Between δ -I-closed sets and g-closed sets

M. Navaneethakrishnan¹, P. Periyasamy², S. Pious Missier³

¹Department of Mathematics, Kamaraj College, Thoothukudi, Tamilnadu, India. ²Department of Mathematics, Kamaraj College, Thoothukudi, Tamilnadu, India. ³Department of Mathematics, V.O.Chidambaram College, Thoothukudi, Tamilnadu, India.

ABSTRACT: In this paper we introduce a new class of sets known as $\hat{\delta}_s$ –closed sets in ideal topological spaces and we studied some of its basic properties and characterizations. This new class of sets lies between δ –l–closed [19] sets and g–closed sets, and its unique feature is it forms topology and it is independent of open sets.

Keywords and Phrases: $\hat{\delta}_{s}$ -closed, $\hat{\delta}_{s}$ -open, $\hat{\delta}_{s}$ -closure, $\hat{\delta}_{s}$ -interior.

I. INTRODUCTION

An ideal I on a topological space (X,τ) is a non empty collection of subsets of X which satisfies (i) $A \in I$ and $B \subset A$ implies $B \in I$ and (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. A topological space (X,τ) with an ideal I is called an ideal topological space and is denoted by the triplet (X, τ, I) . In an ideal space if P(X) is the set of all subsets of X, a set operator (.)*: $P(X) \to P(X)$, called a local function [22] of a with respect to the topology τ and ideal I is defined as follows: for $A \subseteq X$, $A^*(X,\tau) = \{x \in X / U \cap A \notin I$, for every $U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau / x \in U\}$. A kuratowski closure operator cl*(.) for a topology $\tau^*(I,\tau)$, called the *-topology, finer than τ is defined by $cl^*(A)=A \cup A^*(I,\tau)$ [23]. Levine [5], velicko [13], Julian Dontchev and maximilian Ganster [3], Yuksel, Acikgoz and Noiri [14], M.K.R.S. Veerakumar [12] introduced and studied g-closed, δ -closed, δ -closed; δ -l-closed and \hat{g} - closed sets respectively. In 1999, Dontchev [16] introduced Ig-closed sets and Navaneetha Krishnan and Joseph [26] further investigated and characterized Ig-closed sets. The purpose of this paper is to define a new class of closed sets known as $\hat{\delta}_{s}$ -closed sets and also studied some of its basic properties and characterizations.

II. PRELIMINARIES

Definition 2.1. A subset A of a topological space (X, τ) is called a

- (i) Semi-open set [10] if $A \subseteq cl(int(A))$
- (ii) Pre-open set [13] if $A \subseteq int(cl(A))$
- (iii) α open set [1] if A \subseteq int(cl(int(A))
- (iv) regular open set[15] if A = int(cl(A))

The complement of a semi-open (resp. pre-open, α - open, regular open) set is called Semi-closed (resp. pre-closed, α - closed, regular closed). The semi-closure (resp. pre closure, α -closure) of a subset A of (X, τ) is the intersection of all semi-closed (resp. pre-closed α -closed) sets containing A and is denoted by scl(A) (resp.pcl(A), α cl(A)). The intersection of all semi-open sets of (X, τ) contains A is called semi-kernel of A and is denoted by sker(A).

Definition 2.2. [18] A subset A of (X,τ) is called δ - closed set in a topological space (X, τ) if $A = \delta cl(A)$, where $cl_{\delta}(A) = \delta cl(A) = \{x \in X : int(cl(U)) \cap A \neq \phi, U \in \tau(x)\}$. The complement of δ - closed set in (x, τ) is called δ - open set in (X, τ) .

Definition 2.3. [19] Let (X, τ, I) be an ideal topological space, A a subset of X and x a point of X.

- (i) x is called a δ -I-cluster point of A if A \cap int(cl*(U)) $\neq \phi$ for each open neighborhood of x.
- (ii) The family of all δ -I-cluster points of A is called the δ -I-closure of A and is denoted by [A] $_{\delta$ -I and
- (iii) A subset A is said to be δ -I-closed if $[A]_{\delta-I} = A$. The complement of a δ -I closed set of X is said to be δ -I open.

Remark 2.4. From Definition 2.3 it is clear that $[A]_{\delta-I} = \{x \in X : int(cl^*(U)) \cap A \neq \phi, \text{ for each } U \in \tau(x)\}$ *Notation 2.5.* Throughout this paper $[A]_{\delta-I}$ is denoted by $\sigma cl(A)$. *Lemma 2.6.* [19] Let A and B be subsets of an ideal topological space (x, τ, I) . Then, the following properties hold.

- $(i) \qquad A \subseteq \sigma cl(A)$
- (ii) If $A \subset B$, then $\sigma cl(A) \subset \sigma cl(B)$
- (iii) $\sigma cl(A) = \bigcap \{F \subset X / A \subset F \text{ and } F \text{ is } \delta\text{-I-closed} \}$
- (iv) If A is δ -I-closed set of X for each $\alpha \in \Delta$, then $\cap \{A\alpha \mid \alpha \in \Delta\}$ is δ I closed
- (v) $\sigma cl(A)$ is δ -I- Closed.

Lemma 2.7. [19] Let (X, τ, I) be an ideal topological space and $\tau_{\delta - I} = \{A \subset X | A \text{ is } \delta \text{-I-open set of } (X, \tau, I)\}$. Then $\tau_{\delta - I}$ is a topology such that $\tau_s \subset \tau_{\delta - I} \subset \tau$

Remark 2.8. [19] τ_s (resp. $\tau_{\delta \cdot I}$) is the topology formed by the family of δ -open sets (resp. δ -I - open sets)

Lemma 2.9. Let (X, τ, I) be an ideal topological space and A a subset of X. Then $\sigma cl(A) = \{x \in X : int(cl^*(U)) \cap A \neq \phi, U \in \tau(x)\}$ is closed.

