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ABSTRACT: Graphs has been used in various real applications such as social network modeling and chemical compound 

analysis. Due to their wide usages, many interesting graph problems are extensively studied, for example, sub graph search, 

graph reachability, and keyword search in graphs. Given an example, during a chemical reaction, the structures of the 

chemical compounds often change along the reaction process. We can model these evolving graphs as graph streams, that 

is, a sequence of graphs which grow indefinitely over time . However, most of the previous works assume that graph data are 

rather static, which raises challenges when applying to the graph streams. Compared to the static graphs, graph streams not 

only inherit the complexity of graphs but also possess their own characteristics. In this paper, we study the problem of 

continuous sub graph pattern search over graph databases, which can be used in many real applications.  
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I. INTRODUCTION 
 Graph pattern matching is a routine process in a variety of applications, e.g., knowledge discovery, computer vision, 

biology, chem- informatics, dynamic network traffic, intelligence analysis and social networks. It is often defined in terms of 

sub- graph isomorphism [1], graph simulation [2] or bounded simulation [3]. Given a pattern graph GP and a data graph G, 

the graph pattern matching is to find the set M(GP, G) of matches in G for GP . For sub graph isomorphism, M(GP,G) is the 

set of all the sub graphs of G that are isomorphic to the pattern GP . For bounded simulation, M(GP, G) consists of a unique 

maximum match, a relation defining edge-to-edge (edge-to-path) mappings. Graph pattern matching is very costly: NP-

complete for subgraph isomorphism [4], cubic-time for bounded simulation [3], and quadratic-time for simulation [5]. In 

practice, a data graph G is typically very large, and moreover, is frequently updated. This is particularly evident in, e.g., 

social networks [6], Web graphs [7] and also traffic networks [8]. It is often prohibitively expensive to re compute the 

matches starting from the scratch when G is updated. These highlight the need for incremental algorithms to compute the 

matches. 

 Given a pattern graph GP , a data graph G, that matches M(GP, G) in G for GP and changes ΔG to G, the 

incremental matching problem is to compute changes ΔM to the matches such that M(GP,G   ΔG) = M(GP,G)   ΔM, 

where (a) ΔG consists of a set of edges to be inserted into or deleted from G, and (b) operator   applies changes ΔS to S, 

where S is a data graph G or matching results M. As opposed to batch algorithms that re compute the new output from the 

scratch, an incremental matching algorithm aims to minimize unnecessary recomputation and improve response time. 

Indeed, when the changes ΔG to G are very small, the increment ΔM to the matches is often small as well, and is much less 

costly to find than recompute the entire M(GP, G   ΔG). While real life graphs are constantly updated, the changes are 

typically minor; for example, only 5% to 10% of the nodes are updated weekly in a Web graph [7]. We can cope with the 

dynamic nature of the social networks and Web graphs by computing matches once on the entire graph via a batch 

algorithm, and then incrementally identifying their changes in response to updates. That is, we find new matches by making 

maximal use of the previous computation, without paying the price of the high complexity of graph pattern matching. 

 

II. RELATED WORK 
 A lot of interesting works have been done to address the sub graph search problem. In [9], the authors proposed a 

closure-tree (C-tree) to organize graphs into a tree-based multi-dimensional index and used the graph closures as bounding 

boxes. The C-tree can support both exact sub graph queries and the similarity-based sub graph queries. In [10], the authors 

decomposed a graph into a full set of sub graphs and indexed the hash value of canonical forms of the sub graphs.  

 In [11], the authors proposed GCoding for graph search, which assigns a signature to each vertex based on its local 

structures. Then, they produced a spectral graph code by combining all vertex signatures in the graph. Based on the spectral 

graph codes, a necessary condition for sub graph isomorphism was derived. In [12], the authors proposed gIndex which uses 

frequent sub graphs as filtering features. Because of anti- monotonicity, once a sub graph pattern is not frequent, any super 

graph that contains it will not be frequent as well. In [13], the authors used frequent sub graphs as indexing features and 

constructed a nested inverted-index, thus, a frequent graph query could be answered directly. Only an infrequent graph query 

needs to be verified for the sub graph isomorphism. In [14], the authors proposed an improved subgraph isomorphism 

checking method using tree features. They also integrated indexing with the sub graph searching. Thus, not only the sub 

graph isomorphism verification time was reduced as well. 

