International Journal of Modern Engineering Research (IJMER)
WWW.ijmer.com Vol. 3, Issue. 6, Nov - Dec. 2013 pp-3416-3424 ISSN: 2249-6645

ns-2 Implementation of the OMA PoC Control Plane
Jong Min Lee

Dept. of Computer Software Engineering, Dong-Eui University, Busan, Republic of Korea

ABSTRACT : Recently technologies such as VolP, VoLTE and VoWLAN have been widely used for the purpose of voice
conversation since the proliferation of smart phones. A half-duplex group communication or the push-to-talk (PTT) has been
standardized under the Open Mobile Alliance to replace the existing analog/digital TRS or a walkie-talkie service. In this
paper, we design and implement the ns-2 module of the OMA PoC control plane which is a signaling protocol for the PTT
service. Based on the SIP implementation of Rui Prior, we extend it to simulate the ad hoc PoC session establishment using
on-demand session, which is a signaling protocol according to the rules and procedures of RFC 3261 with extended headers
including PoC feature tags. Some simulation results have been shown for the verification purpose using the proposed
implementation. With this implementation, we expect to perform the extensive simulation study of group communication in
various network configuration.

Keywords: Control Plane, Group Communication, OMA PoC, Push-To-Talk, SIP

I. INTRODUCTION

Recently voice over IP (VolIP) has been used widely in lots of Internet applications. Among applications which
support VolP, there are several smart phone applications such as Voxer and TiKL which support the group communication
as well as one-to-one communication, which is also known as the push-to-talk (PTT or P2T) [1, 2, 3]. Major communication
and computer companies such as Nokia, Samsung Electronics, Qualcomm, Intel and Microsoft have standardized the Push-
to-talk over Cellular (PoC) to support group communication under the Open Mobile Alliance (OMA) [4].

The OMA PoC standard is based on the SIP standard, which is an application-level network protocol to support call
registration, session invitation and termination etc.[5] To study the performance of the OMA PoC standard, we need to
develop the network simulator to satisfy its signaling protocol. Rui Prior [6] implemented the SIP signaling protocol based
on ns-2.27 [7]. We extend the Rui Prior’s work to support the ad-hoc PoC group session with unconfirmed indication which
uses on-demand session. It is simpler than other session initiation methods defined in the OMA PoC standard and easy to
understand intuitively, which provides a basic measure of the OMA PoC standard consequently. By using the
implementation of this paper, we evaluate the network performance of the group session initiation of users in different
networks and the same network.

In Section 2, we describe the basic architecture of the Rui Prior’s work and the OMA PoC standard. The extended
PoC architecture for the ns-2 network simulator will be presented in Section 3 and the performance study using the proposed
scheme will be given in Section 4. Finally, we give a conclusion in Section 5.

Il. RELATED WORKS
2.1 SIP Implementation of Rui Prior

Rui Prior implemented the SIP signaling protocol based on ns-2.27 [6]. Main functional components are the classes
SIPUA and SIPProxy. SIPUA is a logical entity that makes a new SIP request for call setup and responds for the request.
SIPProxy is a logical entity that manages the session information between SIPUA’s. In the beginning, SIPUA sends a
registration request to SIPProxy and then SIPProxy manages the registration information for later call setup.

Fig. 1 shows the class diagram of SIPUA. Both SIPUA and SIPProxy are subclasses of SIPTU, which performs the
transaction user (TU) functionality in RFC 3261 [5]. Whenever a TU wants to send a request, it generates a client transaction
instance (SIPTransaction), which is passed to the transaction layer, or SIPTransLayer. The class SIPTransLayer manages a
list of SIPTransaction’s, which are categorized into client non-invite transactions (CItNonINVITETrans) and client invite
transactions (CItINVITETrans). Main functionalities of SIPUA is to register itself to SIPProxy and make an INVITE request
for call setup according to the SIP call setup procedure.

Fig. 2 shows the class diagram of SIPProxy, which is also a subclass of SIPTU. SIPProxy handles a list of registered
entry (RegEntry) as a registered DB for processing call setup requests between two SIPUA’s. All SIPUA’s should be
registered into their own SIPProxy, which can be either only one in the network or all different, before session initiation. To
initiate a session, one SIPUA sends an INVITE message to its SIPProxy and then the sender’s SIPProxy forwards the
INVITE message to the receiver’s SIPProxy, which finally forwards the INVITE message to the receiving SIPUA. If the
receiving SIPUA accepts the INVITE message, it sends 200 OK message to the sender following the reverse message path
through both SIPProxy’s. Upon receiving the 200 OK message, the sender generates an ACK message to the receiver to
confirm the reception of the 200 OK message. This is called the INVITE/200/ACK three-way handshake. After this, end-
point SIPUA’s start a media session or a talk burst in the half-duplex mode.

