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ABSTRACT: In this paper we have studied the motion and stability of the centre of mass of a system of two satellites 

connected by inextensible cable under the influence of air resistance and magnetic force in the central gravitational field of 

oblate earth in circular orbit. We have obtained an equilibrium point which has been shown to be stable in the sense of 

Liapunov. 
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1. INTRODUCTION 
This paper is devoted to study the equilibrium position under the influence of air resistance and magnetic force of 

oblate earth in case of circular orbit of the centre of mass of the system. 

For this, firstly we have derived equations of motion in case of circular orbit of the centre of mass of the system 

under perturbative forces mentioned above and then Jacobian integral for the problem is obtained. Equilibrium Position has 

been obtained shown to be stable in the sense of Liapunov. This work is direct generalization of works done by V.V. 

Beletsky; R. B. Singh; B. Sharma; S. K. Das; P. K. Bhattacharyya and C.P.Singh.  

 

2. EQUATIONS OF MOTION OF ONE OF THE TWO SATELLITES IN ELLIPTIC ORBIT 
The equations of motion of one of the two satellites when the centre of mass moves along a keplerian elliptical orbit 

in Nechvill's co-ordinate system have been derived in the form. 
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 ; p being focal parameter and e eccentricity of the orbit of centre of mass 

R = Radius vector of the centre of mass from the attracting centre 

v = True anomaly of the centre of mass 

i = Inclination of the orbit of centre of mass with the equatorial plane of the earth 
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Here, dashes denote differentiations w.r. to true anomaly v. 

 The condition of constraint is given by 
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Since the general solution of the system of differential equations given by (2.1) is beyond our reach so we restrict ourselves 

to the case of circular orbit of the centre of mass of the system in equatorial plane (i = 0) and hence we get from (2.1) on 

putting.  
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The condition of constraint given by (2.2) takes the form 
2 2 2 1x y z                                                     ................... (2.4) 

Thus if inequality sign holds in (2.4) then the motion takes place with loose string and the motion is called free motion. If the 

equality sign holds in (2.4), then the motion takes place with tight string and the motion is called constrained motion. 

We are actually interested in stability due to constrained motion. Thus, motion takes place on unit sphere given by - 
2 2 2 1x y z                                                     .................. .(2.5) 

Differentiating (2.5), we get 
1 1 1 0xx yy zz                                                     ................... (2.6) 

To obtain Jacobian integral of the problem, we multiply the first, second and third equation of (2.3) by x', y' and z' 

respectively and add them together, we get after integrating on using (2.5) and (2.6) 
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Which is known as Jacobian integral and can be interpreted as energy equation with modified potential given by 
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Differentiating (6) with respect to v, we get 
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Multiplying the first, second and the third equations of (2.3) by x, y and z respectively and adding we get on using (2.5) 
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Using (2.9) in (2.10), we get 
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To simplify (2.7) and (2.8), we use spherical polar coordinate on unit sphere: 

 cos cos : cos sinx y      and sinz                                             ...................  (2.12) 

Using (2.12), (2.7) and (2.8) become respectively 
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Where, 
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3. PARTICULAR SOLUTION AND STABILITY 
For equilibrium positions, (2.14) can be taken as modified potential energy. 

The equilibrium positions are given by the stationary values of  ,v    and hence, we have 
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Differentiating (2.14) partially with respect to    and using (3.1), we get 
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Sin  = 0 i.e.   = 0                                                           ........................(3.3) 

Also, we have 
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For smallest value of 0 , we have from (3.4) on putting 0cos =1 and sin 0 = 0  
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Thus, the equilibrium point is given by 
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To test the stability to the equilibrium position given by (2.6), we have 
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For equilibrium point given by (3.6) to be stable in the sense of Liapunov, we have to show that 
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Using (3.7), (3.8) and (3.9) in (3.10) it can be easily seen that (3.10) is positive if 5A + B < 3. . 

Conclusion: we conclude that the equilibrium point 
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is stable in the sense of Liapunov if 5A + B < 3. 
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