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I.     INTRODUCTION 
Hydrodynamic torque converters are widely used in power transmission chains of various vehicles. The 

three basic elements of a torque converter are a pump, a turbine and a stator, respectively. The main advantage of a 

torque converter is able to vary rotational speed and torque automatically. Therefore, the traction performance of 

the vehicle is improved greatly. In addition, the vibration damping and absorbing performance of liquid can 

enhance comfortable performance of the vehicle and prolong the service life of transmission components. However, 

an evident disadvantage of a hydrodynamic torque converter is that its efficiency is not high enough. Since several 

million torque converters are built every year, even a small improvement in efficiency would result in significant 

fuel savings [1].  

A hydrodynamic torque converter is a complex geometry. In addition, the liquid flow inside a torque 

converter is highly three-dimensional(3D), viscous and turbulent. Furthermore, the pump and turbine rotate at 

different angular velocity. For these reasons, the flow field of a torque converter is extremely complex. On the other 

hand, since a number of variables are involved in the design of a torque converter, it is difficult to achieve an 

optimal design[2]. In order to understand the flow behavior inside a torque converter, many scholars have made 

their best efforts. The performance of the torque convertor was numerical investigated, including the integrated 

design strategy [2] and the distributed parameter strategy for the internal flow filed, for instance, the boundary 

element method [3]. Many experimental studies were also carried out to improve the performance of torque 

convertors, for example, laser velocimetry method [4], laser sheet lighting method [5], particle image velocimetry 

(PIV) method [6] and the method using a miniature conventional five-hole probe [7], etc. These researchers mainly 

focused on the flow field inside the torque convertor. The influence of the key factor, such as the stator/reactor 

blade [4, 5, 6, 8, 9], and the speed ratio [7], was investigated. 

Actually, the 3D streamline of flow field is an underlying factor that has great influence on the efficiency. 

Even if the fluid particle velocity magnitude does not change, the change of its velocity direction (streamline 

curvature) will cause power loss. This loss is proportional to the abruptness of velocity change [10]. The 

accumulation effect of the unit inertia force to its path is constant and independent of the intermediate path, which 
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was indirectly inferred that the energy loss is relative with maximal streamline curvature [11]. In order to reduce the 

energy loss, the perfect line type of a 3D streamline should be a straight line segment or a circular arc. Ref. [12] 

utilized arcs and straight line segments as streamlines. As a result, the energy losses resulting from streamline 

curvature decreased greatly. However, because stator blade angle variation from entrance to exit is very large and 

the stator flow passage is substantially short, it was unfeasible for the arcs and straight line segments to serve as 3D 

streamlines via mathematical verification [13]. Besides straight line segments and circular arcs, helixes possess 

constant or approximate constant curvatures. Naturally, helixes should be chosen as 3D streamlines. 

In this paper, a new stator design method, generalized torus helix design method, was proposed. The helix 

equation was derived. Four different functions were used for stator design. A feasible scheme selecting mechanism 

was established. Vector calculus and thickness function were used to compute blade surface coordinates. This 

investigation provided a parameterized and approximately optimized method of stator design. 

 

II. MERIDIONAL PATH LINE EQUATION 
For the complex geometry of a torque converter, the coordinate system suitable to flow field description is 

the generalized torus coordinate system
 
[14]. The space position of a fluid particle can be determined with a polar 

angle  , a polar radius   and an offset angle . The meridional flow path equation is given by: 

2   1
                                                                   (1) 

(1 sin ) 2 sin

si
 

n
h
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 
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If 1   ，the meridional flow path denotes core contour line; if 0  ，the meridional flow path denotes 

design path; if 1  , the meridional flow path denotes shell contour line. 

