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I. INTRODUCTION 
Often a single sensor cannot produce a complete representation of a scene. Visible images provide 

spectral and spatial details, and if a target has the same color and spatial characteristics as its background, it 

cannot be distinguished from the background. Image fusion is the process of combining information from two 

or more images of a scene into a single composite image that is more informative and is more suitable for 

visual perception or computer processing. The objective in image fusion is to reduce uncertainty and minimize 

redundancy in the output while maximizing relevant information particular to an application or task. Given the 

same set of input images, different fused images may be created depending on the specific application and 

what is considered relevant information. There are several benefits in using image fusion: wider spatial and 

temporal coverage, decreased uncertainty, improved reliability, and increased robustness of system 

performance. 

A large number of image fusion methods [1]–[4] have been proposed in literature. Among these 

methods, multiscale image fusion [2] and data-driven image fusion [3] are very successful methods. They focus 

on different data representations, e.g., multi-scale coefficients [5], [6], or data driven decomposition 

coefficients [3], [7] and different image fusion rules to guide the fusion of coefficients. The major advantage of 

these methods is that they can well preserve the details of different source images. However, these kinds of 

methods may produce brightness and color distortions since spatial consistency is not well considered in the 

fusion process. Spatial consistency means that if two adjacent pixels have similar brightness or color, they will 

tend to have similar weights. A popular spatial consistency based fusion approach is formulating an energy 

function, where the pixel saliencies are encoded in the function and edge aligned weights are enforced by 

regularization terms, e.g., a smoothness term. This energy function can be then minimized globally to obtain 

the desired weight maps. To make full use of spatial context, optimization based image fusion approaches, e.g., 

generalized random walks [8], and Markov random fields [9] based methods have been proposed. These 

methods focus on estimating spatially smooth and edge aligned weights by solving an energy function and then 

fusing the source images by weighted average of pixel values. However, optimization based methods have a 

common limitation, i.e., inefficiency, since they require multiple iterations to find the global optimal solution. 

Moreover, another drawback is that global optimization based methods may over-smooth the resulting weights, 

which is not good for fusion. An interesting alternative to optimization based method is guided image filtering 

[10]. The proposed method employs guided filtering for layer extraction. The extracted layers are then fused 

separately. 

The remainder of this paper is organized as follows. In Section II, the guided image filtering 

algorithm is reviewed. Section III describes the proposed image fusion algorithm. The experimental results and 

discussions are presented in Section IV. Finally, Section V concludes the paper. 

Abstract: Many applications such as robot navigation, defense, medical and remote sensing perform 

various processing tasks, which can be performed more easily when all objects in different images of the 

same scene are combined into a single fused image. In this paper, we propose a fast and effective 

method for image fusion. The proposed method derives the intensity based variations that is large and 

small scale, from the source images. In this approach, guided filtering is employed for this extraction. 

Gaussian and Laplacian pyramidal approach is then used to fuse the different layers obtained.  

Experimental results demonstrate that the proposed method can obtain better performance for fusion of 

all sets of images. The results clearly indicate the feasibility of the proposed approach.  
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II. GUIDED IMAGE FILTERING 
Guided filter is an image filter derived from a local linear model. It computes the filtering output by 

considering the content of a guidance image, which can be the input image itself or another different image. 

The guided filter can be used as an edge-preserving smoothing operator like the popular bilateral filter, but it 

has better behaviors near edges. The guided filter is also a more generic concept beyond smoothing: It can 

transfer the structures of the guidance image to the filtering output, enabling new filtering applications like 

dehazing and guided feathering. Moreover, the guided filter naturally has a fast and nonapproximate linear 

time algorithm, regardless of the kernel size and the intensity range. Currently, it is one of the fastest edge-

preserving filters. Guided filter is both effective and efficient in a great variety of computer vision and 

computer graphics applications, including edge-aware smoothing, detail enhancement, HDR compression, 

image matting/feathering, dehazing, joint upsampling, etc. 

