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I. INTRODUCTION 
The buoyancy force induced by density differences in a fluid cause’s natural convection. Natural 

convection flows are frequently encountered in physics and engineering problems such as chemical catalytic 

reactors, nuclear waste material etc. Transient free convection is important in many practical applications such 

as thermal regulation process, security of energy systems etc. In literature, extensive research work has been 

performed to examine the effect of natural convection on flow past a plate. The first attempt in this direction 

was made by Callahan and Marner [1] who solved the non-linear system of equations by explicit finite 

difference scheme, which is not always convergent. Soundalgekar and Ganesan [2] studied the same problem by 

implicit finite difference scheme which is always stable and convergent. Recently, finite difference solution of 

natural convection flow over a heated plate with different inclination was studied by Begum et al. [3]. 

Two dimensional natural convection heat and mass transfer flow past a semi-infinite flat plate has been 

receiving the attention of many researchers because of its wide applications in industry and technological fields. 

Natural convection along an inclined plate has received less attention than the case of vertical and horizontal 

plates. Finite-difference technique has been used in natural convective flow analysis by many researchers. 

Callahan and Marner [4] have presented a paper on transient free convection with mass transfer effects and to 

solve the problem by explicit finite difference technique. Soundalgekar and Ganesan [5] solved the same 

problem using implicit finite difference technique and compared the result with those of Marner and Callahan 

[6] and both the results agree well. Chamkha et al. [7] presented similarity solutions for hydromagnetic 

simultaneous heat and mass transfer by natural convection from inclined plate with thermal heat generation or 

absorption employing implicit finite difference technique. Ganesan and Palani [8] studied free convection 

effects on the flow of water at 4ºC past a semi-infinite inclined flat plate and solved the problem using implicit 

finite difference technique.  

Magnetohydrodynamic flows have applications in meteorology, solar physics, cosmic fluid dynamics, 

astrophysics, geophysics and in the motion of earth’s core. In addition from the technological point of view, 

MHD free convection flows have significant applications in the field of stellar and planetary magnetospheres, 

aeronautical plasma flows, chemical engineering and electronics. An excellent summary of applications is to be 

found in Hughes and Young [9]. Raptis [10] studied mathematically the case of time varying two dimensional 

natural convective flow of an incompressible, electrically conducting fluid along an infinite vertical porous 

plate embedded in a porous medium. Helmy [11] studied MHD unsteady free convection flow past a vertical 

porous plate embedded in a porous medium. Elbashbeshy [12] studied heat and mass transfer along a vertical 

plate in the presence of magnetic field.  

In the context of space technology and in the processes involving high temperatures, the effects of 

radiation are of vital importance. Recent developments in hypersonic flights, missile re-entry, rocket 

combustion chambers, power plants for inter planetary flight and gas cooled nuclear reactors, have focused 

attention on thermal radiation as a mode of energy transfer, and emphasized the need for improved 

understanding of radiative transfer  in these processes. Cess [13] presented radiation effects on the boundary 

layer flow of an absorbing fluid past a vertical plate, by using the Rosseland diffusion model. Several authors 

have also studied thermal radiating MHD boundary layer flows with applications in astrophysical fluid 

dynamics. Mosa [14] discussed one of the first models for combined radiative hydromagnetic heat transfer, 
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considering the case of free convective channel flows with an axial temperature gradient. Nath et al. [15] 

obtained a set of similarity solutions for radiative-MHD stellar point explosion dynamics using shooting 

method. Takhar et al. [16] studied radiation effects on MHD free convection flow past a semi infinite vertical 

plate where the viscosity and thermal conductivity were assumed constant. Azzam [17] studied radiation effects 

on the MHD mixed convective flow past a semi infinite moving vertical plate for the case of high temperature 

differences.  

However, the interaction of natural convection flow of an electrically conducting fluid past an inclined 

plate in the presence of radiation and mass transfer has received little attention. Hence, in the present chapter an 

attempt is made to analyze the mass transfer effects on MHD natural convection flow along a heated inclined 

semi-infinite plate in the presence of radiation. The equations of continuity, linear momentum, energy and 

diffusion, which govern the flow field, are solved by an implicit finite difference method of Crank-Nicolson 

type. The behavior of the velocity, temperature, concentration, skin-friction, Nusselt number and Sherwood 

number has been discussed for variations in the physical parameters. 

