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ABSTRACT: The present paper discusses solution of dispersion phenomenon by using Homotopy analysis method. 

Solution represents concentrations of any contaminated or salt water disperse in homogenous porous media saturated with 

fresh water. The solution of non-linear partial differential equation has been obtained in term of series solution of 

exponential function of X and time T under assumption of guess value of concentration of contaminated or salt water. Here 

solution converges for parameter 1   for embedded parameter 0.1 . The graphical presentation is given by using 

Maple coding. It is concluded that concentration of contaminated or salt water dispersion is decreasing when distance X as 

well as time T increasing and convergence of the solution has been discussed. 
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I. INTRODUCTION  

The present paper discusses the solution of longitudinal dispersion phenomenon, which arising in the miscible fluid 

flow through homogenous porous media. The problem of solute dispersion during underground water movement has 

attracted interest from the early days of this century [1], but it was only since 1905 in general topic of hydrodynamic 

dispersion or miscible displacement becomes one of the more systematic studies. The phenomenon of the dispersion has 

been receiving good attention from hydrologist, agriculture, environmental, mathematicians, chemical engineering and soil 

scientists. The specific problem of fluid mixing in fixed bed reactors has been investigated by Bernard and Wilhelm [2]. 

Kovo [3] has worked with the parameter to be modeled in the longitudinal or axial dispersion coefficient D in chemical 

reactors model. 

The fundamental interest of this paper is to find concentration of contaminated or salt water. The term concentration 

expresses a measure of the amount of a substance within a mixture. The dispersion process is associated with molecular 

diffusion and mechanical dispersion. Molecular diffusion is the spreading caused by the random molecular motion and 

collisions of the particles themselves and mechanical dispersion is the spreading of a dissolved component in the water phase 

by variations in the water velocity (i.e. flow of a fluid). These two basic mechanisms molecular diffusion and mechanical 

dispersion cause a concentration front of fluid particles to spread as it advances through the porous media.  These two 

combine processes of molecular diffusion and mechanical dispersion are known as hydrodynamic dispersion or dispersion.  

 

 
Fig 1: The geometry of microscopic pores, where velocity distributions in different pore size. 

 

When groundwater flows, the actual microscopic velocity in the pores varies widely in space even when the Darcy 

macroscopic velocity is constant. The result is more intense mixing, which is called hydrodynamic dispersion. Figure 1 gives 

a schematic view of the trace movement on macroscopic level. This phenomenon can be observed in coastal areas, where the 

fresh waterbeds are gradually displaced by seawater. This phenomenon plays an important role in the seawater intrusion into 

reservoir at river mouths and in the underground recharge of groundwater. 

Most of the works reveal common assumption of homogenous porous media with constant porosity, steady seepage 

flow velocity and constant dispersion coefficient. For such assumption Ebach and White [4] studied the longitudinal 

dispersion problem for an input concentration that varies periodically with time. Hunt [5] applied the perturbation method to 

longitudinal and lateral dispersion in no uniform seepage flow through heterogeneous aquifers. Mehta and Patel [6] applied 

Hope-Cole transformation to unsteady flow against dispersion of miscible fluid flow through porous media. Marino [7] 

considered the input concentration varying exponentially with time. Eneman et al.[8] provided analysis for the systems 

where fresh water is overlain by water with a higher density  in coastal delta areas.  Experimental evidence of such lenses 

was given by Lebbe et al. [9], and Vandenbohede et al. [10]. Meher and Mehta [11, 12] studied the Dispersion of Miscible 

fluid in semi infinite porous media with unsteady velocity distribution using Adomain decomposing method.  

The present paper discusses the approximate analytical solution of the nonlinear differential equation for 

longitudinal dispersion phenomenon which takes places when miscible fluids (contaminated or salt water) mix in the 

A solution of one-dimensional dispersion phenomenon by 

Homotopy Analysis Method 
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direction of flow. The mathematical formulation of the problem yields a non linear partial differential equation. The 

analytical solution has been obtained by using homotopy analysis method. 