WWW.ijmer.com 3416 | Page

International Journal of Modern Engineering Research (IJMER)

WWW.ijmer.com

Vol. 3, Issue. 6, Nov - Dec. 2013 pp-3416-3424

ISSN: 2249-6645

tirme e pire dis
framTransporti}
processRequest(}
processinvite(i
processByeC)
processPracko
processCancel ()
processResponse)

processinviteFesponse()
processByveResponse()

updatelnvite State)
regua
invitec

[$]
ok TimerEspiredis
rel TimerExpiredi}
answerTimerExpired(}
cleanapt
checkOffer(}
checkénswer
newCallldi}
newBranche

n
SIPUAC

processRegisterResponsed)
4

SIPTUC

SIPUA TIetruets > ZAEFEE

callld_ SIPURI lag_
regcCallld e branch_
RegSealo_ el TOTwpe_

Seaqhlo_ T sipdelaw_
DiaSzaMa_ oty sdpdelaw_
Gse_proxu S MMyuSIPAddr| idleStart
Breod: ~weithd dr(y e) |
simple ; 1
minansel (=11aRIS) tr':-:nfponsendo
maxAnsDel_ handie() /
invite_ fromTrans(

recydinyvite Sr Foer TS

el TUTypnacs

unacked lks_ sendlO0d)

ackedRSeqho_ buildResponsecy

callState_ fIPKSizel)

caller_ sen

SIPUAT FomTransootl

~SIPUAC) Soroce=sSeguesiit

commandl oroce ==fe soar=e)
transportSendd sendReqFaill)

inform TUC) to Trans(
timeBexpired(SIPTUCY

inviteSrvTrans _

SIPTransLayer

=
TF TransLaver
~SIRTransLayer(
fromTUC
fromTLIC)
listTransactions()
matchSrveTrans()
matchChtTrans()
rmatchSreTrans
ratchClTransoy
newSrvTrans(
agent()
16 Transoor
inform TUC

SIPTransLawer()

<<list>>
H ChrTr
SID Transaciion
Staie _

lastPtSent_
SIFTransactioniy
~SIP Transaction{}
Srom Tran soo ()
Froar [

inforrm TLICD
Fferminate ot

delTimerd
branchi)
sentBw il
rmethod)
lasiP ktS e nti>
agentd)

oA

Fire e o
Frasmiiont
toTransporti)
o T
SIPTransaction()

CHINVITE Tranc

CRMNonIMYITE frans

SentaC F_

CHIMNTTE Transty

from Transport
from TLIED
terrminated
stateMame()
printl
timerExpired
transitiond

CRE AN YITE Trans()
—~CHMNonIMNYITE Transts
2

ChonINYITETrans()

~CHIMNYVITE Trans)
rom Transport

terminated()
stateMame)
printi)
timerExpiredo
transiticni)

CHIMNWVITE Transia

Figure 1. The class diagram of a SIP user agent

<<struct> > T SILTE,
SIPURI T
<<struct> > reg, SO TUType_
RegEntry J#——— 7| iomain slpdolay
expires (LED sdpdelay_ SIPTransLayer
- DIE T targat set() < MySIPAddr idleStart_ a_
coCntry) = & set() = commanddy |SIPTransLayer() |
I reaDB ithAddr() transportSend(} ~SIPTransLayer(}
print()
recv() fromTU()
handla() from TU()
fromTrans(} listTransactions(}
<<list>> inform U t matchSrvTrans()
TUType) matchCltTrans{)
send 1000 matchSrvTrans()
buildResponse() matchCltTrans(}
/Vf.upnét(s)-ze() newSrvTrans()
sen agent
SIPProxy = From Fransporti) togTrar(l)sport()
recordRoute_ jroce ssle gue i) inform TU()
send100_ processlesponsel) SIPTransLaver()
SIPProxy() sendReqgFail() S ¥
”SIPPro?E()) toTrans() -
comman SIPTU N H i
transportSend() newTa(;() <<list>> : <list>>
send100() newBranch(} <friend>>
informTU() SIPTU 5
timerCexpired(} SryTr H CltTr
fromTransport() CIHNATET 50 —
pmcgggggqugg()o mﬂ sfg;ﬁm'ﬂ
rocessResponse peeamah_. . | -
R:urwaldﬁesp?:nse() CHINVITE Trans() IastPktSent_
procRegHdrsdFw() ~CHINVITE Trans(} SIFTransaction()
matchReg() fromTransport(} ~SIP Transaction()
processRegister() fl’Dl‘l‘::ITAL(':(&O Fom Transoofi)
rocessCancel() sen Fom T
EondFilIIPHeaders() resendACK() 2ol informTUO
cancel() terminated() \x\b ferminatedi)
SIPProsy() stateName() delTimer()
print{) branch(}
timerExpired() sentBu()
transition(} method(}
CRINVITETrans{) IastPktSent(}
agent()
Ferretiey
[CRNonINVITE Trans | / TR o)
Framsition()
ChMNonlNVITE Trans() toTranspori()
~CltNonNVITE Trans() toTUO
fromTransport() SIPTransaction()
from TU()
terminated()
stateMName()
print(}

timerExpired()
transition(}
CltMonINVITE Trans ()

Figure 2. The class diagram of a SIP proxy

Fig. 3 shows the class diagram of SIP messages used in the Rui Prior’s implementation. SIPMessage consists of lots
of SIPHeader classes and at most one SIPBody. SIPMessage manages SIP header information as a linked list of several
SIPHeader’s, which defines a logical request recipient SIPHeaderTO, an identification information of a request sender
SIPHeaderFrom, an address information of SIPUA SIPHeaderContact, a message grouping information SIPHeaderCallld, a
transaction identification and ordering information SIPHeaderCSeq, a transport information for the transaction and location
information for the response to be sent SIPHeaderVia and others.

