Debasish Bhattacharjee¹, Tarini Kumar Dutta²
¹B. Borooah College; Guwahati 781007; INDIA
²Gauhati University; Guwahati 781014; INDIA

Abstract: In this paper, a non-linear ecological map may be called as modified Nicholson-Bailey map is considered, which becomes chaotic in nature with the increase of the control parameter. As in most of the cases chaos is an unwanted phenomenon, so controlling of chaos becomes a necessary part of study. First of all Chau’s method is applied on this map and the chaotic region is controlled forming periodic trajectories. Again OGY method is applied on the map to have chaos controlled. Lastly, the model has been modified to Chau’s form which generates a set of fixed points which have been stabilized by OGY method.

Key Words: Chaos/Periodic orbits/Accumulation point/Control of chaos 2010 AMS Classification: 37G15, 37G 35, 37C 45

I. Introduction

The Nicholson-Bailey model describes the population dynamics of host-parasite (predator-prey) system and is described as follows:

\[x_{n+1} = L x_n e^{-a y_n} \]
\[y_{n+1} = x_n (1 - e^{-a y_n}) \]

Where \(x_{n+1} \) represents the number of hosts (or prey) at stage \(n \) and \(y_{n+1} \) represents number of parasites (or predator) at \(n^{th} \) stage. It has been observed [21] that the model fulfills the fact that equilibrium state never occurs for predator system in nature. Hence a modified version has been introduced by Dutta, T.K., et al. [6] to restrict the unlimited growth of host (or prey), which arises in Nicholson Bailey model. The modified model is as follows:

\[x_{n+1} = L x_{n} e^{-a y_{n} - x_{n}^3} \]
\[y_{n+1} = x_{n} (1 - e^{-a y_{n}}) \]

In fact various modified forms have been discussed in the literature [3, 6, 11, 14]. It has been shown that with the increase of the control parameter, the model (1.1.2) follows a period doubling bifurcation route to chaos [6]. As chaos is observed as undesirable part in engineering control, so, a desirable task is to control the chaotic region. Since 1990 after the discovery of OGY method [22], chaos control problem attracts various researchers.

We use the periodic pulse method to control chaos which was discussed by N.P. Chau, which restricts the way of choosing initial point resulting periodic orbit. Further, OGY method is applied such that the known unstable periodic point is made stable with a small disturbance in the control parameter.

II. Controlling of chaos in the map by Chau’s method

Chau’s theory [2] applied to the map is as follows:

The model can be written as follows:

\[X_{n+1} = F(X_n) \]

where \(X_n \) is a vector in \(R^2 \). Let \(G = K F P \), wher \(K \) is a diagonal matrix having the diagonal elements say \(k_1, k_2 \), and \(F P \) is the composition map of \(F \) up to \(p \) times. If \(X \) is a fixed point of \(G \) i.e. \(K F P (X) = X \), then the fixed point will be stable if the absolute value of the largest eigen value of the Jacobian matrix of \(G \) is less than 1. The next step is to get the value of \(k_1, k_2 \) such that chaos is controlled.

For \(p = 1 \),

The Jacobian matrix of \(G \) is as follows:

\[
\begin{pmatrix}
 k_1 & 0 \\
 0 & k_2
\end{pmatrix}
\begin{pmatrix}
 e^{-x^2 - ay} (1 - 2 x^2) L - a L x e^{-x^2 - ay} \\
 1 - e^{-ay}
\end{pmatrix}
\begin{pmatrix}
 e^{-x^2 - 2 ay} (1 - 2 x^2) L - a L x e^{-x^2 - 2 ay} \\
 1 - e^{-2 ay}
\end{pmatrix}
\]

The fixed points will be stable if \(|\lambda| < 1 \),

where \(\lambda \) is the eigen value of the Jacobian matrix.

If \(X(x, y) \) is the fixed point of \(G \), then

\[k_1 L x e^{-a y - x^2} = x \]

considering \(x \neq 0 \), we have

\[k_1 = \frac{1}{L e^{-a y - x^2}} \]

Similarly

\[k_2 = \frac{y}{x (1 - e^{-2 ay})} \]

We choose \((x, y) \) such that absolute value of \(\lambda \) is less than 1.
The basin of \((x,y)\) chosen such that it satisfies both (1.2.1) and (1.2.2) is shown graphically as follows:

Fig 1.2.1: Above picture shows the the value of \(x,y\) which for particular value of \(k_1, k_2\) and \(p=1\) becomes a stable fixed point for \(L=3.85\) and \(a=0.1\).

Fig 1.2.2: Above figure shows the chaotic region up to 10000 iterations after which chaos control key \(k_1, k_2\) is activated to make \(x\) fixed.

Fig 1.2.3: In the above figure it is clear that \(y\) coordinate already achieves the fixed value as iteration proceeds.

Thus as a whole it is clear that once the chaos controlling switch is turned on, the trajectory points \((x,y)\) achieves stability to form a fixed point as iteration proceeds.

If it is desired to obtain a periodic trajectory of period \(p\), we have,

\[
k_1 = \frac{x}{x_{p-1}e^{(1-x_{p-1})^{-by_{p-1}}}}, \quad k_2 = \frac{x}{1-e^{-ay_{p-1}}}
\]

Where \(x_{p-1}\) is the first component of \(f^{p-1}\) and \(y_{p-1}\) is the second component of \(f^{p-1}\). And the Jacobian matrix is given as

\[
\begin{pmatrix}
k_1 & 0 \\
0 & k_2
\end{pmatrix}
\begin{pmatrix}
\frac{\partial x_p}{\partial x} & \frac{\partial x_p}{\partial y} \\
\frac{\partial y_p}{\partial x} & \frac{\partial y_p}{\partial y}
\end{pmatrix}
\]
For $p=2$,

Fig. 1.2.3: Above picture shows the value of x, y which for particular value of k_1, k_2 and $p=2$ becomes a stable fixed point for $L=3.85$ and $a=0.1$;

Fig. 1.2.4: Above figure shows the chaotic region up to 10000 iterations after which chaos control key k_1, k_2 is activated to make x fixed.