Proof: If $x \in cl(\sigma l(A))$ and $U \in \tau(x)$, then $U \cap \sigma cl(A) \neq \phi$. Then $y \in U \cap \sigma cl(A)$ for some $y \in X$. Since $U \in \tau(y)$ and $y \in \sigma cl(A)$, from the definition of $\sigma cl(A)$ we have $int(cl^*(U)) \cap A \neq \phi$. Therefore $x \in \sigma cl(A)$, and so $cl(\sigma cl(A)) \subset \sigma cl(A)$ and hence $\sigma cl(A)$ is closed.

Definition 2.10. A subset A of a topological space (X, τ) is called

- (i) a generalized closed (briefly g-closed) set [9] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (ii) a generalized semi-closed (briefly sg-closed) set [3] if scl(A) \subseteq U whenever A \subseteq U and U is semi-open in (X, τ).
- (iii) a generalized semi-closed (briefly gs-closed) set [2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (iv) a generalized closed (briefly αg -closed) set [12] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (v) a generalized α -closed (briefly g α -closed) set [12] if α cl(A) \subseteq U whenever A \subseteq U and U is α open in (X, τ).
- (vi) a δ -generalized closed (briefly δg -closed) set [4] if $\delta cl(A) \supseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (vii) a \hat{g} closed set [17] is cl(A) \subseteq U whenever A \subseteq U and U is semi open.

 $(viii) a \ \delta \hat{g} \ \text{-closed set} \ [8] \ if \ cl_{\delta}(A) \subseteq U, \ whenever \ A \subseteq U \ and \ U \ is \ \hat{g} \ \text{-open set} \ in \ (X, \tau)$

The complement of g-closed (resp. sg-closed, gs-closed, α g-closed, $g\alpha$ - closed, δ g-closed, \hat{g} -closed, \hat{g} -closed,

- (i) Ig-closed set [5] if A^{*}⊆U, whenever A⊆U and U is open. The complement of Ig-closed set is called Igopen set.
- (ii) R-I-open [19] set if int $(cl^*(A)) = A$. The complement of R-I-open set is R-I-closed

III. $\hat{\delta}_s$ - CLOSED SETS

In this section we introduce the notion of $\hat{\delta}_s$ - closed sets in an ideal topological space (X, τ , I), and investigate their basic properties.

Definition 3.1. A subset A of an ideal topological space (X, τ, I) is called $\hat{\delta}_{s}$ -closed if $\sigma cl(A) \subseteq U$, whenever $A \subseteq U$ and U is semi-open set in (X, τ, I) . The complement of $\hat{\delta}_{s}$ -closed set in (X, τ, I) , is called $\hat{\delta}_{s}$ -open set in (X, τ, I) .

Theorem 3.2. Every δ -closed set is $\hat{\delta}_{s}$ -closed set.

Proof: Let A be any δ -closed set and U be any semi-open set containing A. Since A is δ - closed, $cl_{\delta}(A) = A$. Always $\sigma cl(A) \subseteq cl_{\delta}(A)$. Therefore A is $\hat{\delta}_{s}$ -closed set in (X, τ, I) .

Remark 3.3. The converse is need not be true as shown in the following example.

Example 3.4. Let $X = \{a,b,c\}, \tau = \{X, \phi, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}, \{a,b,d\}\}$ and $I = \{\phi, \{c\}, \{d\}, \{c,d\}\}$.

Let A = {a,c,d} then A is $\hat{\delta}$ s-closed but not δ -closed.

Theorem 3.5. Every δ -I – closed set is $\hat{\delta}$ s-closed.

Proof: Let A be any δ - I-closed set and U be any semi-open set such that A \subseteq U. Since A is δ -I-closed, σ cl(A)=A and hence A is $\hat{\delta}_{s}$ -closed.

Remark 3.6. The following example shows that, the converse is not always true.

Example 3.7. Let X={a,b,c,d}, τ ={X, ϕ , {b}, {c}, {b,c}} and I = { ϕ }. Let A = {a,c,d}. Then A is $\hat{\delta}_{s}$ -closed set but not δ -I-closed.

Theorem 3.8. In an ideal topological space (X, τ, I) , every $\hat{\delta}_{S}$ -closed set is

(i) \hat{g} - closed set in (X, τ)

(ii) g - closed (resp.ga, αg , sg, gs) – closed set in (X, τ).

(iii) Ig – closed set in (X,τ,I) .

Proof. (i) Let A be a $\hat{\delta}_{s}$ -closed set and U be any semi-open set in (X, τ, I) containing A. since A is $\hat{\delta}_{s}$ -closed, $\sigma cl(A) \subseteq U$. Then $cl(A) \subset U$ and hence A is \hat{g} - closed in (X, τ) .

(ii) By [17], every \hat{g} – closed set is g – closed (resp.ga – closed, αg – closed, sg – closed, gs – closed) set in (X, τ , I). Therefore it holds.

(iii) Since every g – closed set is Ig – closed, It holds.

Remark 3.9. The following example shows that the converse of (i) is not always true.

Example 3.10. Let X = {a,b,c,d}, $\tau = \{X, \phi, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}, \{a,b,d\}\}$ and I = { $\phi, \{b\}$ }. Let A = {c,d}, Then A is \hat{g} - closed set but not $\hat{\delta}_{s}$ -closed.

