On πGr-Separation Axioms

C.Janaki1, V.Jeyanthi2

1Asst.Professor, Department of Mathematics, L.R.G. Govt. Arts College for Women, Tirupur-4
2Asst.Professor, Department of Mathematics, Sree Narayana Guru College, Coimbatore-105

Abstract: In the present paper, we introduce and study the concept of πgr-T_i space (for $i=0,1,2$) and obtain the characterization of πgr-regular space, πgr-normal space by using the notion of πgr-open sets. Further, some of their properties and results are discussed.

Key Words: πgr-T_i-space, πgr-T_i-space, πgr-T_2-space, πgr-normal, πgr-regular.

AMS Subject Classification: 54A05, 54D10, 54D15.

I. Introduction

The purpose of this paper is to introduce and study πgr-separation axioms in topological spaces. Further we introduced the concepts of πgr-regular space, πgr-Normal Space and study their behaviour.

II. Preliminaries

Throughout this paper (X,τ), (Y,σ) (or simply X, Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated.

For a subset A of a topological space X, the closure and interior of A with respect to τ are denoted by $\text{Cl}(A)$ and $\text{Int}(A)$ respectively.

Definition 2.1
A subset A of X is said to be regular open [12] if $A=\text{int}(\text{cl}(A))$ and its complement is regular closed.

The finite union of regular open set is π-open set[6,14] and its complement is π-closed set. The union of all regular open sets contained in A is called $\text{rint}(A)$[regular interior of A] and the intersection of regular closed sets containing A is called $\text{rcl}(A)$[regular closure of A]

Definition 2.2
A subset A of X is called πgr-closed[7] if $\text{rcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is π-open,. The complement of πgr-closed set is πgr-open set. The family of all πgr-closed subsets of X is denoted by $\pi \text{GRC}(X)$ and πgr-open subsets of X is denoted by $\pi \text{GRO}(X)$

Definition 2.3
The intersection of all πgr-closed containing a set A is called πgr-closure of A and is denoted by πgr,Cl(A). The union of πgr-open sets contained in A is called πgr-interior of A and is denoted by πgr,int(A).

Definition 2.4
A function $f:(X,\tau)\rightarrow (Y,\sigma)$ is called

1. Continuous [9] if $f^{-1}(V)$ is closed in X for every closed set V in Y.
2. Regular continuous ([r-continuous]) [3] if $f^{-1}(V)$ is regular-closed in X for every closed set V in Y.
3. An R-map[6] if $f^{-1}(V)$ is regular closed in X for every regular closed set V of Y.
4. πgr-continuous[7] if $f^{-1}(V)$ is πgr-closed in X for every closed set V in Y.
5. πgr-irresolute[7] if $f^{-1}(V)$ is πgr-closed in X for every πgr-closed set V in Y.
Definition: 2.5
A space X is called a πgr-T_{1/2} space [7] if every πgr-closed set is regular closed.

Definition: 2.6
A map f: X→Y is called
1. Closed [9] if f(U) is Y for every closed set U of X.
2. R-closed (i.e., regular closed) [12] if f(U) is regular closed in Y for every closed set U of X.
3. rc-preserving [6] if f(U) is regular closed in Y for every regular closed set U of X.

Definition: 2.7
A map f: X→Y is called
1. πgr-open map if f(V) is πgr-open in Y for every open set V in X.
2. strongly πgr-open map (M-πgr-open) if f(V) is πgr-open in Y for every πgr-open set V in X.
3. Quasi πgr-open if f(V) is open in Y for every πgr-open set V in X.
4. Almost πgr-open map if f(V) is πgr-open in Y for every regular open set V in X.

Definition: 2.8
A space X is said to be R-regular [10] if for each closed set F and each point x∈F, there exists disjoint regular open sets U and V such that x∈U and F⊂V.

Definition: 2.9
A space X is said to be R-Normal [11,13] (Mildly Normal) if for every pair of disjoint regular closed sets E and F of X, there exists disjoint open sets U and V such that E⊂U and F⊂V.

III. πGr Separation Axioms

In this section, we introduce and study πgr-separation axioms and obtain some of its properties.