Fig. 1.2.5: In the above figure it is clear that y co-ordinate already achieves the fixed value as iteration proceeds.

For $p=4$, we have

Fig. 1.2.6: Above picture shows the value of x, y which for particular value of k_1, k_2 and $p=2$ becomes a stable fixed point for $L=3.85$ and $a=0.1$;

It has been observed that the pool of data as shown in the figure above although serve the purpose of a stable periodic point of period two, they are not always able to attract the trajectory towards them as the radius of the basin of attraction is small enough. Thus although stable periodic points are created by the kicking method, chaos may not be controlled unless the starting point lies in the basin of attraction.
Similarly the basin of periodic points of period 8 is created which are stable with the help of a suitable computer program.

For p=8;

III. Controlling of chaos in the map by OGY method

The OGY method[16,22] applied is as follows:

Let the two dimensional map (1.1.2) be written as:

\[Z_{n+1} = f(Z_n, L) \]

Let \(Z_s(L_0) \) be an unstable fixed point of equation (1.1.2). For values of \(L \) near \(L_0 \) (say) in a small neighborhood of \(Z_s(L_0) \). The map can be approximated by a linear map given by

\[Z_{n+1} - Z_s(L_0) = J(Z_n - Z_s(L_0)) + C(L - L_0) \]

Where \(J \) is the Jacobian and \(C = \frac{\partial f}{\partial L} \), at the point \(Z_s(L_0) \). Assuming that in a small neighborhood around the fixed point

\[L - L_0 = -K(Z_n - Z_s(p_0)) \]

where \(K \) is a constant vector of dimension 2 to be determined. Then the equation (1.3.1) becomes

\[Z_{n+1} - Z_s(L_0) = (J - CK)(Z_n - Z_s(L_0)) \]

Using equation (1.3.2) at the parameter value \(L=3.85 \), a time series plot is shown below, where after 300 iterations, chaos control is switched on.

IV. Applying OGY method on Chau’s method

Let \((x^*, y^*)\) be a point and let the modified equation of (1.1.2) be

\[x_{n+1} = x_n e^{-a} y_n - x_n^2 \\
y_{n+1} = y_n e^{-a} y_n - x_n^2 \]

Which may be written as \(h(x,y) = f(x,y), g(x,y) \), where \(f(x,y) = \frac{x e^{-a} y - x^2}{x (1 - e^{-a} y)} \), \(g(x,y) = \frac{x (1 - e^{-a} y)}{x (1 - e^{-a} y)} \), clearly \(h(x^*, y^*) = (x^*, y^*) \).

We consider \(x^* = f_1(L), y^* = f_2(L) \), which helps to calculate \(C = \frac{\partial h}{\partial L} \). Now applying equation (1.3.2) we have

\[\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} x^* \\ y^* \end{pmatrix} + (J - CK) \begin{pmatrix} x_n - x^* \\ y_n - y^* \end{pmatrix} \]

Equation (1.4.2) says that \(\begin{pmatrix} x^* \\ y^* \end{pmatrix} \) is a fixed point whose stability will be determined the eigen values of \(J - CK \), where \(K = \begin{pmatrix} k_1 & 0 \\ 0 & k_2 \end{pmatrix} \). If \(\lambda_1, \lambda_2 \) be two eigenvalues then \(k_1, k_2 \) are to be determined in such a way that \(-1 < |\lambda_1|, |\lambda_2| < 1 \). Calculating \(J - CK \), we have

\[J - CK = \begin{pmatrix} A_1 & B_1 \\ C_1 & D_1 \end{pmatrix} \], where
Let \(a_1 = 1 - 2f(L)^2, a_2 = f(L) \left(2f(L) + a g(L) \right) \)
\(b_1 = -a f(L), b_2 = f(L) \left(2f(L) g(L) + a g(L) \right) \)
\(c_1 = \frac{g[L]}{f[L]} c_2 = -\frac{g[L]}{f[L]} \left(f'(L) + a e^{-a g[L]} g(L) g'(L) \right) \)
\(d_1 = \frac{a e^{-a g[L]} g(L)}{(1 - e^{-a g[L]})} d_2 = \frac{a e^{-a g[L]} g(L)}{(1 - e^{-a g[L]})} \)

Then the matrix J-CK = \(\begin{bmatrix} a_1 - k_1 a_2 & b_1 - k_2 b_2 \\ c_1 - k_1 c_2 & d_1 - k_2 d_2 \end{bmatrix} \)

Whose eigen values are
\[\lambda_{1,2} = \pm \sqrt{(a_1 + d_1 - a_2 k_1 - d_2 k_2)^2 + 4 \left(-a_1 d_1 + b_1(c_1 - c_2 k_1) + (-b_2 c_1 + a_1 d_2 + b_2 c_2 k_1) k_2 + a_2 k_1(d_1 - d_2 k_2) \right)} \]

Taking \(x^*=y^*=L/3 \), and following the above theory, we have controlled chaos at \(L=3.85, a=0.1 \).

Fig: 1.4.a representing chaos upto iteration 500 and then control switch is turned on till 800 iteration converging to the stable x-coordinate L/3.

References