The revolution radius is: 
2                                                    (1 sin ) 2               (  n 2) sir h        

 

III. GENERALIZED TORUS HELIX EQUATION 
The schematic of generalized torus helix is shown as in Fig.1. 
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Fig.1. Schematic of generalized torus helix       Fig.2. Unit circumferential velocity vector 

 

From Fig.1, the helix equation can be written as following: 
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where offset angle f ( )   is an undetermined function. 

If blade span parameter   takes on a constant, equation (3) actually is a 3D streamline equation. If blade 

span parameter   varies continuously, equation (3) actually is a 3D stream surface equation. In the design process 

of stator blade, equation (3) can be considered as a camber surface equation as well. 

 

IV. DETERMINATION OF OFFSET ANGLE FUNCTION 

A unit circumferential velocity vector is constructed as shown in Fig.2. From Fig.2, it can be seen that the 

unit circumferential velocity vector take the form: 

2 1 2 1(0, , ) (0, sin ,cos )y y z z      n  

 

 

http://dict.cnki.net/dict_result.aspx?searchword=%e5%be%85%e5%ae%9a%e5%87%bd%e6%95%b0&tjType=sentence&style=&t=undetermined+function
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If the tangential vector of a 3D streamline is expressed as ( , , )x y z   , the formula of blade angle is given by: 

0

( , , ) (0, sin ,cos )
cos lim

( , , ) (0, sin ,cos )

x y z
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 
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Rewrite the above expression, yielding: 
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The derivatives of three coordinates and revolution radius with respect to polar angle are: 
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Substitute the above derivatives into equation (4), yielding: 
2 2 2 2 1/2cos ' ' ' ' (6)r x r r     ( )                                  

or 
2 2arctan{ ( '/ ) ( '/ ) '} (7)x r r r  [ ]/                                   

 

From equation (7), it can be seen that the blade angle is relative with the first order derivative of the offset 

angle, rather than the value of the offset angle. In other words, as long as the entrance blade angle and exit blade 

angle are specified, more than one function can serve as an offset angle function, which provides multifold 

selection for stator blade design. 

For the stator blade, because both curvature and tension are substantially high, it is more reasonable to apply 

inverse potential flow criterion[15,16] for blade design. In this manner, the maximal offset angle of the stator blade 

can be reduced. The expression of inverse potential flow criterion is:
  

u ud d/ /                                                                                (8)v r v r  

 

Thus, the blade angle relationship on two different flow paths is: 

d                                                                           co   t co     t (9)g   

where coefficient 21 [2 sin / (1 sin ) ]g        . 

 

At the entrance and exit, the corresponding factors are: 
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In order to ensure the blade angles at the entrance and exit, the follows must be satisfied: 
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Obviously, 
1 2'( ) '( )f f  ，which means that ( )f   must be nonlinear. The following functions can 

be selected. 

 

(1) Parabola 

Assume that f ( )   is a parabola, the first and second order derivatives of offset angle with respect to 

polar angle take the form: 

' '( )
                                                                       (10)
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f E F
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where 
2 1 2 1[ '( ) '( )] / ( )F f f      , 

2 1 1 2 2 1[ '( ) '( )] / ( )E f f        . 

 

http://dict.cnki.net/dict_result.aspx?searchword=%e7%b3%bb%e6%95%b0&tjType=sentence&style=&t=coefficient
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Integrating equation (10) and applying boundary condition 
1 1( ) 0f   , we can obtain: 

2 2

1 1( ) ( ) / 2                                                                 (12)E F         

With the first order derivative of the offset angle, by using equation (7), the blade angle can be obtained. 

The curves of the offset angle and blade angle versus the polar angle can be plotted as shown in Fig.3. 
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Fig.3. Curve of parabola type offset angle function        Fig.4. Curves of arc type offset angle function 

 

(2) Circular arc 

Assume that ( )f  is a circular arc and satisfies the following equations: 
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Applying boundary conditions, we obtain: 
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From the first two expressions of equation (16), it is given by: 
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Solving the quadric equation, we have: 
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Once again, from equation (16), it is given by: 
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The curves of the offset angle and blade angle versus the polar angle are plotted as shown in Fig.4. 