Definition: 3.1
A space X is said to be πgr-T_0-space if for each pair of distinct points x and y of X, there exists a πgr-open set containing one point but not the other.

Theorem: 3.2
A space X is πgr-T_0-space if and only if πgr-closures of distinct points are distinct.
Proof: Let x and y be distinct points of X. Since X is a πgr-T_0-space, there exists a πgr-open set G such that x∈G and y∉G. Consequently, X−G is a πgr-closed set containing y but not x. But πgr-cl(y) is the intersection of all πgr-closed sets containing y. Hence y∈πgr-cl(y), but x∉πgr-cl(y) as x∉X−G. Therefore, πgr-cl(x)≠πgr-cl(y).
Conversely, let πgr-cl(x)=πgr-cl(y) for x≠y.
Then there exists at least one point z∈X such that z∉πgr-cl(y).
We have to prove x∉πgr-cl(y), because if x∈πgr-cl(y), then {x}⊂πgr-cl(y)
⇒ πgr-cl(x)=πgr-cl(y). So, z∉πgr-cl(y), which is a contradiction. Hence x∉πgr-cl(y) ⇒ x∈X−πgr-cl(y),
which is a πgr-open set containing x but not y. Hence X is a πgr-T_0-space.

Theorem: 3.3
If f:X→Y is a bijection, strongly-πgr-open and X is a πgr-T_0-space, then Y is also πgr-T_0-space.
Proof: Let y_1 and y_2 be two distinct points of Y. Since f is bijective, there exists points x_1 and x_2 of X such that f(x_1) = y_1 and f(x_2) = y_2. Since X is a πgr-T_0-space, there exists a πgr-open set G such that x_1∈G and x_2∉G. Therefore, y_1 = f(x_1) ∈ f(G), y_2 = f(x_2)∉ f(G). Since f is strongly πgr-open function, f(G) is πgr-open in Y. Thus, there exists a πgr-open set f(G) in Y such that y_1 ∈ f(G) and y_2 ∉ πgr-T_0-space.

Definition: 3.4
A space X is said to be πgr-T_1-space if for any pair of distinct points x and y, there exists πgr-open sets G and H such that x∈G, y∉G and x∉H, y∈H.

Theorem: 3.5
A space X is πgr-T_1-space iff singletons are πgr-closed sets.
Proof: Let X be a πgr-T_1-space and x∈X. Let y∈X−{x}. Then for x≠y, there exists πgr-open set U_y such that y∈U_y and x∉U_y.
Conversely, y∈U_y ⇒ x∉U_y.
That is X−{x} = $\bigcup_{y \in X−\{x\}}$, which is πgr-open set.
Hence {x} is πgr-closed set.
Conversely, suppose \([x] \in \pi\text{-gr-closed set for every } x \in X\). Let \(x, y \in X\) with \(x \neq y\). Now, \(x \neq y \Rightarrow y \in X \setminus \{x\}\). Hence \(X \setminus \{x\}\) is \(\pi\text{-gr-open set containing } y\) but not \(x\). Similarly, \(X \setminus \{y\}\) is \(\pi\text{-gr-open set containing } x\) but not \(y\). Therefore, \(X\) is a \(\pi\text{-gr-T}_1\) space.

Theorem 3.6

If \(f : X \rightarrow Y\) is strongly \(\pi\text{-gr-open bijective map and } X\) is \(\pi\text{-gr-T}_1\) space, then \(Y\) is \(\pi\text{-gr-T}_1\) space.

Proof: Let \(f : X \rightarrow Y\) be bijective and strongly-\(\pi\text{-gr-open function. Let } X\) be a \(\pi\text{-gr-T}_1\) space and \(y_1, y_2\) be any two distinct points of \(Y\).

Since \(f\) is bijective, there exists distinct points \(x_1, x_2\) of \(X\) such that \(y_1 = f(x_1)\) and \(y_2 = f(x_2)\). Now, \(X\) being a \(\pi\text{-gr-T}_1\) space, there exists \(\pi\text{-gr-open sets } G\) and \(H\) such that \(x_1 \in G, x_2 \notin G\) and \(x_1 \notin H, x_2 \in H\). Since \(y_1 = f(x_1) \in f(G)\) but \(y_2 = f(x_2) \notin f(G)\) and \(y_2 = f(x_2) \notin f(H)\), and \(y_1 \notin f(H)\).