The filtering output is locally a linear transform of the guidance image. On one hand, the guided filter 

has good edge-preserving smoothing properties like the bilateral filter, but it does not suffer from the gradient 

reversal artifacts. On the other hand, the guided filter can be used beyond smoothing: With the help of the 

guidance image, it can make the filtering output more structured and less smoothed than the input. Moreover, 

the guided filter naturally has an O(N) time (in the number of pixels N) nonapproximate algorithm for both 

gray-scale and high-dimensional images, regardless of the kernel size and the intensity range. Typically, the 

CPU implementation achieves 40 ms per mega-pixel performing gray-scale filtering. It has great potential in 

computer vision and graphics, given its simplicity, efficiency, and high-quality. 

 
 

Fig. 2.1. Illustrations of the bilateral filtering process (left) and the guided filtering process (right) 

 

2.1 Guided filter 

A general linear translation-variant filtering process is defined, which involves a guidance image I, an 

filtering input image p, and an output image q. Both I and p are given beforehand according to the application, 

and they can be identical. The filtering output at a pixel i is expressed as a weighted average: 

                                                                                               (1) 

 

where i and j are pixel indexes. The filter kernel Wij is a function of the guidance image I and independent of 

p. This filter is linear with respect to p. An example of such a filter is the joint bilateral filter (Fig. 2.1 (left)). 

The bilateral filtering kernel Wbf is given by : 

                                                                     (2) 

 

where x is the pixel coordinate and Ki is a normalizing parameter to ensure . The parameters s 

and r adjust the sensitivity of the spatial similarity and the range (intensity/color) similarity, respectively. The 

joint bilateral filter degrades to the original bilateral filter when I and p are identical. The implicit weighted-

average filters optimize a quadratic function and solve a linear system in this form: 

                                                                                                                          (3) 

where q and p are N-by-1 vectors concatenating {qi} and {pi}, respectively, and A is an N-by-N matrix only 

depends on I. The solution to (3), i.e., , has the same form as (1), with . 

The key assumption of the guided filter is a local linear model between the guidance I and the filtering 

output q. We assume that q is a linear transform of  I in a window wk centered at the pixel k: 

                                  (4) 
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where (ak, bk) are some linear coefficients assumed to be constant in wk. We use a square window of radius r. 

This local linear model ensures that q has an edge only if I has an edge, because . This model has 

been proven useful in image super-resolution, image matting and dehazing. 

To determine the linear coefficients {ak, bk}, we need constraints from the filtering input p. We model 

the output q as the input p subtracting some unwanted components n like noise/textures:  

                    (5) 

A solution that minimizes the difference between q and p while maintaining the linear model (4) is suggested. 

Specifically, the following cost function in the window wk is minimized : 

                                                                     (6) 

Here,  is a regularization parameter penalizing large ak. 

Equation (6) is the linear ridge regression model [11] and its solution is given by : 

                                                                                     (7) 

                                     (8) 

Here, k and  are mean and variance of I in wk, |w| is the number of pixels in wk, and   is 

the mean of p in wk. Having obtained the linear coefficients {ak, bk}, we can compute the filtering output qi by 

(4). Fig.2.1 (right) shows an illustration of the guided filtering process. 

 

However, a pixel i is involved in all the overlapping windows wk that covers i, so the value of qi in (4) 

is not identical when it is computed in different windows. A simple strategy is to average all the possible 

values of qi. So after computing (ak, bk) for all windows wk in the image, we compute the filtering output by : 

                                  (9) 

Noticing that   due to the symmetry of the box window, (9) is rewritten as : 

                                  (10) 

where  and  are the average coefficients of all windows overlapping i. The 

averaging strategy of overlapping windows is popular in image denoising. 