 

(3) Exponent 

Consider the equation of an exponent function given below: 
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Applying boundary conditions, we have: 
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Solve the above equations, yielding: 
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The curves of the offset angle and blade angle versus the polar angle can be plotted as shown in Fig.5. 
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Fig.5. Curves of exponent type offset angle function    Fig.6. Curves of hyperbolic sine type offset angle function 

 

(4) Hyperbolic sine 

Assume that ( )f   is a hyperbolic sine and is expressed as following: 
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Differentiate the above expression, yielding: 
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Substituting the required derivative values at the entrance and exit, we have: 

1

2 1 2

'( )

cosh[ ( )] '( )

Ak f

Ak k f



  




 

 

 

Solve the above equations, there resulting: 
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The curves of the offset angle and blade angle versus the polar angle are plotted as shown in Fig.6. 

 

V. COMPUTATION OF 3D STREAMLINE CURVATURE 
The 3D streamline curvature is an underlying factor causing energy losses. The objective pursued in the design of 

flow field is to make the curvature reach its minimum. Therefore, it is important to quantitatively compute the 

curvature of a 3D streamline. 

 

The curvature of a 3D streamline is defined as: 
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The second order derivatives of coordinates and revolution radius with respect to polar angle are: 
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Therefore, the curvature calculation formula of a 3D streamline is given by: 
2 2 2 1/2 2 2 2 3/2[( ) ( " ') ( " ') ] [( ') ]                                      (28)K pv qu px ux qx vx x p q          

 

Corresponding to the parabola scheme, arc scheme , exponent scheme and hyperbolic sine scheme, 

curvature values of 3D streamlines can be obtained with the help of the program, and be plotted into curves as 

shown in Fig.7, 8, 9 and 10, respectively. 
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Fig.7. Curvature curves corresponding to parabola scheme   Fig.8. Curvature curves corresponding to arc scheme 
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Fig.9. Curvature curves corresponding to exponent scheme   Fig.10. Curvature curves corresponding to hyperbolic sine 

 

VI. ASSESSMENT OF DESIGN SCHEME 
How to assess the four schemes is vitally important. Several factors should be taken into account. The first 

factor is the maximal curvature of 3D streamlines. The 3D streamline curvature is relative with energy loss. The 

higher the streamline curvature is, the larger energy loss. In order to enhance the efficiency of a hydrodynamic 

torque converter, the best effort must be made so as to reduce the maximal curvature of 3D streamlines. The second 

factor is the maximal offset angle at the exit. It is the maximal offset angle that decides whether it is difficult for the 

stator to be fabricated or not. The third is if it is reasonable for blade angle to vary. More importantly, the blade 

variation in the vicinity of exit has influence on flow deflection that causes deflection loss. Therefore, the exit 

curvature of 3D streamlines should serve as an assessment parameter as well. 

With the help of the program code, three assessment parameters, maximal curvature, exit curvature and 

maximal offset angle, can be computed, as tabulated in Table 1 
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Table 1. Maximal curvatures, exit curvatures and maximal offset angles of 3D streamlines 

Offset angle function 

scheme No. 

Maximal 

curvature 

Exit  

curvature 

Maximal offset angle 

(°) 

1 0.0846588 0.0184538 84.9789 

2 0.0755536 0.0223780 66.3262 

3 0.0526234 0.0210314 64.7931 

4 0.0486598 0.0225488 55.2345 

 
From Table1, it can be noted that, from scheme one to scheme four, both maximal curvature and maximal 

offset angle are decrease gradually; whereas the exit curvature is increases gradually. A good scheme is that all the 

three parameters reach their minimum. Obviously, it is uneasy to take our choice merely according to Table 1. 

On the other hand, because the order of magnitude of three assessment parameters is different, it is 

inconvenient to compare these schemes. Therefore, the three parameters of all the schemes need be normalized.  

