σ) . Since f is wgra-continuous, $f^{-1}(g^{-1}(U))=(g \circ f)^{-1}(U)$ is wgra-open in (X,τ) . Hence $g \circ f$ is wgra-irresolute.

(ii)Let U be any wgra-open set in (Z,μ) . Then $g^{-1}(U)$ is both open and closed in (Y,σ) and therefore $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is both open and closed in (X,τ) . Hence $g \circ f$ is strongly wgra-continuous.

(iii) Let U be any wgra-open set in (Z,μ) . Then $g^{-1}(U)$ is open and closed in (Y,σ) . By hypothesis, $f^{-1}(g^{-1}(U))$ is both open and closed in (X,τ) . Hence $g \circ f$ is perfectly wgra-continuous.

Theorem: 3.24

If $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\mu)$ are strongly wgra-continuous ,then their composition $g \circ f:(X,\tau) \to (Z,\mu)$ is also strongly wgra-continuous.

Proof

Let U be a wgra-open set in (Z,μ) . Since g is strongly wgra-continuous, we get that $g^{-1}(U)$ is open in (Y,σ) . It is wgra-open in (Y,σ) As f is also strongly wgra-continuous, $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is open in (X,τ) . Hence $g \circ f$ is continuous.

Theorem:3.25

If $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\mu)$ be any two maps. Then their composition $g \circ f:(X,\tau) \to (Z,\mu)$ is (i) strongly wgracontinuous if g is strongly wgra-continuous and f is continuous.

(ii) wgr α -irresolute if g is strongly wgr α -continuous and f is wgr α -continuous.

(iii) Continuous if g is wgrα-continuous and f is strongly wgrα-continuous.

Proof

(i) Let U be a wgra-open set in (Z,μ) . Since g is strongly wgra-continuous, $g^{-1}(U)$ is open in (Y,σ) . Since f is continuous, $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is open in (X,τ) . Hence $g \circ f$ is strongly wgra-continuous.

(ii) Let U be a wgra-open set in (Z,μ) . Since g is strongly wgra-continuous, $g^{-1}(U)$ is open in (Y,σ) . As f is wgra-continuous, f $(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is wgra-open in (X,τ) . Hence $g \circ f$ is wgra-irresolute.

(iii)Let U be any open set in (Z,μ) . Since g is wgra-continuous, $g^{-1}(U)$ is wgra-open in (Y,σ) . As f is strongly wgracontinuous, $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is open in (X,τ) . Hence $g \circ f$ is continuous.

Theorem: 3.26

Let f: $(X,\tau) \rightarrow (Y,\sigma)$ and g: $(Y,\tau) \rightarrow (Z,\eta)$ be two mappings and let $g \circ f: (X,\tau) \rightarrow (Z,\eta)$ be wgra-closed. If g is strongly wgrairresolute and bijective, then f is closed.

Proof

Let A be closed in (X,τ) , then $(g \circ f)(A)$ is wgra-closed in (Z,η) . Since g is strongly wgra-irresolute, $g^{-1}(g \circ f)(A) = f(A)$ is closed in (Y,σ) . Hence f(A) is closed.

Theorem: 3.27

If $f:(X,\tau) \to (Y,\sigma)$ is perfectly wgra-continuous and A is any subset of X, then the restriction

f $|A:A \rightarrow Y$ is also perfectly wgra-continuous.

Proof

Let V be any wgra-closed set in(Y, σ). Since f is perfectly wgra-continuous, f¹(V) is both open and closed in (X, τ).(f|A)⁻ $^{1}(V)=A \cap f^{1}(V)$ is both open and closed in A. Hence f|A is perfectly wgra-continuous.

IV. Wgr D-Compact Spaces

Definition: 4.1

A collection $\{A_{\alpha}: \alpha \in \nabla\}$ of wgra-open sets in a topological space X is called wgra-open cover of a subset B of X if $B \subset \bigcup$ $\{A_{\alpha}: \alpha \in \nabla\}$ holds.

Definition: 4.2

A topological space (X,τ) is wgra-compact if every wgra-open cover of X has a finite subcover.

Definition: 4.3

A subset B of X is called wgra-compact relative of X if for every collection $\{A_{\alpha}: \alpha \in \nabla\}$ of wgra-open subsets of X such that $B \subseteq \{A_{\alpha} : \alpha \in \nabla\}$, there exists a finite subset ∇_{α} of ∇ such that $B \subseteq \bigcup \{A_{\alpha} : \alpha \in \nabla_{\alpha}\}$.