Remark 3.11. The following examples shows that the converse of (ii) is not true.

Example 3.12. Let X = {a,b,c,d}, $\tau = \{X, \phi, \{c\}, \{c,d,\}\}$ and I = { $\phi, \{c\}, \{d\}, \{c,d\}\}$. Let A = {b,d}. Then A is g-closed, α g-closed, α g-closed but not $\hat{\delta}$ s-closed.

Example 3.13. Let $X = \{a,b,c,d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,d\}\}$ and $I = \{\phi, \{a\}, \{c\}, \{a,c\}\}$. Let $A = \{a,d\}$. Then A is gs – closed and sg – closed but not $\hat{\delta}_{s}$ -closed.

Remark 3.14. The following example shows that the converse of (iii) is not always true.

Example 3.15. Let $X = \{a,b,c,d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$ and $I = \{\phi\}$. Let $A = \{a,b,c\}$. Then A is Ig - closed set but not $\hat{\delta}_{S}$ -closed.

Remark 3.16. The following examples shows that $\hat{\delta}_{s}$ -closed set is independent of closed, α -closed, semiclosed, δg - closed, $\delta \hat{g}$ - closed.

Example 3.17. Let $X = \{a,b,c,d\}, \tau = \{X, \phi, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}, \{a,b,d\}\}$ and $I = \{\phi, \{a\}, \{c\}, \{a,c\}\}$. Let $A = \{a,d\}$. Then A is closed, semi-closed but not $\hat{\delta}_{S}$ -closed.

Example 3.18. Let $X = \{a,b,c,d\}, \tau = \{X, \phi, \{a\}, \{b,c\}, \{a,b,c\}\}$ and $I = \{\phi, \{b\}\}$. Let $A = \{a,b,d\}$. Then A is $\hat{\delta}_{s}$ -closed but not closed, semi-closed.

Example 3.19. Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\phi, \{c\}\}$. Let $A = \{b, d\}$. Then A is δg closed, $\delta \hat{g}$ - closed but not $\hat{\delta}_{g}$ -closed.

Example 3.20. Let $X = \{a,b,c,d\}, \tau = \{X, \phi, \{c\}, \{a,c\}, \{b,c\}, \{a,b,c\}, \{a,c,d\}\}$ and $I = \{\phi, \{c\}\}$. Let $A = \{a,d\}$. Then A is $\hat{\delta}_{S}$ -closed but not δg - closed, $\delta \hat{g}$ -closed.

Example 3.21. Let X={a,b,c,d}, $\tau = \{X,\phi, \{b\},\{b,c\}\}$ and I = { ϕ }. Let A={c,d}. Then A is α -closed but not $\hat{\delta}_{s}$ -closed.

Example 3.22. Let X={a,b,c,}, $\tau = \{X,\phi, \{b,c\}\}$ and I = { ϕ }. Let A={a,c}. Then A is $\hat{\delta}_{s}$ -closed but not α -closed.

IV. CHARACTERIZATIONS

In this section we characterize $\hat{\delta}_{s}$ -closed sets by giving five necessary and sufficient conditions.

Theorem 4.1. Let (X, τ, I) be an ideal space and A a subset of X. Then $\sigma cl(A)$ is semi-closed.

Proof: Since $\sigma cl(A)$ is closed, it is semi-closed.

Theorem 4.2. Let (X, τ, I) be an ideal space and A \subseteq X. If A \subseteq B \subseteq σ cl(A) then σ cl(A)= σ cl(B).

Proof: Since $A \subseteq B$, $\sigma cl(A) \subseteq \sigma cl(B)$ and since $B \subseteq \sigma cl(A)$, then $\sigma cl(B) \subseteq \sigma cl(\sigma cl(A)) = \sigma cl(A)$, By Lemma 2.6. Therefore $\sigma cl(A) = \sigma cl(B)$.

Theorem 4.3. Let (X, τ, I) be an ideal space and A be a subset of X. then $X-\sigma cl(X-A) = \sigma int(A)$.

Theorem 4.4. Let (X, τ, I) be an ideal topological space. then $\sigma cl(A)$ is always $\hat{\delta}_{s}$ -closed for every subset A of X.

Proof: Let $\sigma cl(A) \subseteq U$, where U is semi-open. Always $\sigma cl(\sigma cl(A)) = \sigma cl(A)$. Hence $\sigma cl(A)$ is $\hat{\delta}_{S}$ -closed.

Theorem 4.5. Let (X, τ, I) be an ideal space and A $\subset X$. If sker(A) is $\hat{\delta}_{s}$ -closed then A is also $\hat{\delta}_{s}$ -closed.

Proof: Suppose that sker(A) is a $\hat{\delta}_s$ -closed set. If A \subseteq U and U is semi-open, then sker(A) \subset U. Since sker(A) is $\hat{\delta}_s$ -closed σ cl(sker(A)) \subset U. Always σ cl(A) $\subset \sigma$ cl(sker(A)). Thus A is $\hat{\delta}_s$ -closed.

Theorem 4.6. If A is $\hat{\delta}_{s}$ -closed subset in (X, τ, I) , then $\sigma cl(A) - A$ does not contain any non-empty closed set in (X, τ, I) .

Proof: Let F be any closed set in (X, τ, I) such that $F \subseteq \sigma cl(A) - A$ then $A \subseteq X - F$ and X - F is open and hence semiopen in (X, τ, I) . Since A is $\hat{\delta}_{S}$ -closed, $\sigma cl(A) \subseteq X - F$. Hence $F \subseteq X - \sigma cl(A)$. Therefore $F \subseteq (\sigma cl(A) - A) \cap (X - \sigma cl(A)) = \phi$.