The above table can be considered as a matrix A . The average value of each column is: 
4

,

1

1
                                                                            (29)

4
j i j

i

a A


   

If each datum is divided by the average value of the column data, we can obtain a new matrix B: 

, , /                                                                           (30)i j i j jB A a  

 

In this manner, the normalized values of assessment parameter can be obtain, as tabulated in Table 2  

 
Table 2: Normalized parameters and assessment indexes 

scheme 

No. 

Normalized 

Maximal curvature 

Normalized 

exit curvature 

Normalized 

Maximal offset angle 

product 

index 

sum 

index 

1 1.29500 0.87447 1.25276 1.41866 3.42223 

2 1.15572 1.06042 0.97778 1.19832 3.19392 

3 0.80496 0.99661 0.95518 0.76628 2.75675 

4 0.74433 1.06851 0.81427 0.64761 2.62711 

 

With normalized assessment parameters, the four schemes can be assessed quantitatively. The first 

assessment index is product index. The product index is given by: 
3

,

1

                                                                             (31)i i j

j

p B


  

 

The second assessment index is sum index. The sum index is given by: 
3

,

1

                                                                              (32)i i j

j

s B


  

Program computation results indicate that both the product index and sum index point to scheme 4, or 

hyperbolic sine function scheme. 

Once again，from Table 1 it is can be found that hyperbolic sine applied as offset angle function can 

significantly reduce maximal curvature and maximal offset angle. In adverse aspects, the variation of blade angle is 

unreasonable and the exit curvatures of 3D streamlines are slightly high.  

On the other hand, from Fig.10, it can be noted that the curvature curves in the vicinity of entrance are 

close to horizontal lines, which indicates that the hyperbolic sine scheme is close to an optimum design scheme. 

 

VII. DETERMINATION OF BLADE THICKNESS VECTOR 
The camber surface expressed by equation (4) can be considered as a two variable function with respect to 

polar   and blade span parameter .  

The tangential vector of the camber surface along stream wise is: 

1 ( / , / , / )                                                               (33)x y z        V  

2/ ( / ) / tan ( ) / sinx r r h           

/ ( / )cos (d / d )sin

/ ( / )sin (d / d )cos

y r r

z r r

     

     

     

     
 

 

Take the partial derivative of revolution radius with respect to polar angle, yielding: 
2 2/ ( / )( sin )cosr h r         

where     . 
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Substitute 2 2/ ( / )( sin )cosr h r         into the foregoing expression, yielding: 
2 2 2 2

2

2 2

/ ( sin )cos / ( sin ) ( ) / sin

/ cos sin '

/ [( sin )cos / ]sin cos '

x h r r h

y h r

z h r r

      

  

      

     

   

    

 

 

The tangential vector of the camber surface along the blade span wise is given by: 

2 ( / , / , / )                                                               (34)x y z        V  

where / ( / ) / tanx r       , / ( / )cosy r       , / ( / )sin .z r        

 

Substituting 2/ ( / )sinr h r      into above expressions，there results: 

2

2

2

/ ( / ) / tan ( / ) cos

/ ( / ) cos ( / )sin cos

/ ( / )sin ( / )sin sin

x r h r

y r h r

z r h r

    

     

     

     

     

     

 

 

The blade thickness vector V  is equal to the cross product of vector 
1V  and 

2V  

1 2                                                                (35)x y zv i v j v k    V V V  

where  2( / )( / ) ( / )( / ) sin 'xv y z z y h                  

2

2

2 2 2 1/2

( / )( / ) ( / )( / ) [( / )sin cos cos ']

( / )( / ) ( / )( / ) [( / ) cos cos sin ']

| | [( / ) ' ]

y

z

v z x x z h r

v x y y x h r

h r

        

        

  

           

            

 V

 

 

VIII. DETERMINATION OF BLADE THICKNESS FUNCTION 
Assume that a blade of the stator is enveloped with different diameter balls. Each ball diameter is the 

function of polar angle, as shown in Fig.11.  