 

II. MATHEMATICAL ANALYSIS 
 An unsteady two-dimensional natural convection flow of a viscous, incompressible, electrically 

conducting, radiating fluid past a heated inclined semi infinite plate is considered. The fluid is assumed to be 

gray, absorbing-emitting but non-scattering. The x-axis is taken along the plate and the    y-axis normal to it. 

Initially, it is assumed that the plate and the fluid are at the same temperature 'T   and concentration level 'C   

everywhere in the fluid. At time t >0, the temperature of the plate and the concentration level near the plate are 

raised to 'wT  and 'wC  respectively and are maintained constantly thereafter. A uniform magnetic field is 

applied in the direction perpendicular to the plate and that the induced magnetic field is neglected. The 

transverse applied magnetic field and magnetic Reynolds number are assumed to be very small, so that the 

induced magnetic field is negligible. It is assumed that the concentration C of the diffusing species in the binary 

mixture is very less in comparison to the other chemical species, which are present, and hence the Soret and 

Dufour effects are negligible. It is also assumed that there is no chemical reaction between the diffusing species 

and the fluid. Then, under the above assumptions, in the absence of an input electric field, the governing 

boundary layer equations with Boussinesq’s approximation are  

0
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The initial and boundary conditions are  

' 0 : 0, 0, ' ' , 't u v T T C C 
     ' 0 : 0, 0, ' ' , ' 0w wt u v T T C C at y     

0, ' ' , 'u T T C C 
    at     x 0  

0, ' ' , 'u T T C C 
   as  y          (5) 

Where u , v  are the velocity components in x , y directions respectively, 't - the time,        g - the 

acceleration due to gravity, - the volumetric coefficient of thermal expansion, 
* - the volumetric coefficient 

of expansion with concentration, T - the temperature of the fluid in the boundary layer, C - the species 

concentration in the boundary layer, - the kinematic viscosity, 'wT  - the wall temperature, 'T - the free 

stream temperature far away from the plate, 'wC  - the concentration at the plate, 'C - the free stream 

concentration far away from the plate, - the electrical conductivity, 0B  -  the magnetic induction, - the 

density of the fluid, - the thermal diffusivity, cp - the specific heat at constant pressure, rq - the radiation heat 

flux and D - the species diffusion coefficient.  
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The second term on the right hand side of equation (2.3) represents the radiative heat flux; Thermal 

radiation is assumed to be present in the form of a unidirectional flux in the y-direction i.e., rq (transverse to 

the surface).              

      By using the Rosseland approximation      ( Brewster [18] ), the radiative heat flux rq  is given by   

y
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Where s  is the Stefan-Boltzmann constant and ek - the mean absorption coefficient. It should be 

noted that by using the Rosseland approximation, the present analysis is limited to optically thick fluids. If the 

temperature differences within the flow are sufficiently small, then Equation (2.6) can be linearized by 

expanding 
4'T  into the Taylor series about 'T  , which after neglecting higher order terms takes the form  
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In view of equations (2.6) and (2.7), equation (2.3) reduces to  
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(8)  

From the technological point of view, for the type of problem under conditions, the coefficient of skin-

friction, heat and mass transfer are important. 

Local and average skin-frictions are given respectively by 
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Local and average Nusselt numbers are given respectively by 
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Local and average Sherwood numbers are given respectively by 
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In order to write the governing equations and the boundary conditions in dimensionless form, the 

following non-dimensional quantities are introduced. 
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where L is the characteristic length of the plate and k-the thermal conductivity.  

In view of (2.15), the equations (1), (2), (8) and (4) are reduced to the following non-dimensional form  
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where, Gr, M, F, Pr, N and Sc are thermal Grashof number, radiation parameter, Prandtl number, buoyancy 

ratio parameter and Schmidt number respectively.    