Now, \(f\) being strongly-\(\pi\text{-gr-open}, f(G)\) and \(f(H)\) are \(\pi\text{-gr-open subsets of } Y\) such that \(y_1 \notin f(G)\) but \(y_2 \notin f(G)\) and \(y_2 \notin f(H)\). Hence \(Y\) is \(\pi\text{-gr-T}_1\)-space.

Theorem 3.7

If \(f : X \rightarrow Y\) is \(\pi\text{-gr-continuous injection and } Y\) is \(T_1\), then \(X\) is \(\pi\text{-gr-T}_1\) space.

Proof: Let \(f : X \rightarrow Y\) be \(\pi\text{-gr-continuous injection and } Y\) be \(T_1\). For any two distinct point \(x_1, x_2\) of \(X\), there exists distinct points \(y_1, y_2\) of \(Y\) such that \(y_1 = f(x_1)\) and \(y_2 = f(x_2)\).

Since \(Y\) is \(T_1\)-space, there exists open sets \(U\) and \(V\) in \(Y\) such that \(y_1 \in U\) and \(y_2 \notin U\) and \(y_1 \notin V\) and \(y_2 \in V\).

i.e. \(\begin{aligned} x_1 & \in f^{-1}(U), x_1 \notin f^{-1}(V) \quad \text{and} \quad x_2 \in f^{-1}(V), x_2 \notin f^{-1}(U) \end{aligned}\)

Since \(f\) is \(\pi\text{-gr-continuous}, f^{-1}(U), f^{-1}(V)\) are \(\pi\text{-gr-open sets in } X\).

Thus for two distinct points \(x_1, x_2\) of \(X\), there exists \(\pi\text{-gr-open sets } f^{-1}(U)\) and \(f^{-1}(V)\) such that \(x_1 \in f^{-1}(U), x_2 \notin f^{-1}(V)\) and \(x_2 \in f^{-1}(V), x_2 \notin f^{-1}(U)\).

Therefore, \(X\) is \(\pi\text{-gr-T}_1\) space.

Theorem 3.8

If \(f : X \rightarrow Y\) be \(\pi\text{-gr-irresolute function, and } Y\) is \(\pi\text{-gr-T}_1\) space, then \(X\) is \(\pi\text{-gr-T}_1\) space.

Proof: Let \(x_1, x_2\) be distinct points in \(X\). Since \(f\) in injective, there exists distinct points \(y_1, y_2\) of \(Y\) such that \(y_1 = f(x_1)\) and \(y_2 = f(x_2)\).

Since \(Y\) is \(\pi\text{-gr-T}_1\) -space, there exists \(\pi\text{-gr-open sets } U\) and \(V\) in \(Y\) such that \(y_1 \in U\) and \(y_2 \notin U\) and \(y_1 \notin V\) and \(y_2 \in V\).

i.e. \(\begin{aligned} x_1 \in f^{-1}(U), x_1 \notin f^{-1}(V) \quad \text{and} \quad x_2 \in f^{-1}(V), x_2 \notin f^{-1}(U) \end{aligned}\)

Since \(f\) is \(\pi\text{-gr-irresolute}, f^{-1}(U), f^{-1}(V)\) are \(\pi\text{-gr-open sets in } X\).

Thus for two distinct points \(x_1, x_2\) of \(X\), there exists \(\pi\text{-gr-open sets } f^{-1}(U)\) and \(f^{-1}(V)\) such that \(x_1 \in f^{-1}(U), x_1 \notin f^{-1}(V)\) and \(x_2 \in f^{-1}(V), x_2 \notin f^{-1}(U)\).

Hence \(X\) is \(\pi\text{-gr-T}_1\) space.

Definition 3.9

A space \(X\) is said to be \(\pi\text{-gr-T}_2\)-space, if for any pair of distinct points \(x, y\), there exists disjoint \(\pi\text{-gr-open sets } G\) and \(H\) such that \(x \in G\) and \(y \in H\).

Theorem 3.10

If \(f : X \rightarrow Y\) be \(\pi\text{-gr-continuous function, and } Y\) is \(T_2\)-space, then \(X\) is \(\pi\text{-gr-T}_2\)-space.