Definition: 4.4

A subset B of X is said to be wgra-compact if B is wgra-compact subspace of X.

Theorem: 4.5

Every wgra-closed subset of a wgra-compact space is wgra-compact space relative to X.

Proof

Let A be wgra-closed subset of X, then A^c is wgra-open. Let $O = \{G_q : \alpha \in \nabla\}$ be a cover of A by wgra-open subsets of X. Then W=O \cup A^C is an wgra-open cover of X. That is X=(\cup {G_a: $\alpha \in \nabla$ }) \cup A^C. By hypothesis, X is wgra-compact.

Hence W has a finite subcover of X say $(G_1 \cup G_2 \cup G_3 \cup \cdots \cup G_n) \cup A^C$. But A and A^C are disjoint, hence $A \subseteq G_1 \cup G_2$

 $\cup \cdots \cup G_n$. So O contains a finite subcover for A, therefore A is wgra-compact relative to X.

Theorem: 4.6

Let f: $X \rightarrow Y$ be a map:

(i) If X is wgra-compact and f is wgra-continuous bijective, then Y is compact.

(ii) If f is wgra-irresolute and B is wgra-compact relative to X, then f(B) is wgra-compact relative to Y.

Proof

(i)Let f: X \rightarrow Y be an wgra-continuous bijective map and X be an wgra-compact space. Let {A_a: $\alpha \in \nabla$ } be an open cover for Y.Then { $f^{1}(A_{\alpha})$: $\alpha \in \nabla$ } is an wgra-open cover of X. Since X is wgra-compact, it has finite subcover say { $f^{1}(A_{1})$, f^{1} ${}^{1}(A_{2}), \dots, f^{1}(A_{n})$ }, but f is surjective, so $\{A_{1}, A_{2}, \dots, A_{n}\}$ is a finite subcover of Y. Therefore Y is compact.

(ii) Let $B \subset X$ be

relative X,{ $A_{\alpha}: \alpha \in \nabla$ } wgra-compact to be any collection of wgra-open subsets of Y such that $f(B) \subset \bigcup \{A_{\alpha}: \alpha \in \nabla\}$. Then $B \subset \bigcup \{f^{1}(A_{\alpha}): \alpha \in \nabla\}$. By hypothesis, there exists a finite subset ∇_{α} of ∇ such that $f(B) \subset \bigcup \{A_{\alpha} : \alpha \in \nabla\}$. Then $B \subset \bigcup \{A_{\alpha} : \alpha \in \nabla\}$. $f^{1}(A_{\alpha}): \alpha \in \nabla$ }.By hypothesis, there exists a finite subset ∇_{α} of ∇ such that $B \subset \bigcup \{f^{1}(A_{\alpha}): \alpha \in \nabla_{\alpha}\}$. Therefore, we have $f(B) \subset \bigcup \{A_{\alpha}: \alpha \in \nabla_{\alpha}\}$ which shows that f(B) is wgrα-compact relative to Y.

Theorem: 4.7

If f: $X \rightarrow Y$ is prewgra-open bijection and Y is wgra-compact space, then X is a wgra-compact space.

Proof

Let $\{U_{\alpha} : \alpha \in \nabla\}$ be a wgr α -open cover of X.So $X = \bigcup_{\alpha \in \nabla} U_{\alpha}$ and then $Y = f(X) = f(\bigcup_{\alpha \in \nabla} U_{\alpha}) = \bigcup_{\alpha \in \nabla} f(U_{\alpha})$. Since f is prewgr α -open, for each $\alpha \in \nabla$, $f(U_{\alpha})$ is wgr α -open set. By hypothesis, there exists a finite subset ∇_{\circ} of ∇ such that $Y = \bigcup_{\alpha \in \nabla} f(U_{\alpha})$

Therefore, $X=f^{1}(Y)=f^{1}(\bigcup_{\alpha\in\nabla}f(U_{\alpha}))=\bigcup_{\alpha\in\nabla}U_{\alpha}$ This shows that X is wgra-compact.

Theorem: 4.8

If f:X \rightarrow Y is wgra-irresolute bijection and X is wgra-compact space, then Y is a wgra-compact space.

