

 International

OPEN ACCESS

 Journal

Of Modern Engineering Research (IJMER)

| IJMER | ISSN: 2249–6645 | ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 27 |

A Study on Data Controller-Preserving Public Auditing For

Secure Cloud Storage

Dr Sai Manoj Kudaravalli P
1
, Dr Chiranjeevi Paritala K

2
Ms Mrudula K

3

1&2
 Associate Professor, Dept of CSE, Amrita Sai Institute of Science and Technology,Paritala.

Corresponding Author: Dr Sai Manoj Kudaravalli P

I. INTRODUCTION
CLOUD: computing has been envisioned as the next-generation information technology (IT)

architecture for enterprises, due to its long list of unprecedented advantages in the IT history: on-demand

self-service, ubiquitous network access, location independent resource pooling, rapid resource elasticity, usage-

based pricing and transfer-ence of risk [2]. As a disruptive technology with profound implications, cloud

computing is transforming the very nature of how businesses use information technology. One fundamental

aspect of this paradigm shifting is that data are being centralized or outsourced to the cloud. From users’

perspective, including both individuals and IT enterprises, storing data remotely to the cloud in a flexible on-

demand manner brings appealing benefits: relief of the burden for storage management, universal data access

with location independence, and avoidance of capital expenditure on hardware, software, and personnel

maintenances, etc., [3].

 While cloud computing makes these advantages more appealing than ever, it also brings new and

challenging security threats toward users’ outsourced data. Since cloud service providers (CSP) are separate

administrative entities, data outsourcing is actually relinquishing user’s ultimate control over the fate of their

data. As a result, the correctness of the data in the cloud is being put at risk due to the following reasons. First of

all, although the infrastructures under the cloud are much more powerful and reliable than personal computing

devices, they are still facing the broad range of both internal and external threats for data integrity [4]. Examples

of outages and security breaches of noteworthy cloud services appear from time to time [5], [6], [7]. Second,

there do exist various motivations for CSP to behave unfaithfully toward the cloud users regarding their

outsourced data status. For examples, CSP might reclaim storage for monetary reasons by discarding data that

have not been or are rarely accessed, or even hide data loss incidents to maintain a reputation [8], [9], [10]. In

short, although outsourcing data to the cloud is economic-ally attractive for long-term large-scale storage, it

does not immediately offer any guarantee on data integrity and availability. This problem, if not properly

addressed, may impede the success of cloud architecture.

As users no longer physically possess the storage of their data, traditional cryptographic primitives for

the purpose of data security protection cannot be directly adopted [11]. In particular, simply downloading all the

data for its integrity verification is not a practical solution due to the expensiveness in I/O and transmission cost

across the network. Besides, it is often insufficient to detect the data corruption only when accessing the data, as

it does not give users correctness assurance for those unaccessed data and might be too late to recover the data

loss or damage.

WANG ET AL.: PRIVACY-PRESERVING PUBLIC AUDITING FOR SECURE CLOUD

STORAGE

Considering the large size of the outsourced data and the user’s constrained resource capability, the

tasks of auditing the data correctness in a cloud environment can be formidable and expensive for the cloud

users [12], [8]. Moreover, the overhead of using cloud storage should be minimized as much as possible, such

that a user does not need to perform too many operations to use the data (in additional to retrieving the data). In

particular, users may not want to go through the complexity in verifying the data integrity. Besides, there may

be more than one user accesses the same cloud storage, say in an enterprise setting. For easier management, it is

desirable that cloud only entertains verification request from a single designated party.

To fully ensure the data integrity and save the cloud users’ computation resources as well as online

burden, it is of critical importance to enable public auditing service for cloud data storage, so that users may

resort to an independent third-party auditor (TPA) to audit the outsourced data when needed. The TPA, who has

A Study on Data Controller-Preserving Public Auditing For Secure Cloud Storage

| IJMER | ISSN: 2249–6645 | ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 28 |

expertise and capabilities that users do not, can periodically check the integrity of all the data stored in the cloud

on behalf of the users, which provides a much more easier and affordable way for the users to ensure their

storage correctness in the cloud. Moreover, in addition to help users to evaluate the risk of their subscribed

cloud data services, the audit result from TPA would also be beneficial for the cloud service providers to

improve their cloud-based service platform, and even serve for indepen-dent arbitration purposes [10]. In a

word, enabling public auditing services will play an important role for this nascent cloud economy to become

fully established, where users will need ways to assess risk and gain trust in the cloud.