Remark 4.7. The converse is not always true as shown in the following example.

Example 4.8. Let X={a,b,c}, $\tau = \{X, \phi, \{a\}\}$ and I={ ϕ }. Let A={b}. Then σ cl(A) –A=X-{b}={a,c} does not contain any non-empty closed set and A is not a $\hat{\delta}$ s-closed subset of (X, τ , I).

Theorem 4.9. Let (X, τ, I) be an ideal space. Then every subset of X is $\hat{\delta}_{s}$ -closed if and only if every semi-open subset of X is δ -I-closed.

Proof: Necessity - suppose every subset of X is $\hat{\delta}_{s}$ -closed. If U is semi-open subset of X, then U is $\hat{\delta}_{s}$ -closed and so $\sigma cl(U)=U$. Hence U is δ -I-closed.

Sufficiency - Suppose A \subset U and U is semi-open. By hypothesis, U is δ -I-closed. Therefore $\sigma cl(A) \subset \sigma cl(U)=U$ and so A is $\hat{\delta}_s$ -closed.

Theorem 4.10. Let (X, τ, I) be an ideal space. If every subset of X is $\hat{\delta}_{s}$ -closed then every open subset of X is δ -I-closed.

Proof: Suppose every subset of X is $\hat{\delta}_{s}$ -closed. If U is open subset of X, then U is $\hat{\delta}_{s}$ -closed and so $\sigma cl(U)=U$, since every open set is semi-open. Hence U is δ -I-closed.

Theorem 4.11. Intersection of a $\hat{\delta}_{s}$ -closed set and a δ -I-closed set is always $\hat{\delta}_{s}$ -closed.

Proof: Let A be a $\hat{\delta}_{s}$ -closed set and G be any δ -I-closed set of an ideal space (X, τ, I) . Suppose A $\cap G \subseteq U$ and U is semi-open set in X. Then A $\subseteq U \cup (X-G)$. Now, X–G is δ -I-open and hence open and so semi-open set. Therefore $U \cup (X-G)$ is a semi-open set containing A. But A is $\hat{\delta}_{s}$ -closed and therefore $\sigma cl(A) \subset U \cup (X-G)$. Therefore $\sigma cl(A) \cap G \subset U$ which implies that, $\sigma cl(A \cap G) \subset U$. Hence A $\cap G$ is $\hat{\delta}_{s}$ -closed.

Theorem 4.12. In an Ideal space (X, τ, I) , for each $x \in X$, either $\{x\}$ is semi-closed or $\{x\}^c$ is $\hat{\delta}_s$ -closed set in (X, τ, I) .

Proof: Suppose that $\{x\}$ is not a semi-closed set, then $\{x\}^c$ is not a semi-open set and then X is the only semi-open set containing $\{x\}^c$. Therefore $\sigma cl(\{x\}^c) \subseteq X$ and hence $\{x\}^c$ is $\hat{\delta}_s$ -closed in (X, τ, I) .

Theorem 4.13. Every $\hat{\delta}_{s}$ -closed, semi-open set is δ -I-closed.

Proof: Let A be a $\hat{\delta}_{S}$ -closed, semi-open set in (X, τ , I). Since A is semi-open, it is semi-open such that A \subseteq A. Then σ cl(A) \subseteq A. Thus A is δ -I-closed.

Corollary 4.14. Every $\hat{\delta}_{s}$ -closed and open set is δ -I-closed set.

Theorem 4.15. If A and B are $\hat{\delta}_{s}$ -closed sets in an ideal topological space (X, τ, I) then $A \cup B$ is $\hat{\delta}_{s}$ -closed set in (X, τ, I) .

Proof: Suppose that $A \cup B \subset U$, where U is any semi-open set in (X, τ, I) . Then $A \subseteq U$ and $B \subseteq U$. Since A and B are $\hat{\delta}_{s}$ -closed sets in (X, τ, I) , $\sigma cl(A) \subseteq U$ and $\sigma cl(B) \subseteq U$. Always $\sigma cl(A \cup B) = \sigma cl(A) \cup \sigma cl(B)$. Therefore $\sigma cl(A \cup B) \subseteq U$ for U is semi-open. Hence A is $\hat{\delta}_{s}$ -closed set in (X, τ, I) .

Theorem 4.16. Let (X, τ, I) be an ideal space. If A is a $\hat{\delta}_{s}$ -closed subset of X and A \subseteq B $\subseteq \sigma$ cl(A), then B is also $\hat{\delta}_{s}$ -closed.

Proof: since $\sigma cl(B) = \sigma cl(A)$, by Theorem 4.2. It holds.

Theorem 4.17. A subset A of an ideal space (X, τ, I) is $\hat{\delta}_{S}$ -closed if and only if $\sigma cl(A) \subset sker(A)$.

Proof: Necessity - suppose A is $\hat{\delta}_{s}$ -closed and $x \in \sigma cl(A)$. If $x \notin sker(A)$ then there exists a semi-open set U such that A \subset U but $x \notin U$. Since A is $\hat{\delta}_{s}$ -closed, $\sigma cl(A) \subset U$ and so $x \notin \sigma cl(A)$, a contradiction. Therefore $\sigma cl(A) \subset sker(A)$.

Sufficiency - suppose that $\sigma cl(A) \subset sker(A)$. If $A \subset U$ and U is semi-open. Then $sker(A) \subset U$ and so $\sigma cl(A) \subset U$. Therefore A is $\hat{\delta}_{s}$ -closed.

