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I.  Introduction 

Composite materials are particularly attractive to aviation and aerospace applications because of their 

exceptional strength and stiffness-to-density ratios and superior physical properties. The mechanical behavior of 
a laminate is strongly dependent on the fiber directions and because of that; the laminate should be designed to 

meet the specific requirements of each particular application in order to obtain the maximum advantages of such 

materials. Usually, laminated composite materials are fabricated from unidirectional plies of giving thickness 

and with fiber orientations limited to a small set of angles, eg., 0o, 45o, -45o and 90o.  

A true understanding of their structural behaviour is required, such as the deflections, buckling loads 

and modal characteristics, the through thickness distributions of stresses and strains, the large deflection 

behaviour and, of extreme importance for obtaining strong, reliable multi-layered structures, the failure 

characteristics. In the past, the structural behaviour of plates and shells using the finite element method has been 

studied by a variety of approaches. Choudhary and Tungikaranalyzed the geometrically nonlinear behavior of 

laminated composite plates using the finite element analysis.  

They studied the effect of number of layers, effect of degree of orthotropy (both symmetric and 

antisymmetric) and different fibre orientations on central deflections. Ganapathiet al. presented an eight-node 
C0 membrane-plate quadrilateral finite element-based on the Reissner-Mindlin plate theory to analyse 

moderately large deflection, static and dynamic problems of moderately thick laminates including buckling 

analysis and membrane-plate coupling effects. Han et al. used the hierarchical finite element method to carry 

out the geometrically nonlinear analysis of laminated composite rectangular plates. Based on the first-order 

shear deformation theory and Timoshenko’s laminated composite beam functions, the current authors 

developed a unified formulation of a simple displacement based 3-node, 18degree-of-freedom flat triangular 

plate/shell element  and two simple, accurate, shear-flexible displacement based 4-node quadrilateral elements 

and for linear and geometrically nonlinear analysis of thin to moderately thick laminated composite plates.  

The deflection and rotation functions of the element boundary were obtained from Timoshenko’s 

laminated composite beam functions. Raja Sekhara Reddy et al. applied the artificial neural networks (ANN) in 

predicting the natural frequency of laminated composite plates under clamped boundary condition. They used 
the D-optimal design in the design of experiments to carry out the finite element analysis. WEN etal.used the 

finite element method to predict the damage level of the materials.  

They studied the prediction of the elastic-plastic damage and creep damage using Gurson model and 

creep damage model, which is based on the Kachanov-Rabothov continuum creep damage law. They also 

studied the creep damage properties of thin film/substrate systems by bending creep tests and carried the 

Simulation of the interface characterization of thin film/substrate systems. 

Abstract: This paper discusses the use of D-optimal designs in the design of experiments (DOE) and 

artificial neural networks (ANN) in predicting the deflection and stresses of carbon fibre reinforced 
plastic (CFRP) square laminated composite plate subjected to uniformly distributed load. For training 

and testing of the ANN model, a number of finite element analyses have been carried out using D-

optimal designs by varying the fiber orientations and thickness of each lamina. The composite plate is 

modeled using shell 99 elements. The ANN model has been developed using multilayer perceptron 

(MLP) back propagation algorithm. The adequacy of the developed model is verified by root mean 

square error and regression coefficient. The results showed that the training algorithm of back 

propagation was sufficient enough in predicting the deflection and stresses.  
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Reddy et al employed a distance-based optimal design in the design of experimental techniques and 

artificial neural networks to optimize the stacking sequence for a sixteen ply simply supported square laminated 

composite plate under uniformly distributed load (UDL) for minimizing the deflections and stresses using finite 

element method. Therefore the finite element method is especially versatile and efficient for the analysis of 

complex structural behavior of the composite laminated structures.  

The present study proposes a new experimental design method for selection of practical laminates and 

thickness of each ply for a criterion of a response. This method employs D-optimality for selections from a set 
of feasible laminates. This method is applied to a 10 layer laminate to predict the deflection and stresses of a 

composite plate subjected to a uniform distributed load under simply supported boundary condition and an 

artificial neural network model has been developed to predict the same. 

 

II.   Material and Methods 

The material used to model the physical structure of the laminated composite plate is carbon fibre 

reinforced plastic (CFRP). The material properties are as follows: 

E1=220GPa, E2=6.9GPa, E3=6.9GPa, G12=G23=G13=4.8GPa, v12=0.25, Vf=0.6. 

The methodology adopted in predicting the deflections and stresses using the integrated approach. 
 

2.1. Geometry of the shell 99 element 

In this study to model the laminated composite plate the finite element analysis software ANSYS has 

been used. In ANSYS software, there are many element types available to model layered composite materials. 

In our FE analysis, the linear layered structural shell element (Shell 99) is used. It is designed to model thin to 

moderately thick plate and shell structures with a side-to-thickness ratio of roughly 10 or greater. 

 The linear layered structural shell element allows a total of 250 uniform-thickness layers. 

Alternatively, the element allows 125 layers with thicknesses that may vary bilinearly over the area of the layer. 