WWW.ijmer.com 3417 | Page

International Journal of Modern Engineering Research (IJMER)

WWW.ijmer.com Vol. 3, Issue. 6, Nov - Dec. 2013 pp-3416-3424 ISSN: 2249-6645
[SIPMessage |
jP essage(l ZZenums >
cf;ixessage() T /QD"EV— SIPHle:iJeTTyDes
msgType) SIPMs T/ es S”’HEBJ_" SH-CaEP
firstHeader() S FEaTES T SPHeaderd SHGsER
ptioader) meaTvPe- | S RESPONSE| newt=} ~SIPHeader() ST
type- . |sH_RACK

SH_RECORDROUTE
SH_REQUIRE
SH_ROUTE

E

firstHeader() WELEE ;i-or-"fg)ader()
nextieader() ./ 7 |twpeny
lastHeader() htail_ next()
addHeaderTop(} prev()

/t Tk
ww

-

<

>

7
addHeaderbottorn() o 5 SH_RSEQ
removeHeader() ot} STEY
removeFirst() =!
delFirst() R
delHeader()
reqMethod() v
reghlethodName() SIPHeaderFrom
repType() iag_ / SIPHeaderCSeq
rspCode() print() seqMo_
req(} SIPHeaderFrom(} print()
{JS'DU()() copy() SIPHeaderCSeq()
ody
print() SiPHeaderTo G
SIPMessage(} tag_

print()] SIPHeaderCallld

SIPHeaderTo() i

SIPHeaderTo() print()

copy() SIPHeaderCallld(}
)

body_

SIPBody copy!
SIPBody() <<enum>> SIPHeaderVia
~SIPBody() SIPBody Types node_
el o wpe [SERORE L SiPHeaderContact
copy() SB_TEST print() print()
configt) SBBW SPPHeaderVial) SIPHeaderContact()
print() SB_SDP copy() SIPHeaderCantact()
SIPBody() SIPHeaderContact()
e withAddr()
2 copy()
<<struct>>
/ IPURI *
SiPBodyBw SIPBody Test ui:’”“ M
T [refect-_ | in
s SPRoduTest daain
SEEEEmT ~SIPBody Test())
~SIPBodyBw(copy() set)
copy() felactt) withaddr()
corfig) config() printQ)
printQ) printQ)

Figure 3. The class diagram of SIP messages

2.2 OMA PoC

The OMA PoC standard is mainly divided into the control plane protocol [8] which is a signaling protocol similar
the SIP [5] and the user plane protocol [9] which carries user’s media traffic based on RTP [10]. Fig. 4 shows the brief OMA
PoC architecture. The service logic for SIP sessions are implemented in the application server using SIP/UDP/IP. The
application server functionality is implemented by the PoC server when the SIP/IP Core for the PoC service is according to
3GPP/3GPP2 IP Multimedia Subsystem (IMS) [11]. Thus the SIP/IP Core and PoC Server functionalities may be in one
physical entity. Media packets carrying users’ voice data and the talk/media burst control for managing the talk right are
transferred between PoC Clients and a PoC Server using RTP/UDP/IP [9].

SIP/IP Core

Session Session
Signaling Signaling

PoC Client PoC Server

Media, Talk/Media Burst Control

Figure 4. A brief OMA PoC architecture

The PoC Server performs either the Controlling PoC Function or the Participating PoC Function. In this paper, we
call the PoC Server with the Controlling PoC Function and the Participating PoC Function as the Controlling PoC Server and
the Participating PoC Server in short. The Controlling PoC Server mainly performs the management of PoC sessions such as
the session establishment and the media burst control [8].The Participating PoC Server performs relays the Talk Burst and
Media Burst Control messages between the PoC Client and the Controlling PoC Server and may relay RTP media packets
from the Controlling PoC Server.

Each PoC Client should register to their Participating PoC Server prior to participating in the PoC session according
to rules and procedures of RFC 3261 [5] with extended headers including PoC feature tags [8]. Fig. 5 shows the registration
procedure of the PoC Client. In the SIP REGISTER request of the PoC Client, information such as the SIP URI and IP
address of the PoC Client can be found. This information is used in the proposed scheme to keep the location information of
PoC Clients.

erver

I PoC Client | ISlPﬂPCoreA R,

1. REGISTER

2. 401 Unauthorized

3. REGISTER

4.200 OK

5. REGISTER

6.200 OK

0
0
o}

Figure 5. Registration procedure

WWW.ijmer.com 3418 | Page

International Journal of Modern Engineering Research (IJMER)
WWW.ijmer.com Vol. 3, Issue. 6, Nov - Dec. 2013 pp-3416-3424 ISSN: 2249-6645