Proof

wgra-open cover of Y. So $Y = \bigcup_{\alpha \in \nabla} U_{\alpha}$ and then $X = f^{-1}(Y) = f^{-1}(\bigcup_{\alpha \in \nabla} U_{\alpha}) = \bigcup_{\alpha \in \nabla} f^{-1}(U_{\alpha})$. Since f is wgra-irresolute, it

follows that for each $\alpha \in \nabla$, $f^{-1}(U_{\alpha})$ is wgra-open set. By wgra-compactness of X, there exists a finite subset ∇ of ∇ such

that
$$X = \bigcup_{\alpha \in \nabla_{\circ}} f^{-1}(U_{\alpha})$$
. Therefore, $Y = f(X) = f(\bigcup_{\alpha \in \nabla_{\circ}} f^{-1}(U_{\alpha})) = \bigcup_{\alpha \in \nabla_{\circ}} U_{\alpha}$. This shows that Y is wgra-compact.

Theorem: 4.9

A wgr α -continuous image of a wgr α -compact space is compact.

Proof

Let f: $X \to Y$ be a wgra-continuous map from a wgra-compact space X onto a topological space Y. let $\{A_i: i \in \nabla\}$ be an open cover of Y. Then { $f^{-1}(A_i): i \in \nabla$ } is wgra-open cover of X. Since X is wgra-compact, it has finite subcover, say{ $f^{-1}(A_1), f^{-1}(A_2)$ } ${}^{1}(A_{2}), \dots, f^{1}(A_{n})$. Since f is onto, { A₁, A₂, ..., A_n} and so Y is compact.

Theorem: 4.10

A space X is wgra-compact if and only if each family of wgra-closed subsets of X with the finite intersection property has a non-empty intersection.

Proof

X is wgra-compact and A is any collection of wgra-closed sets with F.I.P. Let A = { $F_a: a \in \nabla$ } be an arbitrary collection of wgra-closed subsets of X with F.I.P, so that $\bigcap \{F_{\alpha_i} : i \in \nabla_0\} \neq \phi \rightarrow (1)$, we have to prove that the collection A has nonempty intersection that is, $\bigcap \{F_{\alpha}: \alpha \in \nabla\} \neq \phi \rightarrow (2)$. Let us assume that the above condition does not hold and hence \bigcap $\{F_{\alpha}: \alpha \in \nabla\} = \phi$. Taking complements of both sides, we get $\bigcup \{F_{\alpha}: \alpha \in \nabla\} = X \rightarrow (3)$. But each F_{α} being wgra-closed, which implies that $F_{\alpha}^{\ C}$ is wgr α -open and hence from (3),we conclude that $C = \{F_{\alpha}^{\ C} : \alpha \in \nabla\}$ is an wgr α open cover of X. Since X is wgra-compact, this cover C has a finite subcover. C = { F_{α_i} : $i \in \nabla_0$ } is also an open subcover. Therefore X= $\bigcup \{F_{\alpha_i}^{C}: i \in \nabla_0\}$ ∇_{0} . Taking complement, we get $\phi = \bigcap \{F_{\alpha_{i}} : i \in \nabla_{0}\}$ which is a contradiction of (1). Hence $\bigcap \{F_{\alpha} : \alpha \in \nabla\} \neq \phi$. Conversely, suppose any collection of wgra-closed sets with F.I.P has a empty intersection. Let $C = \{G_a : a \in \nabla\}$, where G_a is a wgr α -open cover of X and hence X= $\bigcup \{G_{\alpha}: \alpha \in \nabla\}$. Taking complements, we have $\varphi = \bigcap \{G_{\alpha}^{C}: \alpha \in \nabla\}$. But G_{α}^{C} is wgr α closed. Therefore the class A of wgra-closed subsets with empty intersection. So that it does not have F.I.P. Hence there there exists a finite number of wgra-closed sets $G_{\alpha_i}^{C}$ such that $i \in \nabla_{\alpha_i}$ with empty intersection. That is, $\{G_{\alpha_i}: i \in \nabla_{\alpha_i}\}$

 $=\phi$. Taking complement, we have $\{G_{\alpha_i} : i \in \nabla_{\rho_i}\} = X$. Therefore C of X has an open subcover C*= $\{G_{\alpha_i} : i \in \nabla_{\rho_i}\}$. Hence

(X,τ) is compact. Theorem :4.11

If f: $(X,\tau) \rightarrow (Y,\sigma)$ is a strongly wgra-continuous onto map, where (X,τ) is a compact space, then (Y,σ) is wgra-compact.