An accurate representation of irregular domains (i.e. domains with curved boundaries) can be accomplished by 

the use of refined meshes and/or irregularly shaped elements.  

For example, a non-rectangular region cannot be represented using only rectangular elements; 
however, it can be represented by triangular and quadrilateral elements. Since, it is easy to derive the 

interpolation functions for a rectangular element, and it is much easier to evaluate the integrals over rectangular 

geometries than over irregular geometries, it is practical to use quadrilateral elements with straight or curved 

side assuming you have a means to generate interpolation functions and evaluate their integrals over the 

quadrilateral elements. The linear layered structural shell element is shown in Figure. 2.1 Nodes are represented 

by I, J, K, L, M, N, O, and P. 

 
Figure 2.1 Geometry of 8-node element with six degrees of freedom 

 

 2.2 Design of experiments 

Design of Experiments (DOE) is a mathematical methodology that defines an optimal set of 

experiments in the design space, in order to obtain the most relevant information possible with the highest 
accuracy at the lowest cost. This scientific exploration of the design space replaces a tedious, manual, trial-and-

error process, and is the fastest way to acquire the most relevant information with minimum computational 

effort.  

Traditional experimental designs (Full Factorial Designs, Fractional Factorial Designs, and Response 

Surface Designs) are appropriate for calibrating linear models in experimental settings where factors are 

relatively unconstrained in the region of interest. In some cases, however, models are necessarily nonlinear.  

In other cases, certain treatments (combinations of factor levels) may be expensive or infeasible to 

measure. D-optimal designs are model-specific designs that address these limitations of traditional designs. The 

D-optimality criterion states that the best set of points in the experiment maximizes the determinant | X T X |. 

"D" stands for the determinant of the X matrix associated with the model.  

 



Prediction Of Deflection And Stresses Of Laminated Composite Plate With Artificial Neural Network  

| IJMER | ISSN: 2249–6645 |                                 www.ijmer.com                                  | Vol. 4 | Iss. 6| June. 2014 | 53| 

A D-optimal design is generated by an iterative search algorithm and seeks to minimize the covariance 

of the parameter estimates for a specified model. This is equivalent to maximizing the determinant D=|XT X|, 

where X is the design matrix of model terms (the columns) evaluated at specific treatments in the design space 

(the rows). 

 Unlike traditional designs, D-optimal designs do not require orthogonal design matrices, and as a 

result, parameter estimates may be correlated. Parameter estimates may also be locally, but not globally, D-

optimal. The D-optimal design uses the row-exchange and Co-ordinate exchange algorithms to generate the 
optimal designs [16]. A related measure of the moment matrix (X T X/k) is the D-efficiency and can be 

calculated by using the following expression: 

 
where 

ND is the number of points in the design and p is the number of effects in the model including the 

intercept. If all variables are normalized so that they vary from -1 to 1, then the maximum value of the Deffis 1. 
Furthermore, the quality of the set of points can then be measured by Deff.. 

 

2.3 Artificial neural networks 

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired b the way 

biological nervous systems, such as the brain, process information. It resembles the human brain in two aspects: 

the knowledge is acquired by the network through a learning process, and inter neuron connection strengths 

known as synaptic weights are used to store the knowledge. 

 A typical biological neuron collects signals from others through a host of fine structures called 

dendrites. The neuron sends out spikes of electrical activity through a long, thin stand known as an axon, which 

splits into thousands of branches. At the end of each branch, a structure called a synapse converts the activity 

from the axon into electrical effects that inhibit or excite activity from the axon into electrical effects that inhibit 
or excite activity in the connected neurons.  

When a neuron receives excitatory input that is sufficiently large compared with its inhibitory input, it 

sends a spike of electrical activity down its axon. Learning occurs by changing the effectiveness of the synapses 

so that the influence of one neuron on other changes. A biological neuron and artificial neuron are shown in. 

figure 2.3.1 and figure 2.3.2. 

          .  

 
Figure2. 3.1 Simplified model of a biological Neuron       Figure 2.3.2 artificial neuron model 

 

III.   Finite Element Analysis 
 

3.1. Validation of linear layered structural shell element-a case study 

In order to validate the usage of the linear layered structural shell element, a numerical example is 

solved in static analysis. The boundary condition is simply supported and the geometry and material properties 
are as follows: 

E1/E2=40, G12=G13=0.6E2, G23=0.5E2,V12= 0.25 , a/h=10, a=1, q=1.0. 

The center deflection and stresses are presented here in non-dimensional form using the following: 
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Table 3.1 and Table3.2 represents the mesh convergence study and comparison of results of non-

dimensional displacement obtained from Reddy and the ANSYS computer program.The results using a free 

mesh show an excellent correlation to the results given by Reddy. 