Definition 4.18. A subset A of a topological space (X, τ) is said to be a semi \wedge - set if sker(A)=A.

Theorem 4.19. Let A be a semi \wedge - set of an ideal space (X, τ , I). Then A is $\hat{\delta}_{s}$ -closed if and only if A is δ -I-closed.

Proof: Necessity - suppose A is $\hat{\delta}_{s}$ -closed. Then By Theorem 4.17, $\sigma cl(A) \subset sker(A) = A$, since A is semi \wedge - set. Therefore A is δ - I – closed.

Sufficency - The proof follows from the fact that every δ -I-closed set is $\hat{\delta}_{s}$ -closed.

Lemma 4.20. [6] Let x be any point in a topological space (X, τ) . Then $\{x\}$ is either nowhere dense or pre-open in (X, τ) . Also $X=X_1\cup X_2$, where $X_1=\{x\in X: \{x\} \text{ is nowhere dense in } (X, \tau)\}$ and $X_2=\{x\in X: \{x\} \text{ is pre-open in } (X, \tau)\}$ is known as Jankovic – Reilly decomposition.

Theorem 4.21. In an ideal space $(X, \tau, I), X_2 \cap \sigma cl(A) \subseteq sker(A)$ for any subset A of (X, τ, I) .

Proof: Suppose that $x \in X_2 \cap \operatorname{scl}(A)$ and $x \notin \operatorname{sker}(A)$. Since $x \in X_2, \{x\} \subset \operatorname{int}(\operatorname{cl}(\{x\}))$ and so $\operatorname{scl}(\{x\}) = \operatorname{int}(\operatorname{cl}(\{x\}))$. Since $x \in \operatorname{scl}(A)$, $A \cap \operatorname{int}(\operatorname{cl}^*(U)) \neq \phi$, for any open set U containing x. Choose $U = \operatorname{int}(\operatorname{cl}(\{x\}))$, Then $A \cap \operatorname{int}(\operatorname{cl}(\{x\})) \neq \phi$. Choose $y \in A \cap \operatorname{int}(\operatorname{cl}(\{x\}))$. Since $x \notin \operatorname{sker}(A)$, there exists a semi-open set V such that $A \subseteq V$ and $x \notin V$. If G = X - V, then G is a semi-closed set such that $x \in G \subseteq X - A$. Also $\operatorname{scl}(\{x\}) = \operatorname{int}(\operatorname{cl}(\{x\})) \subseteq G$ and hence $y \in A \cap G$, a contradiction. Thus $x \in \operatorname{sker}(A)$.

Theorem 4.22. A subset A is $\hat{\delta}_{s}$ -closed set in an ideal topological space (X, τ , I). If and only if $X_1 \cap \sigma cl$ (A) $\subseteq A$.

Proof: Necessity - suppose A is $\hat{\delta}_s$ -closed set in (X, τ, I) and $x \in X_1 \cap \sigma cl(A)$. Sppose $x \notin A$, then $X - \{x\}$ is a semi-open set containing A and so $\sigma cl(A) \subseteq X - \{x\}$. Which is impossible.

Sufficiency - Suppose $X_1 \cap \operatorname{scl}(A) \subseteq A$. Since $A \subseteq \operatorname{sker}(A)$, $X_1 \cap \operatorname{scl}(A) \subseteq \operatorname{sker}(A)$. By Theorem 4.21, $X_2 \cap \operatorname{scl}(A) \subseteq \operatorname{sker}(A)$. Therefore $\operatorname{scl}(A) = (X_1 \cup X_2) \cap \operatorname{scl}(A) = (X_1 \cap \operatorname{scl}(A)) \cup (X_2 \cap \operatorname{scl}(A)) \subseteq \operatorname{sker}(A)$. By Theorem 4.17, A is $\hat{\delta}$ s-closed in (X, τ, I) .

Theorem 4.23. Arbitrary intersection of $\hat{\delta}_{s}$ -closed sets in an ideal space (X, τ , I) is $\hat{\delta}_{s}$ -closed in (X, τ , I).

Proof: Let $\{A_{\alpha} : \alpha \in \Delta\}$ be any family of $\hat{\delta}_{S}$ -closed sets in (X, τ, I) and $A = \bigcap_{\alpha \in \Delta} A_{\alpha}$. Therefore $X_{1} \cap \sigma cl(A_{\alpha}) \subseteq A_{\alpha}$ for each $\alpha \in \Delta$ and hence $X_{1} \cap \sigma cl(A) \subseteq X_{1} \cap \sigma cl(A_{\alpha}) \subseteq A_{\alpha}$, for each $\alpha \in \Delta$. Then $X_{1} \cap \sigma cl(A) \subseteq \bigcap_{\alpha \in \Delta} A_{\alpha} = A$. By Theorem 4.22, A is $\hat{\delta}_{S}$ -closed set in (X, τ, I) . Thus arbitrary intersection of $\hat{\delta}_{S}$ -closed sets in an ideal space (X, τ, I) is $\hat{\delta}_{S}$ -closed in (X, τ, I) .

Definition 4.24. A proper non-empty $\hat{\delta}_{s}$ -closed subset A of an ideal space (X, τ , I) is said to be maximal $\hat{\delta}_{s}$ closed if any $\hat{\delta}_{s}$ -closed set containing A is either X or A.

Examples 4.25. Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}\}$ and $I = \{\phi\}$. Then $\{a, b, c\}$ is maximal $\hat{\delta}_{s}$ -closed set.

Theorem 4.26. In an ideal space (X, τ, I) , the following are true

(i) Let F be a maximal $\hat{\delta}_{s}$ -closed set and G be a $\hat{\delta}_{s}$ -closed set. Then $F \cup G = X$ or $G \subset F$.

