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ABSTRACT : This work is devoted for the design and FPGA implementation of a 16bit Arithmetic module, which uses 

Vedic Mathematics algorithms. For arithmetic multiplication various Vedic multiplication techniques like Urdhva 

Tiryakbhyam Nikhilam and Anurupye has been thoroughly analyzed. Also Karatsuba algorithm for multiplication has been 

discussed. It has been found that Urdhva Tiryakbhyam Sutra is most efficient Sutra (Algorithm), giving minimum delay for 

multiplication of all types of numbers. Using Urdhva Tiryakbhyam, a 16x16 bit Multiplier has been designed and using this 

Multiplier, a Multiply Accumulate (MAC) unit has been designed. Then, an Arithmetic module has been designed which 

employs these Vedic multiplier and MAC units for its operation. Logic verification of these modules has been done by using 

Model sim 6.5.Further, the whole design of Arithmetic module has been realized on Xilinx Spartan 3E FPGA kit and the 

output has been displayed on LCD of the kit. The synthesis results show that the computation time for calculating the 

product of 16x16 bits is 10.148 ns, while for the MAC operation is 11.151 ns. The maximum combinational delay for the 

Arithmetic module is 15.749 ns. The further extension of this 8 x 8 Array multiplication and Urdhava multiplication can be 

implemented by using reversible DKG adder replacing with adders(H.A or F.A), and by using 16 x 16 – bit, 32 X 32 – bit are 

more than that. It can be dumped in to Xilinx tools, and also finding the comparison between the adders like power 

consumption, speed etc.., 

 

Keywords: KCM; Urdhava; Vedic Maths; Array Multiplier; DKG Adder; FPGA. 

 

I. INTRODUCTION 
Multiplication is one of the more silicon-intensive functions, especially when implemented in Programmable Logic. 

Multipliers are key components of many high performance systems such asFIR filters, Microprocessors, Digital Signal 

Processors, etc. A system's performance is generally determined by the performance of the multiplier,because the multiplier 

is generally the slowest element in the system. Furthermore, it is generally the most area consuming. Hence, optimizing the 

speed and area of the multiplier is a major design issue.Vedic mathematics [I] is the ancient Indian system of mathematics 

which mainly deals with Vedic mathematicalformulae and their application to various branches of mathematics. The word 

'Vedic' is derived from the word 'Veda' which means the store-house of all knowledge. Vedic mathematics was reconstructed 

from the ancient Indian scriptures (Vedas) by Sri Bharati Krshna Tirthaji (1884-1960), after his eight years of research on 

Vedas [1]. According to his research, Vedic mathematics is mainly based on sixteen principles or word-formulae which are 

termed as Sutras. This is a very interesting field and 978-1-4577-0697-4/12/$26.00 ©2012 IEEE presents some effective 

algorithms which can be applied tovarious branches of Engineering such as Computing and Digital Signal Processing. 

 

II. VLSI DESIGN 
 The complexity of VLSI is being designed and used today makes the manual approach to design impractical. 

Design automation is the order of the day. With the rapid technological developments in the last two decades, the status of 

VLSI technology is characterized by the following 

A steady increase in the size and hence the functionality of the ICs: 

• A steady reduction in feature size and hence increase in the speed of operation as well as gate or transistor density.  

• A steady improvement in the predictability of circuit behavior. 

• A steady increase in the variety and size of software tools for VLSI design. 

The above developments have resulted in a proliferation of approaches to VLSI design. 

Final step in the development process, starting in the 1980s and continuing through the present, was in the early 

1980s, and continues beyond several billion transistors as of 2009. In 1986 the first one megabit RAM chips were 

introduced, which contained more than one million transistors. Microprocessor chips passed the million transistor mark in 

1989 and the billion transistor mark in 2005.The trend continues largely unabated, with chips introduced in 2007 containing 

tens of billions of memory transistors. The complexity of VLSIs being designed and used today makes the manual approach 

to design impractical. Design automation is the order of the day. With the rapid technological developments in the last two 

decades, the status of VLSItechnology is characterized by the following [Wai-kai, Gopalan]: 

•A steady increase in the size and hence the functionality of the ICs. 

•A steady reduction in feature size and hence increase in the speed of operation as well as gate or transistor density. 

•A steady improvement in the predictability of circuit behavior. 

•A steady increase in the variety and size of software tools for VLSI design. The above developments have resulted in a 

proliferation of approaches to VLSIdesign. We briefly describe the procedure of automated design flow [Rabaey, Smith MJ]. 