PoC Session establishment is also made according to rules and procedures of RFC 3261 with extended headers
including PoC feature tags as shown in Fig. 6 [8]. For simplicity, messages from/to the SIP Core are excluded from Fig. 6
and only messages from/to OMA PoC entities are shown. Dotted arrows represent MBCP (media burst control protocol)
messages, which manages the talk right of PoC Clients. There are four kinds of PoC Sessions: 1-1, ad-hoc, pre-arranged, and
chat [8, 11]. There are two session modes: the ad-hoc PoC Session and the pre-arranged PoC Session. In the ad-hoc PoC
Session, the group information can be found from the recipient list in the SIP INVITE request. In the pre-arranged PoC
Session, the group information is maintained by the Controlling PoC Server. A PoC Session can also be classified into the
on-demand session and the pre-established session according to the time of the session establishment. The on-demand
session is started when a user initiates the PoC Session with his/her recipient list [8]. The pre-established PoC Session is
another method for the session establishment, which first makes a parameter negotiation to establish a PoC Session and RTP
packet transmission is performed if required [8]. Fig. 6 shows the message flow of an ad hoc PoC Session establishment
using on-demand signaling, in which we are interested for implementation.

. PoC Server A PoC Server B i
- PoC Client B
| PoC User A | | PoC Client A | (Controlling) (Participating) ' - |
press PoC button
1. INVITE
2. 100 Trying

3. INVITE

4. INVITE

. 5. 183 Session Progress
6. MB Granted

ready to speak
7. PRACK

8, 200 OK (INVITE)

9.200 OK (PRACK)

10. ACK

11. 200 OK (INVITE)

12. 200 0K (INVITE)

13. MB Taken

14. MB Taken

15. ACK

16. ACK

Figure 6. Ad hoc PoC Session establishment using on-demand signaling

It takes place during the PoC Session setup to determine if a PoC server performs either the Controlling PoC
Function or the Participating PoC Function and lasts for the duration of the whole PoC Session. In ad hoc PoC group
sessions, the Controlling PoC Server is the PoC server of the inviting user. In pre-arranged PoC group sessions, the
controlling PoC server is the PoC server hosting the pre-arranged PoC group.

I1l. EXTENDED ARCHITECTURE FOR THE OMA POC

To implement protocols defined in the OMA PoC standard, we extend the existing ns-2 SIP implementation or the
Rui Prior’s work, where main components are the class SIPUA for a client, the class SIPProxy for a server and the class
SIPMessage representing SIP messages. There are some protocol difference between SIP and the OMA PoC standard as
shown in Fig. 6. Thus not only do we extend the existing classes but also we modify them to support the OMA PoC standard.

A talker uses a user agent functionality to communicate with other talkers, which is implemented by the class
PoCClient of which the base class is SIPUA. Table 1 gives a brief description of PoCClient and Fig. 7 is the class diagram
related to PoCClient. PoCClient deals with the OMA PoC registration and the initiation/termination of an ad hoc PoC group
session. To support an ad hoc PoC group session, it also has to get a function to add invited users to a certain group session.
To support PoCClient, SIPUA adds a publishing capability according to RFC 3903 [12] and PoCClient uses it to generate a
SIP PUBLISH request according to rules and procedures of RFC3903 [12] and RFC4354 [13].

Table 1. A brief description of PoCClient

Class PoCClient
Base Class SIPUA
Functionalities ® OMA PoC registration

® Addition of invited users

® Initiation/termination of an ad hoc PoC group session

® Processing of a SIP 200 OK response from a PoC server

Modified Classes Added Functions

SIPUA Send a PUBLISH message with a PoC service setting information to a PoC server after
a successful registration

WWW.ijmer.com 3419 | Page

International Journal of Modern Engineering Research (IJMER)

WWW.ijmer.com Vol. 3, Issue. 6, Nov - Dec. 2013 pp-3416-3424 ISSN: 2249-6645
SIPUA
f;;'g’al“ a StPTransaction
o state

E;ii;ﬁ”g— IastPRISEnt_

DS SIPTransaction(

use, pn:u(‘y7 ~SIPTransaction{

e fromTransporty)

e womTUO |

minansDel_ ;;i?;mlzga etriend== :

":jfj"SDEL delTimer

SIPTU recvdimite_ BERERE

taa ok_ EEMIEH) CIHTr <slist=>
branch UnEcked eton)
TUType_ ackedRSeqho_ (EEEFLESERE
sipdelay_ callState_ inviteSrvTrans_ ;}g’,li;go
Igddlsggiy* ESTSE:;O isControllingPoCFunctiond
pocMod, e isGroupSession)
CONF_FACTORY URI USER comrmandi) :‘r;nf;«ixgedo ==list== H
commandi) transportSendn T SiPTransLayer
transportSendn informTU s el
recviy tirnerBexpiredy) P emsestmE SIPTransLayer)
handleq) tirnerF expiredi ~SIPTransLavero
fromTransg framTransportd o fromTUG
InfornTUQ processRequest() fromTUQ
TUTypel processinviten lstTransactions o
send1000 P processByel ti__|matchSreTranso
buildResponse) N processPrack(matchGHTrans(
getPocModed processCanceld rnatchSTTans o
getConfFactoryUri) processResponse ratchGHTrans(
getDamaing processRegisterResponse(newSnTransQ
isAdhocP oGGroupinvited processinviteResponsed agentd
processAdhocPoGGrouplnvite processByeResponsed PoCClient toTranspont(
fllPKtSize processPrackResponse() Eeeeteni) informTU
sendd processCancelResponsed PESETD SIPTransLayerd
fromTransport() updatelnvite Stateq)
processRecquestQ reguag) cnmrnarlujot
processResponse() invite processinviteq
S TREAe® et buildResponse)
oTrans0 ® processinviteResponsed
SIPTUG cancel(frormTransportd
newTado okTimerExpired(poc_register
newBranch(relTimerExpirady FeE_AEEREEEIAE)
SIPTUG answerTimerExpired (s roc_adhocinvite

bl poc_printRecipients)