(ii) Let F and G be maximal $\hat{\delta}_{s}$ -closed sets. Then $F \cup G = X$ or F = G.

Proof: (i) Let F be a maximal $\hat{\delta}_{s}$ -closed set and G be a $\hat{\delta}_{s}$ -closed set. If $F \cup G = X$. Then there is nothing to prove. Assume that $F \cup G \neq X$. Now, $F \subseteq F \cup G$. By Theorem 4.15, $F \cup G$ is a $\hat{\delta}_{s}$ -closed set. Since F is maximal $\hat{\delta}_{s}$ -closed set we have, $F \cup G = X$ or $F \cup G = F$. Hence $F \cup G = F$ and so $G \subset F$.

(ii) Let F and G be maximal $\hat{\delta}_{s}$ -closed sets. If F \cup G=X, then there is nothing to prove. Assume that F \cup G \neq X. Then by (i) F \subset G and G \subset F which implies that F = G.

Theorem 4.27. A subset A of an ideal space (X, τ, I) is $\hat{\delta}_{s}$ -open if and only if $F \subseteq \sigma int(A)$ whenever F is semiclosed and $F \subseteq A$.

Proof: Necessity - suppose A is $\hat{\delta}_{s}$ -open and F be a semi-closed set contained in A. Then X-A \subseteq X-F and hence $\sigma cl(X-A) \subset X - F$. Thus $F \subseteq X - \sigma cl(X-A) = \sigma int(A)$.

Sufficiency - suppose X–A \subseteq U, where U is semi-open. Then X–U \subseteq A and X–U is semi-closed. Then X–U \subseteq σ int(A) which implies σ cl(X –A) \subseteq U. Therefore X–A is $\hat{\delta}_{s}$ -closed and so A is $\hat{\delta}_{s}$ -open.

Theorem 4.28. If A is a $\hat{\delta}_{s}$ -open set of an ideal space (X, τ, I) and σ int $(A) \subseteq B \subseteq A$. Then B is also a $\hat{\delta}_{s}$ -open set of (X, τ, I) .

Proof: Suppose $F \subseteq B$ where F is semi-closed set. Then $F \subseteq A$. Since A is $\hat{\delta}_{s}$ -open, $F \subseteq \operatorname{sint}(A)$. Since $\operatorname{sint}(A) \subseteq \operatorname{sint}(B)$, we have $F \subseteq \operatorname{sint}(B)$. By the above Theorem 4.27, B is $\hat{\delta}_{s}$ -open.

V. $\hat{\delta}_{s}$ -CLOSURE

In this section we define $\hat{\delta}_s$ -closure of a subset of X and proved it is "Kuratowski closure operator".

Definition 5.1. Let A be a subset of an ideal topological space (X, τ, I) then the $\hat{\delta}_{s}$ -closure of A is defined to be the intersection of all $\hat{\delta}_{s}$ -closed sets containing A and it is denoted by $\hat{\delta}_{s}$ cl(A). That is $\hat{\delta}_{s}$ cl(A) = $\bigcirc \{F : A \subseteq F \text{ and } F \text{ is } \hat{\delta}_{s}$ -closed}. Always $A \subseteq \hat{\delta}_{s}$ cl(A).

Remark 5.2. From the definition of $\hat{\delta}_{s}$ -closure and Theorem 4.23, $\hat{\delta}_{s}$ cl(A) is the smallest $\hat{\delta}_{s}$ -closed set containing A.

Theorem 5.3. Let A and B be subsets of an ideal space (X, τ, I) . Then the following holds.

- (i) $\hat{\delta}_{s} cl(\phi) = \phi \text{ and } \hat{\delta}_{s} cl(X) = X$
- (ii) If $A \subseteq B$, then $\hat{\delta}_{S} cl(A) \subseteq \hat{\delta}_{S} cl(B)$
- (iii) $\hat{\delta}_{s} cl(A \cup B) = \hat{\delta}_{s} cl(A) \cup \hat{\delta}_{s} cl(B)$
- (iv) $\hat{\delta}_{s} cl(A \cap B) \subseteq \hat{\delta}_{s} cl(A) \cap \hat{\delta}_{s} cl(B)$
- (v) A is a $\hat{\delta}_{s}$ -closed set in (X, τ , I) if and only if A = $\hat{\delta}_{s}$ cl(A)
- (vi) $\hat{\delta}_{s} cl(A) \subseteq \sigma cl(A)$
- (vii) $\hat{\delta}_{s} cl(\hat{\delta}_{s} cl(A)) = \hat{\delta}_{s} cl(A).$

Proof: (i) The proof is obvious.