 

With the modification in (10), q is no longer scaling of I because the linear coefficients  

vary spatially. But as  are the output of a mean filter, their gradients can be expected to be much 

smaller than that of I near strong edges. In short, abrupt intensity changes in I can be mostly preserved in q.  

Equations (7), (8), and (10) are the definition of the guided filter. A pseudocode is in Algorithm 1. In 

this algorithm, fmean is a mean filter with a window radius r. The abbreviations of correlation (corr), variance 

(var), and covariance (cov) indicate the intuitive meaning of these variables. 

Algorithm 1. Guided Filter. 

Input: filtering input image p, guidance image I, radius r, regularization  

Output: filtering output q. 

1: meanI = fmean(I) 

    meanp = fmean(p) 

    corrI = fmean(I.*I) 

    corrIp = fmean(I.*p) 

2: varI = corrI - meanI .* meanI 

    covIp = corrIp - meanI .* meanp 

3: a = covIp ./(varI +  )   

    b = meanp – a.* meanI 

4: meana =  fmean(a) 

    meanb =  fmean(b) 

5: q = meana .* I + meanb 

 

III. OVERALL APPROACH 
The flowchart of the proposed image fusion method is shown in Fig. 3.1. We first employ guided 

filtering for the extraction of base layers and detail layers from the input images. 𝑞𝑖 computed in (9) preserves 

the strongest edges in 𝐼 while smoothing small changes in intensity. Let bK be the base layer computed 

from (9) (i.e.,bK  = 𝑞𝑖 and 1 ≤ 𝐾 ≤ 𝑁) for 𝐾th input image denoted by 𝐼𝐾 . The detail layer is defined 

as the difference between the guided filter output and the input image, which is defined as 
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                                                                                                                   (11) 

 

 
Fig 3.1. Flowchart of the proposed method 

3.1 Base Layer Fusion 

The pyramid representation expresses an image as a sum of spatially band-passed images while 

retaining local spatial information in each band. A pyramid is created by lowpass filtering an image 𝐺0 with a 

compact two-dimensional filter. The filtered image is then subsampled by removing every other pixel and 

every other row to obtain a reduced image 𝐺1.This process is repeated to form a Gaussian pyramid 𝐺0, 𝐺1, 𝐺2, 

𝐺3, . . . , 𝐺𝑑. Expanding 𝐺1 to the same size as 𝐺0 and subtracting yields the band-passed image 𝐿0. A 

Laplacian pyramid 𝐿0, 𝐿1, 𝐿2, . . . , 𝐿𝑑−1, can be built containing band-passed images of decreasing size and 

spatial frequency. 

        l l l+1                                         (12) 

where l refers to the number of levels in the pyramid. 

The original image can be reconstructed from the expanded band-pass images: 

                                                                                       (13) 

The Gaussian pyramid contains low-passed versions of the original 𝐺0, at progressively lower spatial 

frequencies. This effect is clearly seen when the Gaussian pyramid levels are expanded to the same size as 𝐺0. 

The Laplacian pyramid consists of band-passed copies of 𝐺0. Each Laplacian level contains the edges of a 

certain size and spans approximately an octave in spatial frequency. 

(a) Quality measures 

Many images in the stack contain flat, colorless regions due to under- and overexposure. Such regions 

should receive less weight, while interesting areas containing bright colors and details should be preserved. 

The following measures are used to achieve this: 

• Contrast: Contrast is created by the difference in luminance reflected from two adjacent surfaces. In other 

words, contrast is the difference in visual properties that makes an object distinguishable from other object and 

the background. In visual perception contrast is determined by the difference in color and brightness of the 

object with other object. It is the difference between the darker and the lighter pixel of the image, if it is big the 

image will have high contrast and in the other case the image will have low contrast.  

A Laplacian filter is applied to the grayscale version of each image, and take the absolute value of the 

filter response. This yields a simple indicator C for contrast. It tends to assign a high weight to important 

elements such as edges and texture. 