The aim is more to bring out the role of a Hardware Description Language (HDL) in the design process. An abstraction 

Design and Implementation of Multiplier Using Kcm and Vedic 

Mathematics by Using Reversible Adder 

http://en.wikipedia.org/wiki/Random_Access_Memory
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based model is the basis of the automated design. The model divides the whole design cycle into various domains. With such 

an abstraction through a division process the design is carried out indifferent layers. The designer at one layer can function 

without bothering about the layers above or below. The thick horizontal lines separating the layers in the figure signify the 

compartmentalization. As an example, let us consider design at the gate level. The circuit to be designed would be described 

in terms of truth tables and state tables. With these as available inputs, he has to express them as Boolean logic equations and 

realize them in terms of gates and flip-flops. In turn, these form the inputs to the layer immediately below.  

 

III. ARRAY MULTIPLIER 
In  Array  multiplier ,  AND  gates  are  used for  generation  of  the  bit-products  and  adders  for  accumulation of  

generated  bit  products.  All  bit-products  are  generated  in  parallel  and  collected  through  an  array  of  full  adders  or  

any  other  type  of  adders.  Since  the  array  multiplier  is  having  a  regular  structure,  wiring  and  the  layout  are  done  

in  a  much simplified  manner.  Therefore, among other multiplier structures, array multiplier takes up the least amount of 

area.  But  it  is  also  the  slowest  with  the  latency  proportional  to O(Wct),  where  Wd  is  the  word  length  of  the  

operand. 

 

Example 1:   

 
Example1 for Array multiplier 4*4 

Example 2:   

 
Example2 for Array multiplier 8*8 

 

Instead  of  Ripple  Carry  Adder  (RCA),  here  Carry  Save Adder  (CSA)  is  used  for  adding  each  group  of  

partial product  terms,  because  RCA  is  the  slowest  adder  among  all other  types  of  adders  available.  In  case  of  

multiplier  with  CSA  ,  partial  product  addition  is  carried  out  in  Carry  save form and RCA is used only in final  

addition. Here  from  the  above  example  it  is  inferred  that  partial products  are  generated  sequentially,  which  reduces  

the  speed  of  the  multiplier.  However  the  structure  of  the multiplier is  regular. 
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Fig : 1  Array Multiplier 4 * 4 using CSA Hardware Architecture. 

 

In this method, for the first 3 numbers a row of full adder are used. Then a row of full adder is added for each 

additional number. The final results, in the form of two numbers sum and carry, are then summed up with a carry propagate 

adder or any other adder. An example 4 numbers addition is shown in Fig 1.There are many cases where it is desired to add 

more than two numbers together. The straight forward way of adding together m numbers (all n bits wide) is to add the first 

two, then add that sum to the next, and so on. This requires a total of m − 1 additions, for a total gate delay of (assuming look 

ahead carry adders). Instead, a tree of adders can be formed, taking only gate delays. Using carry save addition, the delay can 

be reduced further still. The idea is to take 3 numbers that we want to add together, x + y + z, and convert it into 2 numbers c 

+ s such that x + y + z = c + s, and do this in time. The reason why addition cannot be performed in time is because the carry 

information must be propagated. In carry save addition, we refrain from directly passing on the carry information until the 

very last step. We will first illustrate the general concept with a base 10 example. To add three numbers by hand, we 

typically align the three operands, and then proceed column by column in the same fashion that we perform addition with 

two numbers. The three digits in a row are added, and any overflow goes into the next column. Observe that when there is 

some non-zero carry, we are really adding four digits (the digits of x ,y and z, plus the carry).In many cases we need to add 

several operands together, carry save adder are ideal for this type of addition.  A carry save adder consists of stand-alone full 

adders, and carries out a number of partial additions. The principal idea is that the carry has a higher power of 2 and thus is 

routed to the next column. Doing addition with carry save adder saves time and logic.In this method, for the first 7 numbers 

a row of full adder are used. Then a row of full adder is added for each additional number. The final results, in the form of 

two numbers sum and carry, are then summed up with a carry propagate adder or any other adder. 