- (ii) $A \subseteq B \subseteq \hat{\delta}_{s}cl(B)$. But $\hat{\delta}_{s}cl(A)$ is the smallest $\hat{\delta}_{s}$ -closed set containing A. Hence $\hat{\delta}_{s}cl(A) \subseteq \hat{\delta}_{s}cl(B)$.
- (iii) $A \subseteq A \cup B$ and $B \subseteq A \cup B$. By (ii) $\hat{\delta}_{s} cl(A) \subseteq \hat{\delta}_{s} cl(A \cup B)$ and $\hat{\delta}_{s} cl(B) \subseteq \hat{\delta}_{s} cl(A \cup B)$. Hence $\hat{\delta}_{s} cl(A) \cup \hat{\delta}_{s} cl(B) \subseteq \hat{\delta}_{s} cl(A \cup B)$. On the otherhand, $A \subseteq \hat{\delta}_{s} cl(A)$ and $B \subseteq \hat{\delta}_{s} cl(B)$ then $A \cup B \subseteq \hat{\delta}_{s} cl(A) \cup \hat{\delta}_{s} cl(B)$. But $\hat{\delta}_{s} cl(A \cup B)$ is the smallest $\hat{\delta}_{s} cl$ -closed set containing $A \cup B$. Hence $\hat{\delta}_{s} cl(A \cup B) \subseteq \hat{\delta}_{s} cl(A) \cup \hat{\delta}_{s} cl(B)$. Therefore $\hat{\delta}_{s} cl(A \cup B) = \hat{\delta}_{s} cl(A) \cup \hat{\delta}_{s} cl(B)$.
- (iv) $A \cap B \subseteq A$ and $A \cap B \subseteq B$. By (ii) $\hat{\delta}_{s} cl(A \cap B) \subseteq \hat{\delta}_{s} cl(A)$ and $\hat{\delta}_{s} cl(A \cap B) \subset \hat{\delta}_{s} cl(B)$. Hence $\hat{\delta}_{s} cl(A \cap B) \subseteq \hat{\delta}_{s} cl(A) \cap \hat{\delta}_{s} cl(B)$.
- (v) Necessity Suppose A is $\hat{\delta}_{s}$ -closed set in (X, τ , I). By Remark 5.2, A $\subseteq \hat{\delta}_{s}$ cl(A). By the definition of $\hat{\delta}_{s}$ -closure and hypothesis $\hat{\delta}_{s}$ cl(A) \subseteq A. Therefore A= $\hat{\delta}_{s}$ cl(A).

Sufficiency - Suppose A = $\hat{\delta}_{s}$ cl(A). By the definition of $\hat{\delta}_{s}$ -closure, $\hat{\delta}_{s}$ cl(A) is a $\hat{\delta}_{s}$ - closed set and hence A is a $\hat{\delta}_{s}$ -closed set in (X, τ , I).

(vi) Suppose $x \notin \sigma cl(A)$. Then there exists a δ -I-closed set G such that $A \subseteq G$ and $x \notin G$. Since every δ -I-closed set is $\hat{\delta}_{s}$ -closed, $x \notin \hat{\delta}_{s}cl(A)$. Thus $\hat{\delta}_{s}cl(A) \subseteq \sigma cl(A)$.

(vii) Since arbitrary intersection of $\hat{\delta}_{s}$ -closed set in an ideal space (X, τ , I) is $\hat{\delta}_{s}$ -closed, $\hat{\delta}_{s}$ cl(A) is $\hat{\delta}_{s}$ -closed. By (v) $\hat{\delta}_{s}$ cl($\hat{\delta}_{s}$ cl(A)) = $\hat{\delta}_{s}$ cl(A).

Remark 5.4. The converse of (iv) is not always true as shown in the following example.

Example 5.5. Let X = {a, b, c, d}, $\tau = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}\}$ and I = { ϕ , {d}}. Let A = {c} and B = {d}. Then $\hat{\delta}_{s}$ cl(A) = {b, c}, $\hat{\delta}_{s}$ cl(B) = {b, d}. Since A \cap B = ϕ , $\hat{\delta}_{s}$ cl(A \cap B) = ϕ . But $\hat{\delta}_{s}$ cl(A) $\cap \hat{\delta}_{s}$ cl(B) = {b}.

Remark 5.6. From $\hat{\delta}_{s}cl(\phi) = \phi$, $A \subseteq \hat{\delta}_{s}cl(A)$, $\hat{\delta}_{s}cl(A \cup B) = \hat{\delta}_{s}cl(A) \cup \hat{\delta}_{s}cl(B)$ and $\hat{\delta}_{s}cl(\hat{\delta}_{s}cl(A)) = \hat{\delta}_{s}cl(A)$, we can say that $\hat{\delta}_{s}$ - closure is the "**Kuratowski Closure Operator**" on (X, τ, I) .

Theorem 5.7. In an Ideal space (X, τ, I) , for $x \in X$, $x \in \hat{\delta}_{s}cl(A)$ if and only if $U \cap A \neq \phi$ for every $\hat{\delta}_{s}$ -open set U containing x.

Proof: Necessity - Suppose $x \in \hat{\delta}_{s}cl(A)$ and suppose there exists a $\hat{\delta}_{s}$ - open set U containing x such that $U \cap A = \phi$. Then $A \subset U^{c}$ is the $\hat{\delta}_{s}$ -closed set. By Remark 5.2, $\hat{\delta}_{s}cl(A) \subseteq U^{c}$. Therefore $x \notin \hat{\delta}_{s}cl(A)$, a contradiction. Therefore $U \cap A \neq \phi$.

Sufficiency – Suppose U $\cap A \neq \phi$. for every $\hat{\delta}_s$ -open set U containing x and suppose $x \notin \hat{\delta}_s$ cl(A). Then there exist a $\hat{\delta}_s$ -closed set F containing A such that $x \notin F$. Hence F^c is $\hat{\delta}_s$ -open set containing x such that $F^c \subseteq A^c$. Therefore $F^c \cap A = \phi$ which contradicts the hypothesis. Therefore $x \notin \hat{\delta}_s cl(A)$.

Theorem 5.8. Let (X, τ, I) be an ideal space and $A \subseteq X$. If $A \subseteq B \subseteq \hat{\delta}_{S} cl(A)$ Then $\hat{\delta}_{S} cl(A) = \hat{\delta}_{S} cl(B)$.