OB D poc_prearrangedirite(

checkanswerd)

newCallldg

newBranchi

newRegSeqNod

newRSeghog

newDiaSegMod

newsSegho)

poc_publishPoCSettings)

processPublishResponse(

SIPUAQ

Figure 7. The class diagram related to PoCClient

A PoC server, which performs a Controlling PoC Function and/or a Participating PoC Function, deals with requests
from a PoC client. Table 2 shows a brief description of the class PoCServer, of which the class diagram is shown in Fig. 8.
PoCServer has main functionalities to process a PUBLISH message, a group session INVITE request, and other response
messages and manage group session information. A Controlling PoC Server deals with request and/or response messages
from a PoC client and one or more corresponding Participating PoC Servers according to the message exchange protocol as
shown in Fig. 6. In a Controlling PoC Server, the information of an ad hoc PoC group session is maintained using the classes
PoCGroupSession and PoCClientSession. PoCGroupSession has the information for the INVITE request to make a PoC
group session. Whenever a Controlling PoC Server sends an INVTE request to each PoC client in the ad hoc PoC group, an
instance of PoCClientSession is generated for that session. To support a PoC server, its base class SIPProxy should be
modified to process an SIP PUBLISH request and an ad hoc PoC INVITE request. SIPTransaction deals with a transaction
which consists of a request and responses relative to the request. SIPTransaction should be also modified to support the ad
hoc PoC group session by adding functionalities to determine if a PoC server performs a Controlling PoC Function and if an
INVITE request is a group session.

Table 3 shows a brief description of the class PoOCSIPMessage, which extends the class SIPMessage to support
messages defined in the OMC PoC standard. POCSIPMessage, as shown in Fig. 9(a), allows multiple SIP bodies, which is
useful to exchange media parameters between a PoC client and a PoC server for parameter negotiation. SIPMessage already
allows multiple SIP headers, which is defined by the class SIPHeader, but it should be extended by adding subclasses
PoCSIPHeaderContact, SIPHeaderAcceptContact, SIPHeaderAllow, SIPHeaderUserAgent etc. to support the OMA PoC
standard. The added subclasses of the class SIPHeader are shown in Fig. 9(b).

Table 2. A brief description of PoCServer

Class PoCServer
Base Class SIPProxy
Functionalities ® Processing of a PUBLISH request message

® Processing of an ad hoc PoC group session

® Processing of 183 session progress response from a participating PoC server
® Processing of a 200 OK message to an inviting user

® Management of session information

Added Classes Description

PoCGroupSession Deals with the information of PoC group sessions

PoCClientSession Deals with the information of PoC client session for each PoC group session
Modified Classes Added Functions

SIPProxy Processes an SIP PUBLISH request and an ad hoc PoC INVITE request
SIPTransaction Determines a PoC server’s PoC function and a group session

WWW.ijmer.com 3420 | Page

WWW.ijmer.com

International Journal of Modern Engineering Research (IJMER)

Vol. 3, Issue

. 6, Nov - Dec. 2013 pp-3416-3424

ISSN: 2249-6645

siPTU

tag
branch
TUType_
sipdelay_
sdpdelay_
idleStart_
pocMode_
CONF FACTORY URI USER
cormmandg)
transportSend(

recv

handleQ

fromTranso

informTii)

TUType

sendl 000
huildResponseq
getFoCModed
getConfFactaryUriQ
getDomaing
isAdhocPoCGroupinyited

processAdhocPoCGraupinyited SIPProxy
TillPktSized recordRoute
;Zr:"ndganspono I
processRequest]) ?ISF‘.E;.?Q;?O
processResponser) commandg
CEmIREEFENE transportSend
toTrans(send1000
SIFTUQ infarmTUg
RSUEER) tirnerCexpiredo
RERTETRERE framTransport
SIPTUG processRequest(
processResponsed
forwardResponse()
procRegHdrs 4Fwi
=lists= matchRed(
processRegister)
==struct== processCancel(
RegEntry reqDB condFilllIPHeaders(
expires canceld
answerhode processPublish
RegEntry(processPoCAdhocinvited
izPoCAdhocinvite
SIPProxy()

SIP Transaction

SIPTransLayer state
a_ lastPkiSent_
SIFTransLayerd | 4 SIFTransactiong
~SIPTransLayar) ~SIFTransaction
TromTUQ frormTransport]
fromTLIg CITr_[#romTin
listTransactionsg s informTUQ
matchSnTrans o ST, |terminateci)
matchCliTrans(==list== delTimer)