 

IV. URDHAVA MULTIPLIER 
In Urdhava Tiryakbhyam is a Sanskrit word which means vertically and crosswire in English. The method is a 

general multiplication formula applicable to all cases of multiplication. It is based on a novel concept through which all 

partial products are generated concurrently. Fig.  Demonstrates a 4 x 4 binary multiplication using this method. The method 

can be generalized for any N x N bit multiplication. This type of multiplier is independent of the clock frequency of the 

processor because the partial products and their sums are calculated in parallel.The net advantage is that it reduces the need 

of microprocessors to operate at increasingly higher clock frequencies. As the operating frequency of a processor increases 

the number of switching instances also increases. This results more power consumption and also dissipation in the form of 

heat which results in higher device operating temperatures. Another advantage of Urdhava Tiryakbhyam multiplier is its 

scalability T. 

 
Fig: 2  Line Diagram for Urdhava Multiplication. 
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The processing power can easily be increased by increasing the input and output data bus widths since it has a 

regular structure. Due to its regular structure, it can be easily layout in a silicon chip and also consumes optimum area. As 

the number of input bits increase, gate delay and area increase very slowly as compared to other multipliers. Therefore 

Urdhava Tiryakbhyam multiplier is time, space and power efficient.  

 

 
Fig : 3 Multiplication of two 4 bit numbers using Urdhava Tiryakbhyam method 

 

Example  3:   

 

 
Example3 for the Multiplication of two 4 bit numbers using Urdhava Tiryakbhyam method 

 

The line diagram in fig. 3 illustrates the algorithm for multiplying two 4-bit binary numbers a3, a2, a1, a0 and b3, 

b2, b1, b0. The procedure is divided into 7 steps and each  step generates partial products. Initially as shown in step 1 of fig. 

2, the least significant bit (LSB) of the multiplier is multiplied with least significant bit of the multiplicand (vertical 

multiplication). This result forms the LSB of the product. In step 2 next higher bit of the multiplier is multiplied with the 

LSB of the  multiplicand and the LSB of the multiplier is multiplied with the next higher bit of the multiplicand (crosswire 

multiplication). These two partial products are added and the LSB of the sum is the next higher bit of the final product and 

the remaining bits are carried to the next step. For example, if in some intermediate step, we get the result as 1101, then 1 

will act as the result bit(referred as rn) and 110 as the carry (referred as cn). Therefore cn may be a multi-bit number. 

Similarly other steps are carried out as indicated by the line diagram. The important feature is that all the partial products and 

their sums for every step can be calculated in parallel. Thus every step in fig. 3.1 has a corresponding expression as follows: 

r0=a0b0.        (1) 

c1r1=a1b0+a0b1.       (2) 

c2r2=c1+a2b0+a1b1 + a0b2.      (3) 

c3r3=c2+a3b0+a2b1 + a1b2 + a0b3.                  (4) 

c4r4=c3+a3b1+a2b2 + a1b3.      (5) 

c5r5=c4+a3b2+a2b3.       (6) 

c6r6=c5+a3b3        (7) 
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With c6r6r5r4r3r2r1r0 being the final product. Hence this is the general mathematical formula applicable to all 

cases of multiplication and its hardware architecture is shown in fig. 3. In order to multiply two 8-bit numbers using 4-bit 

multiplier we proceed as follows. 

 Consider two 8 bit numbers denoted as AHAL and BHBL where AH and BH corresponds to the most significant 4 

bits, AL and BL are the least significant 4 bits of an 8-bit number. When the numbers are multiplied multiplied according to 

Urdhava Tiryakbhyam (vertically and crosswire) method, we get, 

AH   AL 

BH   BL 

______________ 

(AH x BH) + (AH x BL + BH x AL) + (AL x BL). 

               The digits on the two ends of the line are multiplied and the result is added with the previous carry. When there are 

more lines in one step, all the results are added to the previous carry. 

 
Fig: 4 Hardware architecture of 4 X 4 Urdhava Tiryakbhyam multiplier using reversible DKG added. 

 

Thus we need four 4-bit multipliers and two adders to add the partial products and 4-bit intermediate carry 

generated. Since product of a 4 x 4 multiplier is 8 bits long, in every step the least significant 4 bits correspond to the product 

and the remaining 4 bits are carried to the next step. This process continues for 3 steps in this case.  Similarly, 16 bit 

multiplier has four 8 x 8 multiplier and two 16 bit adders with 8 bit carry. Therefore we see that the multiplier is highly 

modular in nature. Hence it leads to regularity and scalability of the multiplier layout. The multiplier architecture is based on 

this Urdhava tiryakbhyam sutra. The advantage of this algorithm is that partial products and their sums are calculated in 

parallel. This parallelism makes the multiplier clock independent. The other main advantage of this multiplier as compared 

to other multipliers is its regularity. Due to this modular nature the lay out design will be easy. The architecture can be 

explained with two eight bit numbers i.e. the multiplier and multiplicand are eight bit numbers. The multiplicand and the 

multiplier are split into four bit blocks. The four bit blocks are again divided into two bit multiplier blocks. According to the 

algorithm the 8 x 8 (AH x BH) bit multiplication will be as follows. 