Recently, the notion of public auditability has been proposed in the context of ensuring remotely stored data

integrity under different system and security models [9], [13], [11], [8]. Public auditability allows an external

party, in addition to the user himself, to verify the correctness of remotely stored data. However, most of these

schemes [9], [13], [8] do not consider the privacy protection of users’ data against external auditors. Indeed,

they may potentially reveal user’s data to auditors, as will be discussed in Section 3.4. This severe drawback

greatly affects the security of these protocols in cloud computing. From the perspective of protecting data

privacy, the users, who own the data and rely on TPA just for the storage security of their data, do not want this

auditing process introducing new vulnerabilities of unauthorized information leakage toward their data security

[14], [15]. Moreover, there are legal regulations, such as the US Health Insurance Port-ability and

Accountability Act (HIPAA) [16], further demanding the outsourced data not to be leaked to external parties

[10]. Simply exploiting data encryption before outsourcing [15], [11] could be one way to mitigate this privacy

concern of data auditing, but it could also be an overkill when employed in the case of unencrypted/public cloud

data (e.g., outsourced libraries and scientific data sets), due to the unnecessary processing burden for cloud

users. Besides, encryption does not completely solve the problem of protecting data privacy against third-party

auditing but just reduces it to the complex key management

domain. Unauthorized data leakage still remains possible due to the potential exposure of decryption keys.

Therefore, how to enable a privacy-preserving third-party auditing protocol, independent to data

encryption, is the problem we are going to tackle in this paper. Our work is among the first few ones to support

privacy-preserving public auditing in cloud computing, with a focus on data storage. Besides, with the

prevalence of cloud computing, a foreseeable increase of auditing tasks from different users may be delegated to

TPA. As the individual auditing of these growing tasks can be tedious and cumbersome, a natural demand is

then how to enable the TPA to efficiently perform multiple auditing tasks in a batch manner, i.e.,

simultaneously.

To address these problems, our work utilizes the technique of public key-based homomorphic linear

authen-ticator (or HLA for short) [9], [13], [8], which enables TPA to perform the auditing without demanding

the local copy of data and thus drastically reduces the communication and computation overhead as compared to

the straightforward data auditing approaches. By integrating the HLA with random masking, our protocol

guarantees that the TPA could not learn any knowledge about the data content stored in the cloud server (CS)

during the efficient auditing process. The aggregation and algebraic properties of the authenticator further

benefit our design for the batch auditing. Specifically, our contribution can be summarized as the following

three aspects:

1. We motivate the public auditing system of data storage security in cloud computing and provide a

privacy-preserving auditing protocol. Our scheme enables an external auditor to audit user’s cloud data without

learning the data content.

2. To the best of our knowledge, our scheme is the first to support scalable and efficient privacy-

preserving public storage auditing in cloud. Specifically, our scheme achieves batch auditing where multiple

delegated auditing tasks from different users can be performed simultaneously by the TPA in a privacy-

preserving manner.

3. We prove the security and justify the performance of our proposed schemes through concrete experi-

ments and comparisons with the state of the art.

The rest of the paper is organized as follows: Section 2 introduces the system and threat model, and our design

goals. Then, we provide the detailed description of our scheme in Section 3. Section 4 gives the security analysis

and performance evaluation. Section 5 presents further discussions on a zero-knowledge auditing protocol, fol-

lowed by Section 6 that overviews the related work. Finally, Section 7 gives the concluding remark of the whole

paper.

II. PROBLEM STATEMENT
2.1 The System and Threat Model

We consider a cloud data storage service involving three different entities, as illustrated in Fig. 1: the cloud user,

who has large amount of data files to be stored in the cloud; the cloud server, which is managed by the cloud

service provider to provide data storage service and has significant storage

A Study on Data Controller-Preserving Public Auditing For Secure Cloud Storage

| IJMER | ISSN: 2249–6645 | ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 29 |

Fig. 1. The architecture of cloud data storage service.

space and computation resources (we will not differentiate CS and CSP hereafter); the third-party

auditor, who has expertise and capabilities that cloud users do not have and is trusted to assess the cloud storage

service reliability on behalf of the user upon request. Users rely on the CS for cloud data storage and

maintenance. They may also dynamically interact with the CS to access and update their stored data for various

application purposes. As users no longer possess their data locally, it is of critical importance for users to ensure

that their data are being correctly stored and maintained. To save the computation resource as well as the online

burden potentially brought by the periodic storage correctness verification, cloud users may resort to TPA for

ensuring the storage integrity of their outsourced data, while hoping to keep their data private from TPA.