 The corresponding initial and boundary conditions are  
0: 0 0 0 0t U ,V ,T ,C       

0 : 0, 0, 1, 1 0t U V T C at Y                    

           0, 0, 0, 0 0U V T C at X           

           0, 0, 0U T C as Y                   (20) 

Local and average skin-frictions in non-dimensional form are 
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Local and average Nusselt numbers in non-dimensional form are 
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Local and average Sherwood numbers in non-dimensional form are 
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III.   METHOD OF SOLUTION 
In order to solve the unsteady, non-linear, coupled equations (16) - (19), under the boundary conditions 

(20), an implicit finite difference scheme of Crank-Nicholson type has been employed. The region of 

integration is considered as a rectangle with sides maxX (=1) and  m axY  (=14), where m axY  corresponds to 

  Y , which lies very well outside the momentum, energy and concentration boundary layers. The 

maximum value of Y was chosen as 14 after some preliminary investigations so that the last two of the 

boundary conditions of equation (20) are satisfied with in the tolerance limit 10
-5

. The grid system is shown in 

the following figure A. 

 
The finite difference equations corresponding to equations (16) - (19) are as follows 
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Here, the subscript i-designates the grid point along the X-direction, j-along the Y-direction and the 

superscript n along the t-direction. An appropriate mesh size considered for the calculation isX = 0.018, Y 

= 0.25,and the time step t 0.01.During any one time step, the coefficients 
n

jiU .
 and 

n

jiV .
appearing in the 

difference equations are treated as constants. The values of C, T, U and V at time level (n+1) using the known 

values at previous time level (n) are calculated as follows.  

The finite difference equation (30) at every internal nodal point on a particular i-level constitute a 

tridiagonal system of equations. Such a system of equations is solved by using Thomas algorithm as discussed 

in Carnahan et al. [33]. Thus, the values of C are known at every internal nodal point on a particular i at (n+1)
th

 

time level. Similarly, the values of T are calculated from the equation (29). Using the values of C and T at 

(n+1)
th

 time level in the equation (28), the values of U at (n+1)
th

 time level are found in similar manner. Thus 

the values of C, T and U are known on a particular i-level. Then the values of V are calculated explicitly using 

the equation (27) at every nodal point at particular i-level at (n+1)
th
 time level. This process is repeated for 

various i-levels. Thus the values of UTC ,, and V  are known, at all grid points in the rectangular region at 

(n+1)
th

 time level.      

Computations are carried out until the steady state is reached. The steady-state solution is assumed to 

have been reached, when the absolute difference between the values of U as well as temperature T and 

concentration C at two consecutive time steps are less than 10
-5

 at all grid points. 

The derivatives involved in the equations (21) - (26) are evaluated using five-point approximation formula and 

then the integrals are evaluated using Newton-Cotes closed integration formula. 

 

IV.  STABILITY OF THE SCHEME 
 In this section, the stability of the finite difference equations has been discussed using the well-known 

Von-Neumann technique. This method introduces an initial error represented by a finite Fourier series and 

examines how this error propagates during the solution. The general terms of the Fourier expansion for U, T and 

C at a time arbitrarily called   t = 0 are assumed to be of the form 
i x i ye e 

(here i = 1 ). At a later time t, 

these terms will become 

U = F(t) 
i x i ye e 

 

T = G(t) 
i x i ye e 

                                        (4.1) 

C = H(t) 
i x i ye e 

 

 Substituting (4.1) in the equations (27) – (30) under the assumption that the coefficients U and V are 

constants over any one time step and denoting the values after on time step by HandGF , , one may get 

after simplification. 



Radiation and Mass Transfer Effects on Mhd Natural Convection Flow Over An Inclined Plate 

 
| IJMER | ISSN: 2249–6645 |                          www.ijmer.com                       | Vol. 4 | Iss. 2 | Feb. 2014 |95| 

         1 sin

2 2

i XF F eF F F F i Y
U V

t X Y




      
  

  
 

       

 
2

cos 1
sin

2 2

G G H H F F Y
N

Y




       
  

 
                     (4.2) 

         1 sin

2 2

i XG G eG G G G i Y
U V

t X Y




      
  

  
 

   

 
2

cos 14
1

3 Pr

G G Y

F Y

   
 

  
                     (4.3) 

         1 sin

2 2

i XH H eH H H H i Y
U V

t X Y




      
  

  
 

   

 
2

cos 1H H Y

Sc Y

  