 AH = AHH - AHL, BH = BHH - BHL  

 AH=AH7AH6AH5AH4AH3AH2AH1AH0, 

 BH = BH7BH6BH5BH4BH3BH2BH1BH0, 

 AHH = AH7AH6AH5AH4,  

 AHL = AH3AH2AH1AH0 

 BHH = BH7BH6BH5BH4, BHL = BH3BH2BH1BH0 

 

 
Fig : 5 Multiplication of two 8 bit numbers using Urdhava Tiryakbhyam method 
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By the algorithm, the product can be obtained as follows. 

Product of AH x BH = AHL x BHL + (AHH x BHL + AHL x BHH) + AHH x BHH 

Thus 8 x 8 multiplications can be decomposed into 2 x 2 multiplication units. By using this algorithm any complex N x N 

multiplication can be implemented using the basic 2 x 2 multiplier units. 

 

 
Fig: 6 Hardware Realization of 2x2 block 

Hear a0=AL, a1=AH; 

 b0=BL, b1=BH; 

 

For Multiplier, first the basic blocks, that are the 2x2 bit multipliers have been made and then, using these blocks, 

4x4 block has been made and then using this 4x4 block, 8x8 bit block, 16x16 bit block. Urdhava Tiryakbhyam Sutra is a 

general multiplication formula applicable to all cases of multiplication. It means “Vertically and Crosswise”. The digits on 

the two ends of the line are multiplied and the result is added with the previous carry. When there are more lines in one step, 

all the results are added to the previous carry. The least significant digit of the number thus obtained acts as one of the result 

digits and the rest act as the carry for the next step. Initially the carry is taken to be as zero. The line diagram for 

multiplication of two 4-bit numbers is as shown in Fig.  

8 X 8 Bit Multiplication Using Urdhava Triyakbhyam (Vertically and crosswise) for two Binary numbers 
Consider two binary numbers A and B of 8 bits as respectively 

 

                                  A =          A7A6A5A4         A3A2A1A0  

                                                      (X1)                   (X0)  

                                  B =           B7B6B5B4          B3B2B1B0  

                                                      (Y1)                    (Y0)  

Which can be viewed as two four bit numbers each, i.e. A can be viewed as X1 X0 and B can be viewed as Y1 Y0 

respectively, as shown above, thus the multiplication can be written as 

                                                     X1  X0 

                                                *   Y1  Y0                                

                                           -------------------- 

                                                     EDC 

Where,    CP= C = X0Y0 

                       CP= A = X1Y0 

               CP = B = X0Y1 

               CP= D = A+B 

               CP= E = X1Y1                                   here CP= Cross Product 

Thus, A*B= EDC, is achieved using Urdhava Triyakbhyam (Vertically and crosswise) sutra. 

  

 
Fig :7 Hardware architecture of 8 X 8 Urdhava Tiryakbhyam multiplier. 
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Now we will extend this Sutra to binary number system. For the multiplication algorithm, let us consider the multiplication 

of two 8 bit binary numbers A7A6A5A4A3A2A1A0 and B7B6B5B4B3B2B1B0. As the result of this multiplication would 

be more than 8 bits, we express it as …R7R6R5R4R3R2R1R0. As in the last case, the digits on the both sides of the line are 

multiplied and added with the carry from the previous step. This generates one of the bits of the result and a carry. This carry 

is added in the next step and hence the process goes on. If more than one lines are there in one step, all the results are added 

to the previous carry. In each step, least significant bit acts as the result bit and all the other bits act as carry. For example, if 

in some intermediate step we will get 011, then I will act as result bit and 01 as the carry. 

 

V. REVERSIBLE LOGIC GATES 
There exist many reversible gates in the literature. Among them 2*2 Feynman gate , 3*3 Fredkin gate, 3*3 Toffoli 

and 3*3 Peres is the most referred. The detailed cost of a reversible gate depends on any particular realization of quantum 

logic. Generally, the cost is calculated as a total sum of 2*2 quantum primitives used. The cost of Toffoli gate is exactly the 

same as the cost of Fredkin gate and is 5. The only cheapest quantum realization of a complete (universal) 3*3 reversible 

gate is Peres gate and its cost is 4. 