 

II. STATEMENT OF THE PROBLEM 
Considering dispersion of contaminated or salt water with concentration  ,C x t  flowing in x-direction, dispersion 

taking place in porous media saturated with fresh water. Hence it will be miscible fluid flow through homogenous porous 

media. Therefore, it will obey the Darcy’s law, which dates back to 1856 [13]. The following assumptions have been made 

for present analysis (Schidegger 1954, Day 1956, deJony 1958) [14,15, 16]: 

 The medium is homogenous. 

 There is no mass transfer happen between the solid and liquid phases. 

 The solute transport across any fixed plane, due to microscopic velocity variation in the flow tube, may be 

quantitatively expressed as the product of a dispersion coefficient and the concentration gradient. 

 

To find concentration of the dispersing contaminated or salt water as a function of time t and distance x, as the two 

miscible fluids flow through homogenous porous media. Since the mixing (contaminated or salt water and fresh water) takes 

place both longitudinally and transversely. Dispersion adds a spreading effect to the diffusion effects. Science dispersion is 

driven by the mean flow of the water, the dispersion coefficients related to the characteristic length or pore length L. In three 

dimensions, the spreading caused by dispersion is greater in the direction of the flow than in the transverse direction. One 

dimensional treatment of these systems avoids treatment of a radial or transverse component of dispersion. We only consider 

the dispersion phenomenon in the direction of flow (i.e. longitudinal dispersion), which takes places when miscible fluids 

flow in homogenous porous media.  

 

III. MATHEMATICAL STRUCTURE 
According to Darcy’s law, the equation of continuity for the mixture, in the case of incompressible fluids is given by Bear 

[1]. 

 . 0V
t





 



                     (1) 

Where,  is the density for mixture [ML
-3

], t is time [T] and V


is the pore seepage velocity vector [LT
-1

]. 

 

The  equation  of  diffusion for  a  fluid  flow  through  a  homogeneous  porous medium, without increasing or 

decreasing the dispersion of contaminated or salt water is given by 

 .
C C

CV D
t




  
     

   

                   (2) 

Where C is the concentration of dispersing contaminated or salt water per unit volume [ML
-3

] and D is the tensor 

coefficient of dispersion with nine components ijD [L
2
T

-1
]. 

Since contaminated or salt water is flowing through a homogeneous porous medium at constant temperature, ρ may 

be considered as constant. Then 

0V 


                     (3) 

where V


 is velocity of contaminated /salt water dispersion.  

Hence Eq. (2) may be written as 
C

V C D C
t


      

                    (4) 

When the seepage velocity V


 of contaminated or salt water is dispersing along the x-axis, then the non-zero components will 

be
11 2

0

L

L
D D

C
  , (coefficient of longitudinal dispersion and L is length of dispersion in flow direction) and 

22 TD D (coefficient of transverse dispersion) and other 
ijD  are zero. From this assumption the equation (4) becomes, 

2

2L

C C C
u D

t x x

  
  

  
                   (5) 

where u  is the component of seepage velocity of contaminated or salt water in x direction which is function of x and t 

and 0LD  . It has been observed that seepage velocity u is related with concentration of contaminated or salt water 

dispersion. We assume that seepage velocity u is directly proportional to  ,C x t [11] 

 

0

,C x t
u

C
                     (6) 

where 
01 C  is constant of proportionality and the guess approximation of the concentration of contaminated or salt water 

dispersion. To get dimensionless form of equation (5) using the dimensionless variables 

0 1
,

C x
X and T t

L L
   



International Journal of Modern Engineering Research (IJMER) 

   www.ijmer.com            Vol. 3, Issue. 6, Nov - Dec. 2013 pp-3626-3631                ISSN: 2249-6645 

www.ijmer.com                                                                          3628 | Page 

then equation (5) can be written as,  
2

2

C C C
C

T X X


  
  

  

, where 
2

0LD C

L
  and  0,1 ,0 1,0 1X T                    (7) 

Since concentration C is decreasing as distance X increase for T > 0. It appropriate to choose guess value of concentration 

solution as, [12] 

 
1

, ; 1
2

X mX T XT e  
   
 

                   (8) 

Hence, the equation (7) together with boundary condition (8) represents the governing non-linear partial differential 

equation for concentration of the longitudinal dispersing material of miscible fluids flowing through a homogenous porous 

medium. 