Proof

Let $\{A_i : i \in \nabla\}$ be a wgra-open cover of (Y,σ) . Since f is strongly wgra-continuous, $\{f^1(A_i : i \in \nabla\}\}$ is an open cover (X,τ) . As (X,τ) is compact, it has a finite subcover say, { $f^1(A_1), f^1(A_2), \dots, f^1(A_n)$ } and since f is onto, { A_1, A_2, \dots, A_n } is a finite subcover of (Y,σ) and therefore (Y,σ) is wgra-compact.

Theorem :4.12

If a map f: $(X,\tau) \rightarrow (Y,\sigma)$ is a perfectly wgr α -continuous onto map, where (X,τ) is compact, then (Y,σ) is wgr α -compact. Proof

Since every perfectly wgra-continuous function is strongly wgra-continuous. Therefore by theorem 4.11, (Y,σ) is wgracompact.

Definition: 5.1

V. Wgr D-Connected Spaces

A Space X is said to be wgr α -connected if it cannot be written as a disjoint union of two non-empty wgr α -open sets.

Let $\{U_{\alpha}: \alpha \in \nabla\}$ be a

Definition: 5.2

A subset of X is said to be wgr α -connected if it is wgr α -connected as a subspace of X.

Definition: 5.3

A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called contra wgra-continuous if $f^{-1}(V)$ is wgra-closed in (X,τ) for each open set V in (Y,σ) . **Theorem: 5.4**

For a space X, the following statements are equivalent

(i)X is wgrα-connected.

(ii)X and ϕ are the only subsets of X which are both wgra-open and wgra-closed.

(iii)Each wgra-continuous map of X into some discrete space Y with atleast two points is a constant map.

Proof

(i) \Rightarrow (ii) Let X be wgra-connected. Let A be wgra-open and wgra-closed subset of X. Since X is the disjoint union of the wgra-open sets A and A^C, one of these

sets must be empty. That is, $A = \varphi$ or A = X.

(ii) \Rightarrow (i) Let X be not wgra-connected, which implies X=A \cup B ,where A and B are disjoint non-empty wgra-open subsets of X. Then A is both wgra-open and wgra-closed. By assumption A= ϕ or A=X, therefore X is wgra-connected.

(ii) \Rightarrow (iii) Let f:X \rightarrow Y be wgra –continuous map from X into discrete space Y with atleast two points, then{ f¹(y):y \in Y} is a cover of X by wgra-open and wgra-closed sets. By assumption, f¹(y)= φ or X for each y \in Y. If f¹(y)= φ for all y \in Y, then f is not a map. So there exists a exactly one point y \in Y such that f¹(y) $\neq \varphi$ and hence f¹(y)

=X. This shows that f is a constant map.

(iii) \Rightarrow (ii) Let $O \neq \phi$ be both an wgra-open and wgra-closed subset of X.Let $f: X \rightarrow Y$ be wgra-continuous map defined by $f(O) = \{y\}$ and $f(O^C) = \{\omega\}$ for some distinct

points y and ω in Y. By assumption f is constant, therefore O=X.

Theorem: 5.5

Let f: $X \rightarrow Y$ be a map:

(i) If X is wgra-connected and f is wgra-continuous surjective, then Y is connected.

(ii) If X is wgra-connected and f is wgra-irresolute surjective, then Y is wgra-connected.

Proof

(i) If Y is not connected, then $Y = A \cup B$, where A and B are disjoint non-empty open subsets of Y. Since f is wgracontinuous surjective, therefore $X = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-empty wgra-open subsets of X. This contradicts the fact that X is wgra-connected. Hence, Y is connected.

(ii)Suppose that Y is not wgra-connected, then $Y=A \cup B$, where A and B are disjoint non-empty wgra-open subsets of Y. Since f is wgra-irresolute surjective, therefore $X=f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A), f^{-1}(B)$ are disjoint non-empty wgra-open subsets of X. So X is not wgra-connected, a contradiction.

Theorem: 5.6

A contra wgra-continuous image of a wgra-connected space is connected.

Proof

Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a contra wgra-continuous from a wgra-connected space X onto a space Y. Assume Y is not connected. Then $Y=A \cup B$, where A and B are non-empty closed sets in Y with $A \cap B=\phi$. Since f is contra wgra-continuous, we have that $f^{-1}(A)$ and $f^{-1}(B)$ are non-empty wgra-open sets in X with $f^{-1}(A) \cup f^{-1}(B) = f^{-1}(A \cup B)$

= $f^{1}(Y)$ =X and $f^{1}(A) \cap f^{1}(B)$ = $f^{1}(A \cap B)$ = $f^{1}(\phi)$. This means that X is not wgra-connected, which is a contradiction. This proves the theorem.