 

III.  PROPOSED WORK 
 In this paper, we focus on answering continuous sub graph patterns over graph databases. More specifically, we 

assume a user has a set of sub graph patterns and starts monitoring graph streams from timestamp zero. Then, as time 
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evolves, the user wants the system to continuously report the appearances of certain sub graph patterns on the graph streams 

at each and every timestamp. 

   

A. Node- neighbour tree: Node-neighbor tree or NNT, which captures the local structure around each vertex. An 

example graph G together with the NNTs of all its vertices and edges under l = 2 is shown in Figure 1(a). In the example, G 

has 4 vertices with ids from 1 to 4, which have labels A,A,B,C respectively. The NNTs of vertices 1 and 2 have the same 

structure, thus, we use only one tree to represent T1 and T2 in this example. T3 rooted at vertex 3 has only two branches 

consisting of the same labels A, which indicates that node 3 has two distinct neighbors with label A. T4 has two different 

branches rooted at the node with label B. In node-neighbor trees, each node is identified by the lower case character in the 

figure. The numbers in the brackets are referring to the node IDs in the original graph “G”.  

 
Figure 1: Graph, Node- neighbour trees and index 

  

For example, in T1, the node a is referring to node 1 in G and then nodes b,e are all referring to 2 in G. Figure 1(b) 

shows an example of node-tree index for the NNTs in Figure 1(a). In the example index, node 2 appears in positions b and e 

of tree T1 rooted at node 1, thus in the entry 2 of the node tree index, (T1, b) and (T1, e) are stored. 

 

B. Projecting to Numerical Vectors: In this section, we propose a novel encoding method to transform a NNT to a 

set of vectors and approximate sub- tree isomorphism checking by dominant relationship verification between two vector 

sets. Figure 2 shows an example of dimension derived from the query graph Q (upper left). We show that the NNTs of 

vertices l = 2. Thus, there are fourteen possible dimensions from the NNTs, < 1,A,A >, < 2,A,A >, . . ., < 2, C,B >. Based on 

these dimensions, we can apply Procedure 1 to project a NNT into a node projected vector (NPV). 

 
Figure 2: Projecting NNTs to Numerical Vectors 

 

Procedure 1: Tree Projection 

 {Input: A NNT tree up to depth of l 

Output: Node projected set 

(1) NPV ← 0 

(2) for each level li in Input 

(3) for each edge (u, 
1u ) at level li 

(4) NPV [(li, label(u), label(
1u ))] ← NPV [(li, label(u),          

       label(
1u ))] + 1 

(5) return NPV} 

 

C. Search in the Vector Space: After projecting NNTs to their NPVs, we can check every possible joinable pair of 

streams and the query graphs based on the dominant relationship of NPVs using a nested loop algorithm. We set this nested 

loop algorithm as the baseline and propose two improved search strategies: the first improved method utilizes the idea of 

checking the dominated vector set as a whole instead of checking the whole dominant relationship pair by pair. When the 

stream graph of the next timestamp comes, for each dimension, we only need to update the number of dominated vectors of 

Q, when the position of the projected node vector in G changes. The detailed steps are listed in Procedure 2. Second, for each 
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vector of the stream graph, we maintain two counter vectors for it, namely, the position counter vector and the dominant 

counter vector. 

 

Procedure 2: Dominated Set Cover Join  

{Input: stream graphs {G1, ...Gk1}, query graphs {Q1, ...Qk2} 

Output: Reported positive pairs 

(1) for i ← 1 to k1 

(2) for u   Gi 

(3) for each non-zero dimension of NPV (u) { 

(4)    update u’s position counter NPV (u)pos 

(5)     update u’s dominant counter NPV (u)dom 

(6)    mark query vectors dominated by Gi based on  

         NPV(u)dom } 

(7) for j ← 1 to k2 

(8) if Gi dominates all vectors in Qj 

(9) answer ← answer U  (i, j) 

(10) return answer 

 

D. Search in Uncertain Graph Streams: For sub- graph pattern search over uncertain graph streams, besides using 

the structural features, we want to utilize the probabilities to reduce the search space. Specifically, other than removing the 

stream graph 
1G  that does not contain the query graph Q, that is, the probability  of 

1G  containing Q is zero, we also want 

to filter out a stream graph that contains Q but with a probability less than  . Thus, for sub- graph search over uncertain 

graph streams, we would like to conduct the pruning in two steps: For structural pruning, we can utilize procedure 2. 