Proof: Let \(f : X \rightarrow Y\) be \(\pi\text{-gr-continuous function, and } Y\) be \(T_2\). For any two distinct points \(x_1, x_2\) of \(X\), there exists distinct points \(y_1, y_2\) of \(Y\) such that \(y_1 = f(x_1), y_2 = f(x_2)\). Since \(Y\) is \(T_2\)-space, there exists disjoint open sets \(U\) and \(V\) in \(Y\) such that \(y_1 \in U\) and \(y_2 \in V\).

i.e. \(\begin{aligned} x_1 \in f^{-1}(U), x_1 \in f^{-1}(V) \quad \text{and} \quad x_2 \in f^{-1}(V), x_2 \notin f^{-1}(U) \end{aligned}\)

Since \(f\) is \(\pi\text{-gr-continuous}, f^{-1}(U)\) and \(f^{-1}(V)\) are \(\pi\text{-gr-open sets in } X\).

Further \(f\) is injective, \(f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V) = f^{-1}(\phi) = \phi\).

Thus, for two disjoint points \(x_1, x_2\) of \(X\), there exists disjoint \(\pi\text{-gr-open sets } f^{-1}(U)\) and \(f^{-1}(V)\) such that \(x_1 \in f^{-1}(U)\) and \(x_2 \in f^{-1}(V)\). Hence \(X\) is \(\pi\text{-gr-T}_2\)-space.

Theorem 3.11

If \(f : X \rightarrow Y\) be \(\pi\text{-gr-irresolute injective function and } Y\) is \(\pi\text{-gr-T}_2\)-space, then \(X\) is \(\pi\text{-gr-T}_2\)-space.

Proof: Let \(x_1, x_2\) be any two distinct points in \(X\). Since \(f\) in injective, there exists distinct points \(y_1, y_2\) of \(Y\) such that \(y_1 = f(x_1)\) and \(y_2 = f(x_2)\).

Since \(Y\) is \(\pi\text{-gr-T}_2\), there exist disjoint \(\pi\text{-gr-open sets } U\) and \(V\) in \(Y\) such that \(y_1 \in U\) and \(y_2 \in V\).

i.e. \(\begin{aligned} x_1 \in f^{-1}(U), x_1 \in f^{-1}(V) \quad \text{and} \quad x_2 \in f^{-1}(V), x_2 \notin f^{-1}(U) \end{aligned}\)

Since \(f\) is \(\pi\text{-gr-irresolute injective, } f^{-1}(U)\) and \(f^{-1}(V)\) are disjoint \(\pi\text{-gr-open sets in } X\).

Thus, for two distinct points \(x_1, x_2\) of \(X\), there exists disjoint \(\pi\text{-gr-open sets } f^{-1}(U)\) and \(f^{-1}(V)\) such that \(x_1 \in f^{-1}(U)\) and \(x_2 \in f^{-1}(V)\).
Hence X is πgr-T_{2}\text{-space}.

Theorem: 3.12

In any topological space, the following are equivalent.

1. X is πgr-T_{2}\text{-space}.
2. For each x ≠ y, there exists a πgr-open set U such that x ∈ U & y ∉ πgr-cl(U)
3. For each x ∈ X, \{x\} = \cap \{πgr -cl(U): U is a πgr - open set in Z is x ∈ U\}.

Proof: (1) ⇒ (2): Assume (1) holds.
Let x ∈ X and x ≠ y, then there exists disjoint πgr-open sets U and V such that x ∈ U and y ∈ V. Clearly, X–V is πgr-closed set. Since U ∩ V = ∅, U ⊂ X–V.

Therefore, πgr-cl(U) ⊂ πgr-cl(X–V)

Y ∈ X–V ⇒ y ∈ πgr-cl(X–V) and hence y ∉ πgr-cl(U), by the above argument.

(2) ⇒ (3): For each x ≠ y; there exists a πgr-open set U such that x ∈ U and y ∉ πgr-cl(U)

So, y ∉ \{πgr -cl(U): U is a πgr - open set in X and x ∈ U\} = \{x\}.

(3) ⇒ (1): Let x, y ∈ X and x ≠ y.