 

IV. THE SOLUTION WITH HOMOTOPY ANALYSIS METHOD 
For one dimensional non-linear partial differential equation for longitudinal dispersion phenomenon, we assumed that the 

concentration  ,C X T  of the dispersing contaminated or salt water, at time T=0 is expressed as, 

 
1

, , 0 1
2

X mX T TX e  
    

 
 , where 0  for the concentration of contaminated or salt water                  (9) 

Now we apply the homotopy analysis method into the longitudinal dispersion phenomenon during miscible fluid flow 

through homogenous porous media. We consider the equation (7) as nonlinear partial differential equation as 

 , ; 0X T                                 (10) 

Where  is a non-linear operator,  , ;X T  is considered as unknown function which represent the concentration C of the 

dispersing  contaminated or salt water at any distance X for given time T > 0, for 0 1  . We use auxiliary linear 

operator  
 , ;

, ;
X T

X T
T





    


 and initial approximation of concentration of dispersing contaminated or salt 

water  0

1
, 1

2

XC X T TX e 
  
 

 to construct the corresponding zero
th

 order deformation equation. As the auxiliary linear 

operator   which satisfies  4 0C  , where 
4C is arbitrary constant.  This provides a fundamental rule to direct the choice of 

the auxiliary function  , 0H X T  , the initial approximation  0 ,C X T , and the auxiliary linear operator  , called the rule of 

solution expression. Establish the zero-order deformation equation of longitudinal dispersion phenomenon as [20], 

         01 , ; , , , ;X T C X T H X T X T                                       (11) 

where  0 ,C X T denote an initial guess value of concentration of dispersing contaminated or salt water of the exact solution 

 ,C X T which is our purpose to find it. Since 0  an auxiliary parameter and  , 0H X T  an auxiliary function such that 

 0,1  an embedding parameter. The auxiliary parameter   is providing a simple way to ensure the convergence of series. 

Thus it renamed   as convergence control parameter [20]. Let   an auxiliary linear operator with the property that, 

 , ; 0X T      when  , ; 0C X T    

When 0  , the zero-order deformation equation (11) becomes 

   0, ; , 0X T C X T                             (12) 

Which gives the first rule of solution expression and according to the initial guess  0

1
, 1

2

XC X T TX e 
  
 

, it is 

straightforward to choose 

   0, ;0 ,X T C X T                                     (13) 

When 1  , since 0 ,  , 0H X T  the zero-order deformation equation (7) is equivalent to  

 , ; 0X T                               (14) 

which is exactly the same as the original equation (10) provided 

   , ;1 ,X T C X T                          (15) 

According to (13) and (15) as the embedding parameter   increases from 0 to 1, solution  , ;X T  varies continuously 

from the initial guess value of the concentration  0 ,C X T  of dispersing contaminated or salt water to the solution 

 ,C X T and its solution is assumed by expanding  , ;X T   in Taylor series with respect to   as, 

     
1

, ; , ;0 , m

m

m

X T X T C X T 




                       (16) 

Where,  
 

0

, ;1
,

!

m

m m

X T
C X T

m












                     (17) 
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i.e. the concentration of dispersing contaminated or salt water is function of distance X and time T for any parametric value 

  is expressed as, the concentration of dispersing contaminated or salt water at time 0T  ,  0 ,C X T  and sum of 

concentration of dispersing contaminated or salt water  1 ,C X T ,  2 ,C X T ,…at different time T for different value of 

parameter  . Here, the series (16) is called homotopy-series; the series (16) is called homotopy series solution of 

 , ; 0X T      and  ,mC X T  is called the mth-order derivative of  . Auxiliary parameter   in homotopy-series (16) can 

be regard as iteration factor and is widely used in numerical computations. It is well known that the properly chosen iteration 

factor can ensure the convergence of homotopy series (16) is depending upon the value of  , one can ensure that convergent 

of homotopy series, solution simply by means of choosing a proper value of   as shown by Liao [20].  If the auxiliary linear 

operator, the initial guess, the auxiliary parameter  , the auxiliary function  ,H X T are so properly chosen, the series (16) 

converges at 1  . 