 

h

x

y

entrance exit

=  1
= 1

= 0

3

2

d

d

 
 Fig.11. Schematic of stator blade thickness 

 

From entrance to exit, the ball diameter decreases gradually from maximal diameter 
3d to minimal 

diameter
2d . If polar angle

1  , the diameter 0d  ; If polar angle
3  , the diameter

3d d ; if 
2  , the 

diameter 
2d d . In order to establish the function relationship of the ball diameter d  with respect to polar angle 

 , in advance, it is necessary to obtain the polar angle 
3  corresponding to maximal ball diameter 

3d . 

 

It is difficult to directly find polar angle 
3 . A feasible method is to obtain two integer angle 

L and
R , 

where 
R L 1    and 

L 3 R    . At this stage, an approximate solution can be obtained by using dichotomy. 

http://dict.cnki.net/dict_result.aspx?searchword=%e4%ba%8c%e5%88%86%e6%b3%95&tjType=sentence&style=&t=dichotomy
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In the case of 
3 2( )    , assume that the ball diameter varies linearly. It is given by: 

3 2 3 3 2 3( )( ) / ( )d d d d          

In the case of 
1 3( )    , a equivalent ball diameter is used to calculate blade thickness, as shown in 

Fig.12. 

 




y

31

R

            
Fig.12. Blade thickness in the vicinity of entrance       Fig.13. Three-dimensional blade of the stator 

 
 

From Fig.12, it can be find that the radius of maximal circle is: 

3 1R     

 

The equation of the maximal circle is: 
2 2 2

3( ) y R     

For any 
3  , y -coordinate is given by: 

2 2

3( )y R      

The equivalent ball diameter of blade thickness is: 

3( / )d y R d  

Combining the above two expressions, we have: 
2

3 3 3 1 3

3 2 3 3 2 3 3

 1 [( ) / ( )]        ( )
                                                (36)

( )( ) / ( )   ( )

d
d

d d d

     

     

    
 

    

 

With the help of the program and graphic interface, a 3D blade of a stator can be drawn automatically, as shown in 

Fig.13. 

 

IX. CONCLUSION 
The stator design method was investigated. Some main results are as follows: 

1)     A new design method, generalized torus helix design method, was proposed and the generalized torus helix      

equation of 3D streamline was established. 

2)   The equation reflecting the function relationship among polar angle, blade angle and offset angle was derived. 

3)   The assessment selecting mechanism of flow field design reasonability was put forward.  

4)   Hyperbolic sine function serves as offset angle function, which is close to an optimum design scheme. 

5)   Vector calculus and thickness function were used to compute blade surface coordinates. Substantially accurate 

results can be obtained. 

6)   The parameterized program can not only draw the camber surface and blade surfaces automatically, but also 

output a solid of revolution and the flow passage surface coordinates so as to model conveniently. 

In summary, the investigation provides a parameterized and approximately optimum method for stator design, and 

is of application value. 
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NOMENCLATURE 

h =distance from the arc center of design path to the shaft center 

 =polar angle 

1 =polar angle at the entrance 
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2 =polar angle at the exit 

3 =polar angle corresponding to the maximal diameter ball 

d =ball diameter 

 =polar radius 

 =constant 

 =constant, /R h   

R =geometric radius of design path 

 =blade span parameter 

 offset angle 

udv =circumferential component velocity of absolute velocity on the design path 

u v =circumferential component velocity of absolute velocity on any other meridional flow path 

d r =revolution radius on the design path 

r =revolution radius on any other meridional flow path 

d  =blade angle on the design path. 

 =blade angle on any other meridional flow path. 

g =coefficient. 

nz =blade number of stator 

  one half of center angle of flow passage 
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