By hypothesis, there exists a πgr-open set U such that x ∈ U and y ∉ πgr-cl(U).

⇒ There exists a πgr-closed set V set y ∈ V. Therefore, y ∈ X–V and X–V is a πgr -open set.

Thus, there exists two disjoint πgr-open sets U and X–V such that x ∈ U and y ∈ X–V.

Therefore, X is πgr-T_{2}\text{-space}.

IV. πGr- Regular Space

Definition: 4.1

A space X is said to be πgr-regular if for each closed set F and each point x ∉ F, there exists disjoint πgr-open sets U and V such that x ∈ U and F ⊂ V.

Theorem: 4.2

Every πgr-regular T_{0} - space is πgr-T_{2}.

Proof: Let x, y ∈ X such that x ≠ y.

Let X be a T_{0}-space and V be an open set which contains x but not y.

Then X–V is a closed set containing y but not x. Now, by πgr-regularity of X, there exists disjoint πgr-open sets U and W such that x ∈ U and X–V ⊂ W.

Since y ∈ X–V, y ∈ W.

Thus, for x, y ∈ X with x ≠ y there exists disjoint open sets U and W such that x ∈ U and y ∈ W.

Hence X is πgr-T_{2}\text{-space}.

Theorem: 4.3

If f: X → Y is continuous bijective, πgr- open function and X is a regular space, then Y is πgr-regular.

Proof: Let Y be a closed set in Y and y ∉ F. Take y = f(x) for some x ∈ X.

Since f is continuous, f^{−1}(F) is closed set in X such that x ∉ f^{−1}(F). (since f(x) ∉ F)

Now, X is regular, there exists disjoint open sets U and V such that x ∈ U and f^{−1}(F) ⊂ V.

i.e. y = f(x) ∈ f(U) and F ⊂ f(V).

Since f is πgr-open function, f(U) and f(V) are πgr-open sets in Y.

Since f is bijective, f(U) ∩ f(V) = f(U ∩ V) = f(∅) = ∅.

⇒ Y is πgr-regular.

Theorem: 4.4

If f: X → Y is regular continuous bijective, almost πgr-open function and X is R-regular space, then Y is πgr-regular.

Proof:

Let Y be a closed set in Y and y ∉ F.

Take x = f(y) for some x ∈ X.

Since f is regular continuous function, f^{−1}(F) is regular closed in X and hence closed in X.

⇒ x = f^{−1}(y) ∈ f^{−1}(F).

Now, X is R-regular, there exists disjoint regular open sets U and V such that x ∈ U and f^{−1}(F) ⊂ V.

i.e. y = f(x) ∈ f(U) and F ⊂ f(V).

Since f is almost πgr-open function f(U) and f(V) are πgr-open sets in Y and also f is bijective, f(U) ∩ f(V) = f(U ∩ V) = f(∅) = ∅.

⇒ Y is πgr-regular.
Theorem: 4.5
If f: X→Y is continuous, bijective, strongly πgr-open function (quasi πgr-open) and X is πgr-regular space, then Y is πgr-regular (regular).

Proof: Let F be a closed set in Y and y ∈ F.
Take y=f(x) for some x ∈ X.
Since f is continuous bijective, f^(-1)(F) is closed in X and x ∉ f^(-1)(F).
Now, since X is πgr-regular, there exists disjoint πgr-open sets U and V such that x ∈ U and f^(-1)(F) ⊆ V.

Theorem: 4.6
If f:X→Y is πgr-continuous, closed, injection and Y is regular, then X is πgr-regular.

Proof: Let F be a closed in X and x ∈ F.
Since f is closed injection, f(F) is closed set in Y such that f(x) ∉ f(F).
Now, Y is regular, there exists disjoint open sets G and H such that f(x) ∈ G and f(F) ⊆ H.
This implies x ∈ f^(-1)(G) and F ⊆ f^(-1)(H).
Since f is πgr-continuous, f^(-1)(G) and f^(-1)(H) are πgr-open sets in X.
Further, f^(-1)(G) ∩ f^(-1)(H) = ∅.
Hence X is πgr-regular.

Theorem: 4.7
If f:X→Y is almost πgr- continuous, closed injection and Y is R-regular, then X is πgr-regular.