Hence the concentration of dispersing water can be expressed as, 

     0

1

, , ,m

m

C X T C X T C X T




                            (18) 

And  ,mC X T  can be calculated by equation (23). This must be one of solution of original non-linear partial differential 

equation (7) of the concentration of dispersing contaminated or salt water problem in homogenous porous medium.  

According to the definition (17), the governing equation can be deduced from the zero-order deformation equation (11), 

define the vector 

      0 1, , , ,... ,m nC C X T C X T C X T


 

Differentiating equation (11) m-times with respect to the embedding parameter   and then setting 0  and finally 

dividing them by !m , we have the so-called m
th

 order deformation equation of the concentration  ,C X T  will be as, [20] 

       1 1, , , , ,m m m m mC X T C X T H X T R C X T      


                     (19) 

Where  
 

 1

1 1

0

, ;1
, ,

1 !

m

m m m

X T
R C X T

m








 



   
 

                      (20) 

And 0, 1

1, 1
m

m

m



 



                     (21) 

It should be emphasized that  ,mC X T for 1m  , is governed by the linear equation (20) with the linear boundary condition 

that came from original problem, which can solved by symbolic computation software Maple as bellow. The rule of solution 

expression as given by equation (8) and equation (11), the auxiliary function independent of   can be chosen as  , 1H X T  , 

[20] 

According to (15) and taking inverse of equation (19) the equation (20) becomes, 

     1

1 1, , , ,m m m m mC X T C X T R C X T 

 
   
 


                       (22) 

 
 

 1

1

0

, ;1
, ,

1 !

m

m m m

N X T
R C X T

m












   
 

                         (23) 

In this way, we get  ,mC X T  for m=1, 2, 3, … successively by using Maple software as,    

   2 2 2 2

1

1
, 3 6 6 3 6 12 12

12

X X X X XC X T hT T X T X TXe Te TX T Xe e e                              (24) 

 

2 2 3 3 2 2 2

2 2 2 2 2 3

2 2 2 2 2 2 2 2

2

0.5 0.25 0.052 0.146 0.58 0.92

1.58 2.5 0.5 0.5 0.5 0.19

, 0.083 0.5 0.083 0.083 0.25 1.5

X X X X X

X X X X X X X X

X X X X X X

hXe TXe hT hT X e hT hT Xe hTXe

hT e hTe he Te Xe he hTe hT e

C X T Th T X e TXe T Xe e hT Xe hT X e

      

       

        3

2 3 2 3 4 2 4 4 3

3 2 2 2

0.25 0.32 0.05 0.017 0.025

0.438 0.5 0.25 0.33

X

X X X X X

hT e

hT X hT X hT X hT X hT X hT X

hT Xe e hTXe Te hT e



 
 
 
 
 
      
 
      

             

(25) 

Using initial guess value of concentration from equation (8) and successive  
2 2 2

2

2 2 3 3 2 2

2 2 2 2

2 2

3 61 1
1

2 12 6 3 6 12 12

0.5 0.25 0.052 0.146 0.58

0.92 1.58 2.5 0.5
( , )

0.5 0.5

X X

X X

X X

X X X

X X X X X X

X X

T X T X TXe Te
XT e hT e

TX T Xe e

hXe TXe hT hT X e hT

hT Xe hTXe hT e hTe he Te
C X T

Xe he hTe
Th

 
     

             

    

     


  


3 2 2

3

2 2 2 2 2 2

2 3 2 3 4 2 4

4 3 3 2 2 2

0.19 0.083 0.5

0.083 0.083 0.25 1.5

0.25 0.32 0.05 0.017

0.025 0.438 0.5 0.25 0.33

X X X X

X

X X X X

X X X X X

hT e T X e TXe
e

T Xe e hT Xe hT X e hT

hT X hT X hT X hT X hT X

hT X hT Xe e hTXe Te hT e



 
 
 
 

  
 
     
 
     
 
      

...