 Controlled NOT (CNOT) gate is an example for a 2*2 gate. The Reversible 2*2 gate with Quantum Cost of one having 

mapping input (A, B) to output (P = A, Q = A B) 

 
                                                                 Figure 8: 2*2 Feynman gate 

Reversible 3*3 gate maps inputs (A, B, C) to outputs (P=A, Q=A'B+AC, R=AB+A'C) having Quantum cost of 5 and it 

requires two dotted rectangles, is equivalent to a 2*2 Feynman gate with Quantum cost of each dotted rectangle is 1, 1 V and 

2 CNOT gates. 

 
                                                                  Figure 9: 3*3 Fredkin gate 

The 3*3 Reversible gate with three inputs and three outputs. The inputs (A, B, C) mapped to the outputs (P=A, Q=B, 

R=A.BC) 

 
                                                                    Figure 10: 3*3 Toffoli gate 

The three inputs and three outputs i.e., 3*3 reversible gate having inputs (A, B, C) mapping to outputs (P = A, Q = A B, R = 

(A.B) C). Since it requires 2 V+, 1 V and 1 CNOT gate, it has the Quantum cost of 4. 

 
Figure 11: 3*3 Peres gate 
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Figure 12: 4*4 HNG gate 

Reversible DKG Gate:  

Reversible DKG gate has 4 inputs and 4 outputs, so it is called Reversible 4*4 DKG gate, A 4* 4 reversible DKG gate  that 

can work singly as a reversible Full adder and a reversible Full subtractor is shown in Fig . It can be verified that input 

pattern corresponding to a particular output pattern can be uniquely determined. If input A=0, the proposed gate works as a 

reversible Full adder, and if input A=1, then it works as a reversible Full subtractor. It has been proved that a reversible full-

adder circuit requires at least two garbage outputs to make the output combinations unique figures. 

 
Figure 13:  Reversible DKG gate 

DKG gate with inputs A, B, C, D and outputs are P, Q, R, S. This gate is known as DKG gate. Figure 8 shows the DKG gate 

with 4*4 inputs and outputs. The binary Full adder/subtractor is capable of handling one bit of each input along with a carry 

in/borrow in generated as a carry out/ borrow from addition of previous lower order bit position. If two binary numbers each 

consisting of n bits are to be added or subtracted, then n binary full adders/subtractors are to be cascaded. 

 

 
Figure 14:  DKG gate implemented as Full adder 

 
                                           Figure 15: DKG gate implemented as Full subtractor 

The binary Full adder/subtractor is capable of handling one bit of each input along with a carry in/borrow in 

generated as a carry out/ borrow from addition of previous lower order bit position. If two binary numbers each consisting of 

n bits are to be added or subtracted, then n binary full adders/subtractors are to be cascaded. A Parallel adder/subtractor is an 

interconnection of full adders/subtractors and inputs are simultaneously applied. The carry/borrow generated at a stage is 
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propagated to the next stage. Thus, delay is more in such type of adders/subtractors. A 4 bit reversible parallel 

adder/subtractor is implemented using the reversible DKG gate and shown in Fig 10a. When the control input A=0, the 

circuit acts as a parallel adder, produces a 4 bit sum and a carry out, as shown in Fig 10b. If the control input A=1, the circuit 

acts as a parallel subtractor, produces a 4 bit difference and borrow out, as shown in Fig. The same design can be extended to 

n bits. 

 

VI. PROPOSED MULTIPLIER 
The  proposed  method  is  based  on  ROM  approach however  both  the  inputs  for  the  multiplier can  be  

variables.  In  this  proposed  method  a  ROM  is  used  for  storing  the squares  of  numbers  as  compared  to  KCM  where  

the  multiples are stored.  

 

operation:   
To  find  (a  x  b),  first  we  have  to  find  whether  the difference between  'a'  and  'b'  is  odd  or  even. Based on  the 

difference, the  product is calculated. 

In case of Even Difference  

Result of Multiplication= [Average]^2- [Deviation]^ 2 

In  case of Odd Difference  

Result  of  Multiplication  =  [Average  x  (Average  +  1)]  -[Deviation  x (Deviation+  I)]   

Where  

Average  =  [(a+b)/2]   

Deviation  =  [Average  -smallest(  a,  b)]  

 

Example  4  (Even  difference)  and  Example  5  (Odd difference)  depict  the  multiplication  process.  Thus  the  

two variable multiplication is  performed  by  averaging, squaring and  subtraction.  To  find  the  average[(a+b  )/2],  which 

involves  division  by  2  is  performed  by  right  shifting  the  sum  by  one bit.  