                      (4.4) 

Equations (4.2) – (4.4) can be written as  

   (1 ) ' (1 )
2

t
A F A F G G N H H Sin


                                                            (4.5) 

(1+B) G = (1-B)G                      (4.6) 

(1+E) H = (1-E)H                                                                                                                    (4.7) 
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After eliminating G and H   in the equation (4.5) using the equations (4.6) and (4.7), the resultant 

equation and equations (4.6) and (4.7) can be written in matrix form as follows.  
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                                                                                             (4.8) 

where   1D = 
   1 1

tsin

A B



 
    and   2D = 

   1 1

tsin

A E



 
 

Now, for the stability of the finite difference scheme, the modulus of each eigen value of the 

amplification matrix must not exceed unity. Since this matrix in the equation (4.8) is triangular, the eigen values 

are diagonal elements. Hence, the eigen values of the amplification matrix are (1A)/(1+A), (1B)/(1+B) and 

(1E)/(1+E). Assuming that U is everywhere non-negative and V is everywhere non-positive we get 
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where 

a = 
X
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

2
,     b = 

Y

tV





2
   and   c = 

 2
Y

t
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Since the real part of A is greater than or equal to zero,     11/1  AA  always. Similarly, 

    11/1  BB  and     11/1  EE . 

Hence, the scheme is unconditionally stable. The local truncation error is O( XYt  22
) and it tends to 

zero as t , Y  and X  tend to zero. Therefore the scheme is compatible. The stability and compatibility 

ensures convergence. 

 

V. RESULTS AND DISCUSSION 
The aim of present study is to investigate the effect of radiation and mass transfer on an unsteady free 

convection flow of a viscous incompressible electrically conducting fluid over an inclined heated plate. A 

representative set of numerical results is shown graphically in Figs.1-20, to illustrate the influence of physical 

parameters viz., radiation parameter F, buoyancy ratio parameter N, Prandtl number Pr, Schmidt number Sc, 

and magnetic parameter M on the velocity, temperature, concentration, skin-friction, Nusselt number and 

Sherwood number. Here the value of Pr is chosen as 0.72, which corresponds to air. The values of Sc are 

chosen such that they represent Helium (0.24), Ammonia (0.78). The other parameters are arbitrarily chosen. 

In order to ascertain the accuracy of the numerical results, the present study is compared with the 

previous study. The velocity profiles of the present problem for Sc = 0.0,   Pr = 0.72,    N = 0.0, M=0.0, F=0.0, 

t=0.40, α=60
0
, X = 1.0 are compared with the available solution of Begum et al [3] in Fig.1. It is observed that 

the present results are in good agreement with that of Begum et al. [3] . 

The effects of inclined angle α, on the transient velocity are displayed in Fig.2.  It is noticed that the 

velocity increases with increasing values of the inclined angle. The effects of the magnetic parameter M on the 

transient velocity are illustrated in Fig.3. It is seen that, as expected, the velocity decreases with an increase in 

the magnetic parameter.  The magnetic parameter is found to retard the velocity at all points of the flow field. It 

is because that the application of transverse magnetic field will result in a resistive type force (Lorentz force) 

similar to drag force which tends to resist the fluid flow and thus reducing its velocity. Also, the boundary layer 

thickness decreases with an increase in the magnetic parameter. The effect of N, on the transient velocity is 

displayed in Fig.4.  It is noticed that the velocity increases with increasing values of the buoyancy ratio 

parameter. The effect of F, on the transient velocity is displayed in Fig.5.  It can be seen that an increase in the 

thermal radiation parameter produces significant decreases in the velocity boundary layer.  

The steady state temperature for different values of M is displayed in Fig.6.  It can be seen that an 

increase in the magnetic parameter produces significant increases in the temperature boundary layer. Fig.7 

shows the distribution of steady state temperature against Y for various N values. The profiles in Fig.7 attest 

that with an increase in N the thermal boundary layer will be decreased in thickness and there will be a 

corresponding uniformity of temperature distributions across the boundary layer. The effect of radiation 

parameter on the transient temperature can be observed from Fig.8. It can be seen that an increase in the 

radiation parameter leads to a decrease in the temperature.  