 
 
 
 
 
  
 
 

 
 
 
 
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(26) 
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V. NUMERICAL AND GRAPHICAL SOLUTION 
Numerical and graphical presentations of equation (26) have been obtained by using Maple coding. Fig 2 represents 

the graphs of concentration  ,C X T  vs. distance X, for T = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 is fixed, and Table I 

indicates the numerical values. The fig 2 and the table 1, indicate the graphical representations of the longitudinal dispersion 

phenomenon of the concentration.  The convergence of the homotopy series (16) is dependent upon the value of 

convergence-parameter   [17, 18, 19, 20]. Therefore we choose proper value of the convergence-parameter 0.1 to obtain 

convergent homotopy-series solution [20]. 

 

Table I: Concentration of the Contaminated or Salt Water 
 ,C X T

  For Different Distance X For Fixed Time T = 0.1, 0.2, 

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. 

Distan

ce X 

 ,C X T

T= 0.1 

 ,C X T

T= 0.2 

 ,C X T

T= 0.3 

 ,C X T  

T= 0.4 

 ,C X T

T= 0.5 

 ,C X T

T= 0.6 

 ,C X T

T= 0.7 

 ,C X T

T= 0.8 

 ,C X T

T= 0.9 

 ,C X T

T=1.0 

0.1 0.8674 0.8287 0.7887 0.7476 0.7054 0.6623 0.6183 0.5736 0.5282 0.4822 

0.2 0.7814 0.743 0.7037 0.6635 0.6225 0.5807 0.5383 0.4953 0.4517 0.4077 

0.3 0.7038 0.666 0.6274 0.5881 0.5482 0.5077 0.4667 0.4253 0.3834 0.3412 

0.4 0.6338 0.5966 0.5589 0.5206 0.4818 0.4426 0.403 0.3631 0.3228 0.2822 

0.5 0.5707 0.5343 0.4974 0.4602 0.4226 0.3847 0.3465 0.308 0.2692 0.2302 

0.6 0.5137 0.4782 0.4424 0.4063 0.3699 0.3333 0.2964 0.2594 0.2221 0.1846 

0.7 0.4624 0.4279 0.3932 0.3583 0.3231 0.2878 0.2523 0.2167 0.1809 0.1449 

0.8 0.4162 0.3828 0.3492 0.3155 0.2816 0.2476 0.2135 0.1793 0.1449 0.1105 

0.9 0.3745 0.3423 0.3099 0.2775 0.2449 0.2123 0.1795 0.1467 0.1138 0.0808 

1.0 0.3369 0.3059 0.2748 0.2437 0.2124 0.1812 0.1498 0.1184 0.0869 0.0554 

 

 

Fig 2: Represents concentration of contaminated or salt water  ,C X T  vs. distance X for auxiliary parameter 0.1  and 

auxiliary function ( , ) 1H Z T  [20] when T =0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 is fixed. 

 

VI. CONCLUSION AND DISCUSSION 
The equation (26) represents concentration of the contaminated or salt water for any distance X and time T >0. It is 

converges for embedding parameter 1   and for auxiliary parameter 0.1  which is expressed in term of negative 

exponential term of X and time 0T  . Concentration C will be one from guess value of the exact solution for 0X  , T= 

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. Fig 2 represents the solution for concentration C vs. distance X shows that 

concentration of the contaminated or salt water is decreasing as distance X increasing for 0T  . From fig.  2 it can conclude 

that for 0.1T  concentration of contaminated or salt water is decreasing as distance X increasing and when time is 

increasing and due to different deformation added to C, the concentration of contaminated or salt water is successively 

decreasing exponentially. Since the equation (7) is diffusion type Burger’s equation for longitudinal dispersion phenomenon. 

Hence solution is graphically as well as physically consistent with phenomenon. This is physically fact with phenomenon of 

the longitudinal dispersion of contaminated or salt water in homogenous porous medium.  
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