• Saturation: As a photograph undergoes a longer exposure, the resulting colors become desaturated and 

eventually clipped. The saturation of a color is determined by a combination of light intensity and how much it 

is distributed across the spectrum of different wavelengths. The purest (most saturated) color is achieved by 

using just one wavelength at a high intensity, such as in laser light. If the intensity drops, then as a result the 

saturation drops. Saturated colors are desirable and make the image look vivid. A saturation measure S is 

included which is computed as the standard deviation within the R, G and B channel, at each pixel. 

• Exposure: Exposure is a term that refers to two aspects of photography – it is referring to how to control the 

lightness and the darkness of the image. In photography, exposure is the amount of light per unit area reaching 

a photographic film. A photograph may be described as overexposed when it has a loss of highlight detail, that 

is, when important bright parts of an image are washed out or effectively all white, known as blown out 

highlights or clipped whites. A photograph may be described as underexposed when it has a loss of shadow 

detail, that is, when important dark areas are muddy or indistinguishable from black, known as blocked up 

shadows. Looking at just the raw intensities within a channel, reveals how well a pixel is exposed. We want to 

http://en.wikipedia.org/wiki/Photography
http://en.wikipedia.org/wiki/Clipping_%28photography%29
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keep intensities that are not near zero (underexposed) or one (overexposed). We weight each intensity i based 

on how close it is to 0.5 using a Gauss curve: 

                                                                                                                                            (14) 

To account for multiple color channels, we apply the Gauss curve to each channel separately, and multiply the 

results, yielding the measure E. 

The fused base layer is computed as the weighted sum of the base layers 

𝑏1 𝑏2 . . . ,𝑏𝑁 obtained across 𝑁 input exposures. Pyramidal approach is used to generate 

Laplacian pyramid of the base layers L{𝑏𝐾 }𝑙 and Gaussian pyramid of weight map functions 

𝐺{𝑊𝐾 }𝑙 estimated from three quality measures (i.e., saturation 𝑆𝐾 , contrast 𝐶𝐾 , and 

exposure 𝐸𝐾 ). Here, 𝑙 (0 < 𝑙 < 𝑑) refers to the number of levels in the pyramid and 𝐾 (1 < 𝐾 < 𝑁) refers 

to the number of input images. The weight map is computed as the product of these three quality metrics  (i.e. 

WK  = 𝑆𝐾  ⋅ 𝐶𝐾  ⋅ 𝐸𝐾 ). The L{𝑏𝐾 }𝑙 multiplied with the corresponding 𝐺{𝑊𝐾(𝑖‟, 
𝑗‟)}𝑙 and summing over 𝐾 yield modified Laplacian pyramid   𝐿𝑙(𝑖‟, 𝑗‟) as follows: 

                                                                                     (15) 

The that contains well exposed pixels is reconstructed by expanding each level and then summing all 

the levels of the Laplacian pyramid: 

                                                                                              (16) 

 

3.2 Detail Layer Fusion 

The detail layers computed in (11) across all the input exposures are linearly combined to produce 

fused detail layer 𝑑𝑓  that yields combined texture information as follows: 

                                                                                                                 (17) 

where is the user defined parameter to control amplification of texture details (typically set to 5). 

Finally, the detail enhanced fused image 𝑔 is easily computed by simply adding up the fused 

base layer 𝑏𝑓 computed in (16) and the manipulated fused detail layer in (17) as follows: 

                                                                                        (18) 

  

3.3 Numerical Analysis 

Numerical analysis is the process of evaluating a technique via some objective metrics. For this 

purpose, two fusion quality metrics [12], i.e., information theory based metric (QMI) [13] and structure based 

metrics (Qc) [14] are adopted. In order to assess the fusion performance, fusion quality metric is used.  

 

(a) Normalized mutual information (QMI)  

Normalized mutual information, QMI is an information theory based metric. Mutual information 

improves image fusion quality assessments. One problem with traditional mutual information metric is that it 

is unstable and may bias the measure towards the source image with the highest entropy.  