U matchsnTransg branch
matchCItTranso CEfEREEY T T e sentBy)
newsSnTransd method(
agent() lastPkiSent()
toTransporg agent
informTIO PoCServer orinte)
SIPTransLayer(Soasionld isGontrollingPoGFunctiong

FoCSarverd isGroupSession(
~PaCServer) tmerExplreci()
commando transition()
generateSessionld([T RSEDEE
isAdhocPoCGrouplnvite toTUG

processAdhocPoCGrouplnvite)
addGroupSessioninfog)
matchPoCGroupSessiond
matchPoCGroupSessiond
processPublishi
processPoCAdhocinvited
isPaCAdhoclmvite)
huildResponsed
processResponsed
sendAckRequest)
sendPrackReguestd
processi83SessionProgresso
generateMewlnvite

==list==

PoCGr

invite_
RTSnotice
sessionld

first1 83Arrived)

FoCGroupSessiond
~PoCGroupSession(
getSentBy)
getBranch(
getRTSnoticed

groupSessionList

SIPTransaction(

clientSessionList,

PoCcClientSession

branch
sessianld

addClientSessiond
getClientSession()
print)
setSessionld)
getSessionld)

istheFirst1 83SessionProgress(
getPacketd

==list==

FoCClientSessiond
~PoCClientSession(
getMethodi
getBranchg

printQ
setSessionld(
getSessionld(

Figure 8. The class diagram related to PoCServer

Table 3. A brief description of POCSIPMessage

Class

PoCSIPMessage

Base Class

SIPMessage

Functionalities

Defines the OMA PoC message to allow multiple SIP bodies

Added Classes

PoCSIPHeaderContact,
SIPHeaderAnswerMode,

SIPHeaderAcceptContact,
SIPHeaderPAnswerState,

SIPHeaderSupported, SIPHeaderUserAgent

SIPHeaderAllow,

SIPHeaderSessionExpires,

Modified Classes

SIPHeaderTypes

SIPMessage

1,

R EEEEEEEEEEEEEEEEEEE

SIPMessage()
~BIPMessage)
copy))
msgTypa
firstHeader)
nextHeader(
lastHeader)
firstHeader)
nextHeader(
lastHeader)
addHeaderTop(
addHeaderBottom(
removeHeader()
removeFirst
delFirst(
delHeader)
regMethod(
regMethodMame()
rspTyper)
rspCodef)

req

rspi

body(

printQy

msgType_

- SIPMessage])
=

PoCSIPMessage

bUseMultipantBodies

R

FoCSIPMessaged
~PoCSIPMessage])
print(

copyQ)

addBody))
useMultipartBodies()
getBoy)

PoCSIPHeades Contact

SiPHeaderContact oeerhpes |
7 iniaiz=) 7 isPoctinde S [Soan
|+ PoCSIPHeaderGontact) P— S e i ::*Z‘;Eﬁ,‘ﬂ
|+ PoCSIPHeatErContact) + SIPHzaterContact) SPReaden) E e
<=enum=> |+ ~PaCSIPHezterComtact) |—b+ SPsagerContacty D e poIT
SIPMsgTypes [+ print) + SIPHeaderContzct) pl* compr '+ SH_RECORDROUTE
[+ com®) + wihadcr) + SIPHeader) + SH_REQUIRE
+ SIP_REQUEST [+ gefTagg o cop) + twen \ SH_ROUTE
+ SIP_RESPONSE [+ seag0 o PoCHode Jr res + SHReEa
|+ selSessionType() A e oy A '+ sH_TO
[+ getscsionTipen 7 S s gHiA
i h '+ SH_CONTENTTYPE
N + SH_ANSWERMODE

stTap

SiPHeaderAcceptContact

+ SIPHe:
SIPHeader |+ ~SPHeaderazeapiContact)
[+ com)
+ GIPHeader() + printy
+ ~SIPHeadsr) [gefTagd
~|+ copvid
+ SIPHeader(“SiPHeader Allow
+ typen ¥ szalow
+ nedp) + SIPHeadeig
hhead_" |+ prev) + petellowy
- + ~SiPHeaserow)
+ print) b oy
+ pint)

‘SIPHeaderAnswerode

& Answemdade

+ SiPHeaderinsweriode])

T

E

”\“\

<enum

|+ SH_SUPFORTED
+ SH_SESSIONEXPIRES
|+ SH_USERAGENT
+ SH_ALLOW
+ SH_ACCEPT

N[z sHpans

SiPHeaderUserAgent
& soUseragent

+ szPaCClisnt Ussrgent
+ szPaCServer Usstdgent
+ SIPHeaderUserAgenil)
+ ~SIPHeaderlserdgent)
+ copyll

-+ print)

+ petUserageni)
“\#_setUsergeni(

SPHeaderSupparted
szSupparted
+ SIPHeaterSuppOten]

SIPHeader SessionExpires

'+ ~SPHeadarinsweriodel) / ' oottt
+ comi) SiPHeader ComtentType sessionTime 4 com)
2 prt) ¥ ConteniType # refresher + printgy

+ SPHeaderCartentTygeq o

+ ~SIPHsaderContsnTyRe)
+ copyl)
+ prntf)

¢ con
o iR =

+ oty

+ SIPHeaderPAnswerSiale)
+ ~SIPHeadsPANswarStte]

+ getPanswerStatag

+ copi)
+ pong

+ peattesher)

Figure 9. The class diagram related to PoOCSIPMessage: (a) the representation of a PoC message; (b) SIP headers added for

the OMA PoC.