Compared to certain graph streams, for uncertain graph streams, we have to make some modifications for projecting the 

node- neighbour trees (NNTs) to numerical vectors, since each of the NNT of an uncertain graph has a probability associated 

with each of its edges. We call the converted vectors from NNTS of an uncertain graph called as Probability Node Projected 

Vectors (PNPV). The basic idea of the probability pruning is to derive an upper bound for the probability of a stream 

uncertain graph 
1G  containing the query graph Q, called matching probability upper bound, denoted as MPbound. Based on 

the global mapping probability upper bounds, we have: 

MPbound=max{min{Plocal-mapping(NPV (u), PNPV (v))} 

 From the above equation, we can observe that we need to compute local mapping probability upper bound before 

we derive MPbound. Therefore, we listed detailed steps on computing this local mapping bound in Procedure 3. 

 

Procedure 3: Local Mapping Bound  

{Input: Query vector NPV (u), PNPV (v) of the uncertain graph node 

Output: Probability bound 

(1) check if PNPV (v) dominates NPV (u) 

(2) if no, return 0 

(3) bound = 1 

(4) for each dimension i in NPV (u) 

(5) k ← value of i dimension in NPV (u) 

(6) l ← kth largest probability of the probability array pointed by p of i dimension in PNPV (v) 

(7) if l < bound bound = l 

(8) return bound} 

 

 Now we propose one exact solution and one approximate solution. The exact solution will derive the exact 

MPbound(procedure 4). The approximate solution will get an approximate solution(procedure 5), whose value is less than 

MPbound, but much faster than the exact solution. 

 

Procedure 4: Exact MP Bound  

{Input: weighted bipartite graph G 

Output: MPbound 

(1) low = 0, high = 1 

(2) while low + δ < high 

(3) mid = (low + high)/2 

(4) remove from G all edges having weights less than mid 

(5) use Hopcroft-Karp algorithm to check if there is a maximum matching 

with regard to the number of nodes in query graph 

(6) if yes, low = mid, otherwise high = mid 

(7) return low} 
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Procedure 5: Approximate MP Bound  

{Input: weighted bipartite graph G 

Output: Approximate MPbound 

(1) bound = 1 

(2) for each node u in query graph 

(3) find the edge incident to u with maximum probability p 

(4) if p < bound bound = p 

(5) return bound} 

Finally, the overall query procedure for the sub graph search over uncertain graph stream is presented in Procedure 6. 

 

Procedure 6: Uncertain Join  

{Input: uncertain stream graphs {G1, ...Gk1}, query graphs {Q1, ...Qk2}, and a probability threshold   

Output: Joinable query-stream pairs 

(1) answer ←  , answer2 ←   

(2) conduct Skyline with Early Stop or 

Dominated Set Cover algorithm to obtain structural 

filtering results to answer 

(5) for each query-stream pair (Qj,Gi)   answer 

(6) bipartite graph G ←   

(7) for each node u in Qj 

(8) for each node v in Gi 

(9) call Procedure Local Mapping Bound and store return value in p 

(10) if p is non-zero, add (u, v) with weight p to G 

(11) call Procedure Exact MP Bound or Procedure Approximate MP Bound 

with parameter G to derive MPbound 

(12) if MPbound ≥  , then answer2 ← answer2 U (i, j) 

(13) return answer2} 

 

IV. CONCLUSION 
 In this paper, we propose a continuous sub graph patterns over graph databases. We introduce  a light-weight yet 

effective feature structure called Node-Neighbor Tree to filter out false candidate query-stream pairs. Later we propose a 

novel encoding method to transform a NNT to a set of vectors and approximate sub- tree isomorphism checking by dominant 

relationship verification between two vector sets. After projecting NNTs to their NPVs, we can check every possible joinable 

pair of streams and the query graphs based on the dominant relationship of NPVs using a nested loop algorithm. After 

projecting NNTs to their NPVs, we can check every possible joinable pair of streams and the query graphs based on the 

dominant relationship of NPVs using a nested loop algorithm. for sub- graph search over uncertain graph streams, we would 

like to conduct the pruning in two steps: structural and probability pruning. This reduces search space for capturing patterns 

over uncertain graph streams. 
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