Fig.9 shows the distribution of T against Y for various Pr values. The profiles in Fig.9 attest that with 

an increase in Pr the thermal boundary layer will be decreased in thickness and there will be a corresponding 

uniformity of temperature distributions across the boundary layer. It is observed that the maximum temperature 
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correspond to lower Pr values. The profiles also steepen and intersect the abscissa faster for higher Pr fluids i.e. 

temperatures across the boundary layer (normal to wall) reach zero faster. 

The steady state concentration for the different values M is displayed in Fig.10.  It can be seen that an 

increase in the magnetic parameter produces significant increase in the concentration boundary layer. The effect 

of N, on the steady state concentration is displayed in Fig.11.  It is noticed that the concentration decreases with 

increasing values of the buoyancy ratio parameter. The effect of F, on the steady state concentration is 

represented in Fig.12.  It is noticed that the concentration decreases with increasing values of the radiation 

parameter. Fig.13 shows the distribution of transient concentration against Y for various Sc values. The profiles 

in Fig.13 attest that with an increase in Sc the concentration boundary layer will be decreased in thickness and 

there will be a corresponding uniformity of concentration distributions across the boundary layer.  

Fig.14 illustrates the effects of M, N and F on the local skin-friction. The local skin-friction is found to 

decrease due to an increase in the magnetic field strength. An increase in N or F produces an increase in the 

local skin-friction. The effects M, N and F on the average skin-friction are shown in Fig.15. It is observed that 

the average skin-friction increases as N or F increases, and it decreases as M increases. Figs.16 and 17 show the 

effect of Pr and F on the local and average Nusselt numbers respectively. It is observed that the local and 

average Nusselt numbers increase as Pr increases, and decrease as F increases. Figs.18, 19 and 20 display the 

effect of Sc and F on the local and average Sherwood numbers respectively. It can be observed that as Sc or F 

increases the local and average Sherwood numbers increase.  

 

VI.  CONCLUTIONS 

An Unsteady two dimensional natural convection boundary layer flow of heat and mass transfer over 

heated plate with different inclinations in the presence of radiation has been studied. Implicit finite difference 

scheme of Crank-Nicolson type was employed to obtain the solution of the governing equations. The present 

solutions were validated by comparing with solutions existing in the literature. Our results show a good 

agreement with the existing work in the literature. The results are summarized as follows: 

1. Magnetic field elevates the temperature and concentration, and reduces the velocity. 

2. The angle of inclination enhances the velocity 

3. The radiation enhances the velocity and temperature, and reduces the concentration. 

4. The radiation enhances the local and average skin-friction, and local and average Sherwood number, and 

reduces the local and average Nusselt number. 
 

 
Fig. 1 Comparison of velocity for t=0.40, Pr=0.72 and α=60

0
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Fig 2 Transient velocity at X=1.0 for the different values of α. 

 

 
Fig 3 Transient velocity at X=1.0 for the different values of M. 

 

 
Fig 4 Transient velocity at X=1.0 for the different values of N. 
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Fig 5 Transient velocity for at X=1.0 the different values of F. 

 

 
Fig 6 Steady state temperature for different values of M at X=1.0. 

 

 
Fig 7 Steady state temperature for different values of N at X=1.0. 
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Fig 8 Transient temperature at X=1.0 for different values of F. 

 

 
Fig 9 Transient temperature at X=1.0 for different values of Pr. 

 

 
Fig 10 Steady state concentration for different values of M at X=1.0. 
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Fig 11 Steady state concentration for different values of N at X=1.0. 

 

 
Fig 12 Steady state concentration for different values of F at X=1.0. 

 

 
Fig 13 Transient concentration at X=1.0 for the different values of Sc. 
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Fig 14 The effects of M, N and F on local skin friction. 

 

 
Fig 15 The effects of M, N and F on average skin friction. 

 

 
Fig 16 The effects of Pr and F on local Nusselt number. 
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Fig 17 The effects of Pr and F on average Nusselt number. 

 

 
Fig 18 The effects of Sc and F on local Sherwood number. 

 

 
Fig 19 The effect of Schmidt number on average Sherwood number. 
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Fig 20 The effect of R on average Sherwood number. 
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