(@)

(b)

WWW.ijmer.com

3421 | Page

International Journal of Modern Engineering Research (IJMER)
WWW.ijmer.com Vol. 3, Issue. 6, Nov - Dec. 2013 pp-3416-3424 ISSN: 2249-6645
IV. PERFORMANCE EVALUATION

In order to evaluate the network performance of the OMA PoC implementation proposed in this paper, we use ns-
2.33 as a hase network simulator, which is a discrete event simulator used for networking research widely since mid-90’s
[14]. Fig. 10 shows snapshots of simulation to compare the Rui Prior’s implementation and the OMA PoC implementation.
The call setup scenario used for the simulation is adopted from RFC 3261 [5]. Rui Prior’s implementation, as shown in Fig.
10(a), can make only a 1-to-1 session for call setup. On the other hand, the OMA PoC implementation can make 1-to-many
ad hoc group session. Fig. 10(b) shows the packet flow of the OMA PoC implementation for two recipients, from which we

can find that the group session progresses successfully from one PoC client to two PoC clients.

jongmin/ResearchiPoc_ simfout.1 = homefjongmin/ResearchiPor. = e)
e Vews gnaysis _yum ot Fle Views Analysis Maune. Vengumin Mesearch PoC_aimsout.nam
1 - . S ”» s “ < » - » T
L=
=
= ® = ©,
- Hi
4]
© @ ——@ @
stice@athnta.com bob@bikxi.com slice@dbu. ac kr bob@bilofgfom tom@Niloxi com
@ @) ®
HE
| [[[R | [| | | _l ! ! !
gt sk com imsac o starte b Puc Gru Session
| i PoC Clisnt ace ey, ac kr starts an adnot PoC Group session &t 0.400000
(@) (b)

Figure 10. Snapshots of simulation to compare two implementations: (a) Rui Prior’s implementation, (b) OMA PoC
implementation.

To see the network performance in terms of a call setup time, we carry out two experiments for different wired
network configuration as shown in Fig. 11. Fig. 11(a) is to simulate packet flows between two 1-to-2 group sessions, where
senders and receivers are located in different networks. Two initiating PoC clients belong to the domain “deu.ac.kr” and all
PoC recipients belong to the domain “biloxi.com.” In the experiment, we evaluate the network performance as the link delay
and the bandwidth vary between a PoC client and its neighbor node. Link parameters in Fig. 11(a) are as follows:

Bandwidth between a PoC client and its neighbor node : 1~20Mbps
Link delay between a PoC client and its neighbor node : 5~20msec
Bandwidth of all other links : 100Mbps

Link delay of all other links : 10msec

Fig. 11(b) is to simulate packet flows of many 1-to-2 group session where a sender and all other receivers are in the
same network in order to see the network performance for the in-bound traffic congestion to a PoC server. All PoC clients
belong to the same domain and are located in the same network. Link parameters Fig. 11(b) are fixed as follows: the
bandwidth of all links is 100Mbps and the link delay of all links is 10msec. PoC clients are represented by s(i), r(2*i) and
r(2*i+1) for i = 1~12. PoC clients in the bottom row are senders, s(i). Recipients r(2*i) and r(2*i+1) for s(i) are in the
middle and the top rows respectively. Twelve one-to-two group sessions exist in Fig. 11(b).

Jr= e S Mhomeljong min/ResearchPoC_simis S
= . F=4 : —
2 Lol
j \ e] y
Al @ \@' |

5\ / ~
g [/9 O QTS T o T
® ©@00000eeeo e
ul.»,-e.»u ‘ohw m;-*-ml — : m‘ﬂ | | | L ™ | |

[tarts - o Groa Sz
e st o b

[P Gent. {1} .ot kr ey To Speak il 1195290
| o Clent. -
I

priptmbspe

(a) (b)
Figure 11. Snapshots of simulation for different network configuration: (a) group session initiation among PoC
clients in different networks, (b) group session initiation among PoC clients in the same network.

WWW.ijmer.com 3422 | Page

International Journal of Modern Engineering Research (IJMER)

WWW.ijmer.com Vol. 3, Issue. 6, Nov - Dec. 2013 pp-3416-3424 ISSN: 2249-6645
170 700
E20Mb B10Mb CI5Mb 02Mb B1Mb
600
_160
E % 500
- E
E 150 £ 400
o =
= o
] g
= 2 300
§140 =
o
200
130 : 100
5ms 10ms 15ms 20ms 1 2 4 6 - s 9 10 11 1
Link delay (msec) Number of group sessions
(@) (b)

Figure 12. Call setup time: (a) group session initiation among PoC clients in different networks, (b) group session
initiation among PoC clients in the same network.