Proof: Let F be a closed set in X and x ∉ F. Since f is closed injection, f(F) is closed set in Y such that f(x) ∉ f(F).
Now, Y is R-regular, there exists disjoint regular open sets G and H such that f(x) ∈ G and f(F) ⊆ H.
⇒ x ∈ f^(-1)(G) & F ⊆ f^(-1)(H).
Since f is almost πgr-continuous, f^(-1)(G) & f^(-1)(H) are πgr-open sets in X.
Further, f^(-1)(G) ∩ f^(-1)(H) = ∅.
Hence X is πgr-regular.

Theorem: 4.8
If f: X→Y is πgr-irresolute, closed, injection and Y is πgr-regular, then X is πgr-regular.

Proof: Let F be a closed set in X and x ∉ F. Since f is closed injection, f(F) is closed set in Y such that f(x) ∉ f(F).
Now, Y is πgr-regular, there exists disjoint πgr-open sets G and H such that f(x) ∈ G and f(F) ⊆ H.
⇒ x ∈ f^(-1)(G) & F ⊆ f^(-1)(H).
Since X is πgr-irresolute, f^(-1)(G) and f^(-1)(H) are πgr-open sets in X.
Further, f^(-1)(G) ∩ f^(-1)(H) = ∅ and hence X is πgr-regular.

Definition: 5.1
A space X is said to be πgr-Normal if for every pair of disjoint closed sets E & F of X, there exists disjoint πgr-open sets U & V such that E ⊆ U and F ⊆ V.

Theorem: 5.2
The following statements are equivalent for a Topological space X:
1. X is πgr- normal.
2. For each closed set A and for each open set U containing A, there exists a πgr-open set V containing A such that πgr-cl(V) ⊆ U.
3. For each pair of disjoint closed sets A and B, there exists πgr-open set U containing A such that πgr-cl(U)∩B = ∅.

Proof: (1)⇒(2): Let A be closed set and U be an open set containing A.
Then A ∩ (X−U) = ∅ and therefore they are disjoint closed sets in X.
Since X is πgr-normal, there exists disjoint πgr-open sets V and W such that A ⊆ V, X−U ⊆ W. i.e. X−W ⊆ U.
Now, ∀W ⊆ X−W implies V ⊆ X−W. Therefore, πgr-cl(V) ⊆ πgr-cl(X−W) = X−W, Because X−W is πgr-closed set.
Thus, A ⊆ V ∩ πgr-cl(V) ⊆ X−W ⊆ U.
Hence A ⊆ V ⊆ πgr-cl(V) ⊆ U.
(2)⇒(3): Let A and B be disjoint closed sets in X, then A ⊆ X−B and X−B is an open set containing A. By hypothesis, there exists a πgr-open set U such that A ⊆ U and πgr-cl(U) ⊆ X−B, which implies πgr-cl(U)∩B = ∅.
(3)⇒(1): Let A and B be disjoint closed sets in X. By hypothesis (3), there exists a πgr-open set U such that
A⊂U and πgr-cl(U)∩B = ø (or B⊂X − πgr-cl(B)).
Now, U and X− πgr-cl(U) are disjoint πgr-open sets such that A⊂U and B⊂X − πgr-cl(U).
Hence X is πgr-normal.

Definition 5.3
A space X is said to be mildly πgr-Normal if for every pair of disjoint regular closed sets E & F of X, there
exists disjoint πgr-open sets U & V such that E⊂U and F⊂V.

Theorem 5.4
If f:X→Y is continuous bijective, πgr-open function from a normal spaces X onto a space Y, then Y is πgr-
normal.

Proof: Let E and F be disjoint closed sets in Y,
Since f is continuous bijective f⁻¹(E) and f⁻¹(F) are disjoint closed sets in X.
Now, X is normal, there exists disjoint open sets U and V such that f⁻¹(E)⊂U, f⁻¹(F)⊂V.
i.e. E⊂f(U), f(U)⊂f(V).
Since f is πgr-open function, f(U) and f(V) are πgr-open sets in Y and f is injective, f(U)∩f(V) = f(U∩V) = f(ϕ)
⇒ϕ.Hence Y is πgr-Normal.