Theorem: 5.7

Every wgrα-connected space is connected.

Proof

Let X be an wgr α -connected space. Suppose X is not connected. Then there exists a proper non-empty subset B of X which is both open and closed in X. Since every closed set is wgr α -closed,B is a proper non-empty subsets of X which is both wgr α -open and wgr α -closed in X. Therefore X is not wgr α -connected. This proves the theorem.

Remark: 5.8

Converse of the above theorem need not be true as seen in the following example.

Example: 5.9

Let $X=\{a,b,c\}$, $\tau=\{\phi,\{a,b\},X\}$. $\{X,\tau\}$ is connected. But $\{a\}$ and $\{b\}$ are both wgra-closed and wgra-open, X is not wgra-connected.

Theorem: 5.10

Let X be a T_{wgra} -space. Then X is wgra-connected if X is connected.

Proof

Suppose X is not wgra-connected. Then there exists a proper non-empty subset B of X which is both wgra-open and wgraclosed in X. Since X is T_{wgra} -space, B is both open and closed in X and hence X is not connected.

Theorem: 5.11

Suppose X is wgra-T_{1/2} space. Then X is wgra-connected if and only if X is ga-connected

Proof

Suppose X is wgra-connected. X is ga-connected.

Conversely, we assume that X is ga-connected. Suppose X is not wgra-connected. Then there exists a proper non-empty subset B of X which is both wgra-open and wgra-closed in X. Since X is wgra-T_{1/2} -space is both a-open and a-closed in X. Since α -closed set is g α -closed in X, B is not g α -connected in X, which is a contradiction. Therefore X is wg α -connected.

Theorem: 5.12

In a topological space (X,τ) with at least two points, if $\alpha O(X,\tau) = \alpha C(X,\tau)$, then X is not wgra-connected.

Proof

By hypothesis, we have $\alpha O(X,\tau) = \alpha C(X,\tau)$ and by the result, we have every α -closed set is wgr α -closed, there exists some non-empty proper subset of X which is both wgra-open and wgra-closed in X. So by theorem 5.4, we have X is not wgraconnected.

References

- A.M. Al-Shibani, rg-compact spaces and rg-connected spaces, Mathematica Pannonica17/1 (2006), 61-68. [1]
- S.S Benchalli, Priyanka M. Bansali, gb-Compactness and gb-connectedness Topological Spaces, Int.J. Contemp. Math. Sciences, [2] vol. 6, 2011, no.10, 465-475.
- R. Devi, K. Balachandran and H.Maki, On Generalized α-Continuous maps, Far. East J. Math., 16(1995), 35-48. [3]
- S. Eswaran, A. Pushpalatha, τ^* -Generalized Compact Spaces and τ^* -Generalized Connected Spaces in Topological Spaces, [4] International Journal of Engineering Science and Technology, Vol. 2(5), 2010, 2466-2469.
- [5] Y.Gnanambal and K.Balachandran, On gpr-Continuous Functions in Topological spaces, Indian J.Pure appl.Math, 30(6), 581-593, June 1999.
- A. Jayalakshmi and C. Janaki, wgrα- closed sets in Topological spaces, Int. Journal of Math. Archieve, 3(6), 2386-2392. [6]
- A. Jayalakshmi and C. Janaki, wgra-Closed and wgra-Open Maps in Topological Spaces (submitted). [7]
- Levine.N, Strong Continuity in Topological Spaces, Am Math. Monthly 1960; 67:267. [8]
- H. Maki, R. Devi and K.Balachandran, Generalized α-Closed sets in Topology, Bull. Fukuoka Univ. Ed. Part -III, 42(1993), 13-21. [9]
- [10] H.Maki, R.Devi and K.Balachandran, Associated Topologies of Generalized α -Closed Sets and α -Generalized Closed Sets Mem.Fac. Sci. Kochi.Univ. Ser.A. Math.15 (1994), 51-63.
- T.Noiri, A Generalization of Perfect Functions, J.London Math.Soc., 17(2)(1978) 540-544. [11]
- [12] Noiri .T,On δ-Continuous Functions, J.Korean Math.Soc 1980;16:161-166.
- [13] T.Noiri, Super Continuity and Strong Forms of Continuity, Indian J.Pure Appl.Math.15 (1984), no.3, 241-250.
- [14] A.Vadivel and K. Vairamanickam, rga-Closed Sets and rga-Open Sets in Topological Spaces, Int. Journal of Math. Analysis, Vol. 3, 2009, no.37, 1803-1819.