Fig. 12(a) shows the simulation result of the experiment in Fig. 11(a). As the link delay increases, the average call
setup time also increases linearly. We can find this result intuitively since signaling messages for call setup are exchanged
among PoC clients and Controlling/Participating PoC Servers. The distribution of the call setup time is in the interval of
135~170msec, which is short enough to start media transfer after the connection of a group session. However, this result is
derived from a situation that the signaling traffic is not enough to become overloaded. We try the experiment in Fig. 11(b) to
make the network overloaded.

Fig. 12(b) shows the simulation result of the experiment in Fig. 11(b), which initiates many 1-to-2 group sessions in
the same network. In this case, the traffic bottleneck is the PoC server, which performs both the Controlling PoC Function
and the Participating PoC Function. Each group session consists of one initiating PoC clients and two recipient ones. As the
number of group sessions increases, the traffic in the network also increases. The average call setup time increases linearly
as the number of group sessions increases. But the maximum call setup time increases rapidly compared to the average call
setup time, from which we can find that some PoC recipient clients cannot join its group session within a certain amount of
time and thus media traffic such as voice cannot be delivered to those PoC clients for cooperation.

V. CONCLUSION

Recent wide-spread use of Internet technologies such as VolP, VoLTE and VoWLAN results from the proliferation
of smart phones. A half-duplex group communication mechanism or PTT has been standardized to replace the existing
analog/digital walkie-talkie service. In this paper, we have designed and implemented the ns-2 module of the OMA PoC
control plane to deal with the ad hoc PoC session establishment using on-demand signaling. We have used the SIP
implementation of Rui Prior and extended it to deal with the signaling protocol for the ad hoc PoC session establishment
using on-demand signaling. We have shown that the signaling protocol operates exactly for the purpose of verification and
we have also performed the simulation study for various network configuration. We expect that the ns-2 implementation of
the OMA PoC control plane can be used for the effective network simulation study of group communication.

ACKNOWLEDGEMENTS
This work was supported by Dong-Eui University Foundation Grant (2012).

REFERENCES

[1] Open Mobile Alliance, Push to talk over cellular (PoC) — architecture: approved version 2.0 (Aug. 2011).

[2] R.S. Cruz, M. Serafim, G. Varatojo, and L. Reis, Push-to-talk in IMS mobile environment, Proc. 2009 fifth Int’l Conf. on
Networking and Services, Valencia, Spain, 2009, 389-395.

[3] L.-H. Chang, C.-H. Sung, H.-C. Chu, and J.-J. Liaw, Design and implementation of the push-to-talk service in ad hoc VolP
network, IET Communications, 3(5), 2009, 740-751.

[4] Open Mobile Alliance Mabile Phone Standards and Specification, http://openmobilealliance.org/.

[5] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley and E. Schooler, SIP: Session
Initiation Protocol, RFC 3261, June 2002.

[6] Rui Prior’s homepage — ns, http://www.dcc.fc.up.pt/~rprior/ns/.

[71 ns-2 homepage, http://nsnam.isi.edu/nsnam/index.php/Main_Page.

[81 Open Mobile Alliance, OMA PoC control plane: approved version 2.0 (Aug. 2011).

[91 Open Mobile Alliance, PoC user plane: approved version 2.0 (Aug. 2011).

[10] H. Schulzrinne, S. Casner,R. Frederick and V. Jacobson, RTP: A Transport Protocol for Real-Time Applications, RFC3550, July
2003.

[11] G. Camarillo and M.A. Garcia-Martin, The 3G IP Multimedia Subsystem (IMS): Merging the Internet and the Cellular Worlds, 3rd
ed. (West Sussex, UK: Prentice-Hall, 2008).

[12] A. Niemi, Ed., Session Initiation Protocol (SIP) Extension for Event State Publication, RFC 3903, Oct. 2004.

WWW.ijmer.com 3423 | Page

International Journal of Modern Engineering Research (IJMER)
WWW.ijmer.com Vol. 3, Issue. 6, Nov - Dec. 2013 pp-3416-3424 ISSN: 2249-6645
[13] M. Garcia-Martin, A Session Initiation Protocol (SIP) Event Package and Data Format for Various Settings in Support for the Push-
to-Talk over Cellular (PoC) Service, RFC 4354, Jan. 2006.
[14] ns-2 wiki homepage, http://nsnam.isi.edu/nsnam/index.php/Main_Page.

Jong Min Lee received the B.S. degree in computer engineering from Kyungpook National University,
Korea, in 1992, and the M.S. and the Ph.D. degrees in Computer Science from Korea Advanced Institute
of Science and Technology (KAIST) in 1994 and 2000, respectively. From Sept. 1999 to Feb. 2002, he
worked for Samsung Electronics as a senior engineer. Since 2002, he has been a faculty member of the
Department of Computer Software Engineering, Dong-Eui University, Busan, Korea. From Feb. 2005 to
Feb. 2006, he visited the University of California, Santa Cruz as a research associate. From Feb. 2012 to
Feb. 2013, he was a visiting scholar of the Department of Computer Science at The University of
3 Alabama, Tuscaloosa, AL. His research interests include routing in ad hoc networks and sensor networks,
mobile computing, and parallel computing.

WWW.ijmer.com 3424 | Page