 

Table 3.1 Nondimensional displacement of             Table 3.2 Nondimensional displacement of 

                     composite plates (cross- ply)       composite plates (θ/- θ/ θ/- θ 

 

 
  

IV.   Results and Discussion 
 

4.1. Development of ANN model 

One of the key issues when designing a particular neural network is to calculate proper weights for 

neuronal activities. These are obtained from the training process applied to the given neural network. To that 

end, a training sample is provided, i.e. A sample of observations consisting of inputs and their respective 

outputs. The observations are fed to the network. In the training process the algorithm is used to calculate 
neuronal weights, so that the root mean squared error between the calculated outputs and observed outputs from 

the training set is minimized. 

 

4.2. Neural network training 

To calculate the connection weights, a set of desired network output values is needed. Desired output 

values are called the training data set. The training data set in this study was selected based on a D-optimal 

design in the design of experiments. In this study, 322 data sets were used for training, 80 data set were for 

validation and 20data set were used for testing the network 

respectively.  

For calculation of weight variables, often referred to as network training. To get the best prediction by 

the network, several architectures were evaluated and trained using the finite element analyses data. A network 

with one hidden layer and 30 neurons provided to be an optimum ANN. The performance of the network 
(RMSE and Regression coefficient (R2)) with the number of neurons is shown in Figure.4.1. 

 
Figure 4.1 Root-mean square vs. number of neurons for nondimensional displacement 

 

V.  Neural Network Validation 

Once the weights are adjusted the performance of the trained network was validated and tested with the 

finite element analyses which were never used in the training process. Validation set is a part of the data used to 

tune the network topology or network parameters other than weights. It is used to define the number of hidden 

units to detect the moment when the predictive ability of 
neural network started to deteriorate.  

One method, k-fold cross validation, is used to determine the best model complexity, such as the depth 

of a decision tree or the number of hidden units in a neural network. The method of k-fold cross validation 

partitions the training set into k sets. For each model complexity, the learner trains k times, each time using one 
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of the sets as the validation set and the remaining sets as the training set. It then selects the model complexity 

that has the smallest average error on the validation set (averaging over the k runs).  

 

5.1 Neural network testing 

The ANN predicted results are in very good agreement with experimental results and the network can 

be used for testing. Hence the test data sets are applied to the network, which were never used in the training 

process and is presented in Table. 5.1. 
The test set is a part of the input data set used only to test how well the neural network will predict on 

new data. The results predicted by the network were compared with the finite element results and shown in 

Figure. The regression coefficients for deflection and stresses (Sx, Sy, Sxy) were found to be 0.882, 0.983, 

0.993 and 0.999 respectively. 

 

                   Table. 5.1. ANN predicted results 

 
 

VI.   Ansys Analysis Report 

The laminated plate is subjected to deflection and stresses and analysed using ANSYS. The ANSYS 

analysis report are shown from figure 6.1 to6.7. 

   
           Figure 6.1 Meshed Element                                Figure 6.2 laminated plate deformed shape 

  

 
            Figure 6.3 laminated plate DOF                                             Figure 6.4 laminated plate DOF 1 
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       Figure 6.5 laminated plate strain intensity                       Figure 6.6 laminated plate stress intensity 

 

 
Figure 6.7 laminated plate von misses stress intensity 

 

STEEL PLATE  

The steel plate is subjected to deflection and stresses and analysed using ANSYS. The ANSYS 

analysis report are shown from figure 6.8 to 6.14 . 

       
               Figure 6.8 meshed element                                              Figure 6.9 steel plate deform shape 
 

            
             Figure 6.10steel plate DOF     Figure 6.11 steel plate DOF 1 
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          Figure 6.12 steel plate strain intensity                       Figure 6.13 steel plate stress intensity 

 

 
Figure 6.14 steel plate von misses stress  

 

VII.  Conclusion 

This study presented a new D-optimal set of laminates to model the artificial neural networks for 

predicting the deflection and stresses. The ANN predicted results are in very good agreement with the finite 

element results. Hence, the D-optimal design of experiments can be applied to any structural analysis.  

The D-optimal set of laminates is not limited to 10 ply laminates for changing the ply thickness. It is 

applicable to laminates of any number of plies by changing the ply thickness. The effectiveness of the method is 

shown with predicting capability to deflection and stresses of laminated composite plates subjected to uniformly 

distributed load under simply supported boundary condition. 

 The two stage effort of obtaining the optimal stacking sequence by a new distance-based optimal 

design in design of experiments and artificial neural networks has resulted in fairly useful method for laminated 

composite plates. The following conclusions are drawn from the results for laminated composite material plates: 
 The developed ANN model could predict the deflections and stresses (Sx, Sy, and Sxy) with an average 

percentage deviation of 0.028875%, 1.587178%, 2.119705% and 3.018923% respectively from training 

data set. 

 The ANN model could predict the deflections and stresses (Sx, Sy, and Sxy) with an average percentage 

deviation of 6.132743%, 1.3096766%, 0.0945797% and 5.7492823% respectively from test data set. 

 The ANN predicted results are very good agreement with the finite element results. 

 For anti-symmetric laminated composite plates [45/-45]8, the non-dimensional deflection and transverse 

shear stress are lower compared to the symmetrical one. 

 For anti-symmetric laminated composite plates [0/90]8, the Normal stress in x-direction is lower 

compared to the symmetrical one. 
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