The size of the overlapping part of the images influences the mutual information measure in two 

ways. First of all, a decrease in overlap decreases the number of samples, which reduces the statistical power of 

the probability distribution estimation. Secondly, with increasing misregistration (which usually coincides with 

decreasing overlap) the mutual information measure may actually increase. This can occur when the relative 

areas of object and background even out and the sum of the marginal entropies increases, faster than the joint 

entropy. Normalized measure of mutual information is less sensitive to changes in overlap. Hossny et al. 

modified it to the normalized mutual information [13]. Here, Hossny et al.‟s definition is adopted. 

                                                                                                    (19) 

where H(A), H(B) and H(F) are the marginal entropy of A, B and F, and MI(A, F)is the mutual information 

between the source image A and the fused image F. 

                                                                              (20) 

where H(A, F) is the joint entropy between A and F, H(A) and H(F) are the marginal entropy of A and F, 

respectively, and MI(B,F) is similar to MI(A, F). The quality metric QMI measures how well the original 

information from source images is preserved in the fused image. 

 

(b) Cvejic et al.’s metric (Qc) 

 Cvejic et al.‟s metric, Qc is a structure based metric. It is calculated as follows : 
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                                                       (21) 

where   is calculated as follows : 

                                                                                        (22) 

and  are the covariance between A,B and F, UIQI refers to the universal image quality index. The Qc 

quality metric estimates how well the important information in the source images is preserved in the fused 

image, while minimizing the amount of distortion that could interfere with interpretation. 

 

IV. Results And Discussion 

The system described above is implemented using Matlab and the result was successfully obtained. In 

this section, the obtained results are provided. Figure 4.1 shows the base and detail layers.  

 

 

 

 

 

 

 

 

 

 

 

         Figure 4.2: Base layers and Detail layers 

 

Pyramidal approach is used for fusing base layers. Quality measures of images are considered to 

compute the weight map. Weight map is the combination of contrast, saturation and exposure. Figure 4.3 

shows the gaussian pyramid of weight map function. 
 

 
Figure 4.3: Gaussian pyramid 

 

Laplacian pyramid of the base layers are generated. Thus obtained laplacian pyramid is shown in figure 4.4.  
 

 
Figure 4.4: Laplacian pyramid 

 

Fused pyramid is obtained by combining the Gaussian pyramid of weight map functions and 

Laplacian pyramid of base layers. Figure 4.5 shows the fused pyramid. 
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Figure 4.5: Fused pyramid 

 

Fused base layer is the weighted sum of base layers. The detail layers obtained are boosted and fused. 

Figure 4.6 shows the fused base and detail layers. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Fused base layer and detail layer 

 

Finally, the fused image is obtained by combining the obtained fused base and fused detail layers. The 

fused image is shown in figure 4.7. Numerical analysis is performed on the obtained results. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Fused image 

 

The following shows the results obtained for some of the other source images. 

 

 

 

 

 

 

 

 

 

 

 

(a)                                              (b) 

Figure 4.8: (a) Source Images (b) Fused Image 
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(a)                                              (b) 

Figure 4.9: (a) Source Images (b) Fused Image 

 

                     

                                                        

 

 

 

 

 

 

 

 

 

 

(a)                                              (b) 

Figure 4.10: (a) Source Images (b) Fused Image 

 

V. Conclusion 

We proposed a technique for fusing multiexposure input images. The proposed method constructs a 

detail enhanced image from a set of multiexposure images by using a multiresolution decomposition technique. 

When compared with the existing techniques which use multiresolution and single resolution analysis for 

exposure fusion, the current proposed method performs better in terms of enhancement of texture details in the 

fused image. The framework is inspired by the edge preserving property of guided filter that has better 

response near strong edges. Experiments show that the proposed method can well preserve the original and 

complementary information of multiple input images. 
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