Proof: The Proof is follows from the fact that $\hat{\delta}_{S} cl(\hat{\delta}_{S} cl(A)) = \hat{\delta}_{S} cl(A)$.

Definition 5.9. Let A be a subset of a space (X, τ, I) . A point x in an ideal space (X, τ, I) is said to be a $\hat{\delta}_{s}$ -interior point of A. If there exist some $\hat{\delta}_{s}$ -open set U containing x such that U \subseteq A. The set of all $\hat{\delta}_{s}$ -interior points of A is called $\hat{\delta}_{s}$ -interior of A and is denoted by $\hat{\delta}_{s}$ int(A).

Remark 5.10. $\hat{\delta}_{s}$ int(A) is the Union of all $\hat{\delta}_{s}$ -open sets contained in A and by the Theorem 4.15, $\hat{\delta}_{s}$ int(A) is the largest $\hat{\delta}_{s}$ -open set contained in A.

Theorem 5.11.

- (i) $X \hat{\delta}_{s} cl(A) = \hat{\delta}_{s} int(X A).$
- (ii) $X \hat{\delta}_{s} int(A) = \hat{\delta}_{s} cl(X A).$

(iii)

Proof: (i) $\hat{\delta}_{s} \operatorname{int}(A) \subseteq A \subseteq \hat{\delta}_{s} \operatorname{cl}(A)$. Hence $X - \hat{\delta}_{s} \operatorname{cl}(A) \subseteq X - A \subseteq X - \hat{\delta}_{s} \operatorname{int}(A)$. Then $X - \hat{\delta}_{s} \operatorname{cl}(A)$ is the $\hat{\delta}_{s}$ -open set contained in (X - A). But $\hat{\delta}_{s} \operatorname{int}(X - A)$ is the largest $\hat{\delta}_{s}$ -open set contained in (X - A). Therefore $X - \hat{\delta}_{s} \operatorname{cl}(A) \subseteq \hat{\delta}_{s} \operatorname{int}(X - A)$. On the other hand if $x \in \hat{\delta}_{s} \operatorname{int}(X - A)$ then there exist a $\hat{\delta}_{s}$ -open set U containing x such that $U \subset X - A$ Hence $U \cap A = \phi$. Therefore $x \notin \hat{\delta}_{s} \operatorname{cl}(A)$ and hence $x \in X - \hat{\delta}_{s} \operatorname{cl}(A)$. Thus $\hat{\delta}_{s} \operatorname{int}(X - A) \subseteq X - \hat{\delta}_{s} \operatorname{cl}(A)$.

(ii) Similar to the proof of (i)

ACKNOWLEDGEMENTS

The authors thank the referees for their valuable suggestions and comments.

REFERENCES

- [1]. Andrijevic, D. (1986) "Semipreopen Sets". Mat. Vesnik, 38, 24-32.
- [2]. Arya, S.P. and T. Nour (1990) "Characterizations of S-normal Spaces", Indian J. Pure. Appl. Math. 21(8), 717-719.
- [3]. Bhattacharya, P. and B.K. Lahiri (1987) "Semi-generalized closed sets in topology", Indian J. Math., 29, 375-382.
- [4]. Dontchev, J. and M. Ganster (1996) "On δ-generalized closed sets and T_{3/4}-Spaces", Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 17, 15-31.
- [5]. Dontchev, J., M. Ganster and T. Noiri (1999) "Unified approach of generalized closed sets via topological ideals", Math. Japonica, 49, 395-401.
- [6]. Jankovic, D., and Reilly, L. (1985) "On Semi-Separation Properties", Indian J.Pure Appl. Math, 16, 957-964.
- [7]. Kuratowski, K. (1966) "Topology", Vol.1, Academic Press, New York, NY, USA.
- [8]. Lellis Thivagar, M., B. Meera Devi and E. Hatir (2010) $\delta \hat{g}$ -closed sets in Topological spaces, Gen. Math. Notes, Vol.1, No.2, 17-25.
- [9]. Levine, N. (1970) "Generalized closed sets in topology", Rend. Circ. Mat. Palermo, 19, 89-96.
- [10]. Levine, N. (1963) "Semi-open sets and semi-continuity in topological spaces", Ameer Math. Monthly, 70, 36-41.
- [11]. Maki, H., R. Devi and K. Balachandran (1993) "Generalized α-closed sets in topology", Bull.Fukuoka Uni.Ed Part III, 42, 13-21.
- [12]. Maki, H., R. Devi and K. Balachandran (1994) "Associated topologies of generalized α-closed sets and αgeneralized closed sets", Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15, 57-63.
- [13]. Mashhour, A.S., M.E. Abdl El-Monsef and S.N. El-Debb (1982) "On Precontinuous and Weak Precontinuous Mappings", Proc.Math. and Phys. Soc. Egypt 55, 47-53.
- [14]. Njasted, O. (1965) "On some classes of nearly open sets", Pacific J. Math., 15, 961-970.
- [15]. Stone, M. (1937) "Application of the theory of Boolian rings to general topology", Trans. Ameer. Math. Soc., 41, 374-481.
- [16]. Vaidyanathaswamy, R. (1946) "Set topology", Chelas Publishing, New York, NY, USA.
- [17]. Veera Kumar, M.K.R.S. (2003) " \hat{g} -closed sets in topological spaces", Bull. Allah. Math.Soc, 18, 99-112.
- [18]. Velicko, N.V. (1968) "H-closed topological spaces", Amer. Math. Soc. Transl., 78, 103-118.
- [19]. Yuksel, S., A. Acikgoz and T. Noiri (2005) "On δ-I-continuous Functions", Turk J. Math., 29, 39-51.