 
Fig : 16  Block diagram for proposed multiplier. 

 

 If  the  squares  of  the  numbers  are stored  in  a ROM,  the  result  can  be  instantaneously  calculated. However,  in case  

of  Odd  difference,  the  process  is  different  as  the  average  is  a  floating point  number. In  order  to  handle  floating  

point  arithmetic,  Ekadikena  Purvena  - the  Vedic  Sutra  which  is  used  to  find  the  square  of  numbers  end  with  5  is  

applied. Example  4  illustrates  this. In  this  case,  instead  of squaring  the  average  and  deviation,  [Average  x  (Average 

+  1)]  - [Deviation  x  (Deviation+  I)]  is  used.  However,  instead  of performing the  multiplications, the  same  ROM is 

used  and  using  equation  the  result  of  multiplication  is obtained.  

n(n+l)  = (n2+n)  ... (10)  

Here  n2  is  obtained  from  the  ROM  and  is  added  with  the  address  which  is  equal  to  n(n+l) 

 

Example 4: 

 16 x 12 = 192 

1) Find the difference between (16-12) = 4    ----Even Number 

2) For Even Difference, Product = [Average]^2- [Deviation]^2 

i. Average = [(a+b)/2] = [(16+12)12] = [28/2] = 14 

ii. Smallest(a,b) = smallest(l6,12) =12 

iii. Deviation = Average - Smallest (a,b) = 14 -12 =2 

3) Product = 14
2
- 2

2
= 196 - 4 = 192. 
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Example 5:  

15 x 12 = 180 

I) Find the difference between (15-12)=3 -7 Odd Number 

2) For Odd Number Difference find the Average and 

Deviation. 

i.Average = [(a+b)/2] = [(12+15)/2] = 13.5 

ii.Deviation = [Average - smallest(a, b)] = 

[12.5 - smallest(l3,12)] = [13.5 - 12] = 1.5 

3)Product = (l3xI4) - (lx2) = 182 - 2 =180. 

 

VII. SIMULATION RESULTS AND TABLES 

 
Fig : 17 Speed Comparison for (8x8) 

 
Fig : 18 speed comparison for DKG (8*8) 

 

Simulation result 

The comparison is carried out in between the reversible and conventional logic gates by using XILINX 9.1and 

program is written in VERILOG language. . In reversible logic we use DKG and TSG gates for both adder/subtractor as it 

has low power consumption and less garbage output as already discussed in the section3. The comparison is carried out for 

the four operand four bit adder/subtractor in reversible and conventional gates. 

 
Fig 19 : 8 bit Array multiplier using DKG 
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Fig 20: 8 bit Urdhava multiplier using DKG 

 

 

Fig 21: 8 bit proposed multiplier 

 
Criterion Array Multiplier Urdhava Multiplier 

 

Area 126 180 

Total Combinational Functions 163 149 

Dedicated Logic 

Registers 

48 48 

Total Memory  Bits( Kb) 0 0 

Transitions 1557 1501 

Speed(After 

Pipelining)(MHz) 

 

137.46 

 

142.67 

Power 100 90 

temperature 27c 27c 

Table1: results for 8x8 multiplier 

 
Criterion Array Multiplier Urdhava Multiplier 

 

Area 126 180 

Total Combinational Functions 158 146 

Dedicated Logic 

Registers 

46 46 

Total Memory  Bits( Kb) 0 0 

Transitions 1551 1547 

Speed(After 

Pipelining)(MHz) 

 

139.35 

 

145.03 

Total Power 90 82 

temperature 27c 27c 

Table 2: Results For Dkg 8*8 multiplier 



International Journal of Modern Engineering Research (IJMER) 

   www.ijmer.com            Vol. 3, Issue. 5, Sep - Oct. 2013 pp-3230-3141                 ISSN: 2249-6645 

www.ijmer.com                                                                          3241 | Page 

VIII. CONCLUSION 
Thus the proposed multiplier provides higher performance for higher order bit multiplication. In the proposed 

multiplier for higher order bit multiplication i.e. for 16x16 and more, the multiplier is realized by instantiating the lower 

order bit multipliers like 8x8. This is mainly due to memory constraints. Effective memory implementation and deployment 

of memory compression algorithms can yield even better results. 
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