Theorem 5.5
If f:X→Y is regular continuous bijective, almost πgr-open function from a mildly normal space X onto a
space Y, then Y is πgr-normal.

Proof: Let E and F be disjoint closed sets in Y, Since f is regular continuous bijective f⁻¹(E) and
f⁻¹(F) are disjoint regular closed sets in X.
Now, X is mildly normal, there exists disjoint regular open sets U and V, such that f⁻¹(E)⊂U,
f⁻¹(F)⊂V.
i.e. E⊂f(U), F⊂f(V).Since f is almost πgr-open function, f(U) & f(V) are πgr-open sets in Y and f is injective,
f(U)∩f(V) = f(U∩V)
⇒ϕ.Hence Y is πgr-Normal.

Thus, Y is πgr-Normal.

Theorem 5.6
If f:X→Y is πgr-continuous, closed, bijective, and Y is normal, then X is πgr-normal.

Proof: Let E and F be disjoint closed sets in X, since f is closed injection, f(E) and f(F) are disjoint closed sets in
Y.
Now Y is normal, there exists disjoint open sets G and H such that f(E)⊂G, f(F)⊂H.
⇒ E⊂f⁻¹(G) & F⊂f⁻¹(H).
Since f is πgr-continuous, f⁻¹(G) and f⁻¹(H) are πgr-open sets in X.
Further, f⁻¹(G)∩f⁻¹(H) = ϕ.Hence X is πgr-Normal.

Theorem 5.7
If f:X→Y is almost πgr-continuous, R-closed injective, and Y is R-normal, then X is πgr-normal.

Proof: Let E and F be disjoint closed sets in Y. Since f is R-closed injection, f(E) and f(F) are disjoint regular
closed sets in Y.
Now Y is Mildly Normal,(i.e, R-normal), there exists disjoint regular open sets G and H such that f(E)⊂G, f(F)⊂H.
⇒ E⊂f⁻¹(G) & F⊂f⁻¹(H).
Since f is almost πgr-continuous, f⁻¹(G) and f⁻¹(H) are πgr-open sets in X.
Further, f⁻¹(G)∩f⁻¹(H) = ϕ.
Hence X is πgr-Normal.

Theorem 5.8
If f:X→Y is almost πgr-irresolute, R-closed injection, and Y is πgr-normal, then X is πgr-normal.

Proof: Let E and F be disjoint closed sets in Y. Since f is R-closed injection, f(E) and f(F) are disjoint regular
closed sets in Y.
Now Y is πgr-Normal, there exists disjoint πgr-open sets G and H such that f(E)⊂G, f(F)⊂H.
This implies E⊂f⁻¹(G) and F⊂f⁻¹(H).
Since f is πgr-irresolute, f⁻¹(G) and f⁻¹(H) are πgr-open sets in X.
Further, f⁻¹(G)∩f⁻¹(H) = ϕ.
⇒ X is πgr-Normal.
Theorem: 5.9
If \(f: X \to Y \) is continuous, bijective, \(M-\pi gr\)-open (quasi \(\pi gr\)-open) function from a \(\pi gr\)-normal space \(X \) onto a space \(Y \), then \(Y \) is \(\pi gr\)-normal (normal).

Proof: Let \(E \) and \(H \) be disjoint closed sets in \(Y \). Since \(f \) is continuous bijective, \(f^{-1}(E) \) and \(f^{-1}(F) \) are disjoint closed sets in \(X \). Now, \(X \) is \(\pi gr\)-normal, there exists \(\pi gr\)-open sets \(U \) and \(V \) such that \(f^{-1}(E) \subseteq U \) and \(f^{-1}(F) \subseteq V \). That is \(E \subseteq f(U) \) and \(F \subseteq f(V) \). Since \(f \) is \(M-\pi gr\)-open (quasi \(\pi gr\)-open) function, \(f(U) \) and \(f(V) \) are \(\pi gr\)-open sets(open sets) in \(Y \) and \(f \) is bijective, \(f(U) \cap f(V) = f(U \cap V) = f(\emptyset) = \emptyset \).
Hence \(Y \) is \(\pi gr\)-normal (normal).

BIBLIOGRAPHY