We assume the data integrity threats toward users’ data can come from both internal and external attacks at CS.

These may include: software bugs, hardware failures, bugs in the network path, economically motivated

hackers, malicious or accidental management errors, etc. Besides, CS can be self-interested. For their own

benefits, such as to maintain reputation, CS might even decide to hide these data corruption incidents to users.

Using third-party auditing service provides a cost-effective method for users to gain trust in cloud. We assume

the TPA, who is in the business of auditing, is reliable and independent. However, it may harm the user if the

TPA could learn the outsourced data after the audit.

Note that in our model, beyond users’ reluctance to leak data to TPA, we also assume that cloud servers

has no incentives to reveal their hosted data to external parties. On the one hand, there are regulations, e.g.,

HIPAA [16], requesting CS to maintain users’ data privacy. On the other hand, as users’ data belong to their

business asset [10], there also exist financial incentives for CS to protect it from any external parties. Therefore,

we assume that neither CS nor TPA has motivations to collude with each other during the auditing process. In

other words, neither entities will deviate from the prescribed protocol execution in the following presentation.

To authorize the CS to respond to the audit delegated to TPA’s, the user can issue a certificate on TPA’s public

key, and all audits from the TPA are authenticated against such a certificate. These authentication handshakes

are omitted in the following presentation.

2.2 Design Goals

To enable privacy-preserving public auditing for cloud data storage under the aforementioned model, our

protocol

design should achieve the following security and perfor-mance guarantees:

1. Public auditability: to allow TPA to verify the correctness of the cloud data on demand without

retrieving a copy of the whole data or introducing additional online burden to the cloud users.

2. Storage correctness: to ensure that there exists no cheating cloud server that can pass the TPA’s audit

without indeed storing users’ data intact.

3. Privacy preserving: to ensure that the TPA cannot derive users’ data content from the information

collected during the auditing process.

4. Batch auditing: to enable TPA with secure and efficient auditing capability to cope with multiple

auditing delegations from possibly large number of different users simultaneously.

5. Lightweight: to allow TPA to perform auditing with minimum communication and computation

overhead.

III. THE PROPOSED SCHEMES
This section presents our public auditing scheme which provides a complete outsourcing solution of

data—not only the data itself, but also its integrity checking. After introducing notations and brief preliminaries,

we start from an overview of our public auditing system and discuss two straightforward schemes and their

demerits. Then, we present our main scheme and show how to extent our main scheme to support batch auditing

A Study on Data Controller-Preserving Public Auditing For Secure Cloud Storage

| IJMER | ISSN: 2249–6645 | ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 30 |

for the TPA upon delegations from multiple users. Finally, we discuss how to generalize our privacy-preserving

public auditing scheme and its support of data dynamics.

3.1 Notation and Preliminaries

. F —the data file to be outsourced, denoted as a sequence of n blocks m1; . . . ; mi; . . . ; mn 2 Zp for

some large prime p.

. MACð Þð Þ—message authentication code (MAC) function, defined as: K f0; 1g ! f0; 1g
l
 where K

denotes the key space.

. Hð Þ, hð Þ—cryptographic hash functions.

We now introduce some necessary cryptographic back-ground for our proposed scheme.

Bilinear Map. Let G1, G2, and GT be multiplicative cyclic groups of prime order p. Let g1 and g2 be generators of

G1 and G2, respectively. A bilinear map is a map e : G1 G2 ! GT such that for all u 2 G1, v 2 G2 and a; b 2 Zp,

eðu
a
; v

b
Þ ¼ eðu; vÞ

ab
. This bilinearity implies that for any u1, u2 2 G1, v 2 G2, eðu1 u2; vÞ ¼ eðu1; vÞ eðu2; vÞ.

Of course, there exists an efficiently computable algorithm for com-puting e and the map should be nontrivial,

i.e., e is nondegenerate: eðg1; g2Þ ¼6 1.

3.2 Definitions and Framework

We follow a similar definition of previously proposed schemes in the context of remote data integrity checking

[9], [11], [13] and adapt the framework for our privacy-preserving public auditing system.

WANG ET AL.: PRIVACY-PRESERVING PUBLIC AUDITING FOR SECURE CLOUD

STORAGE

A public auditing scheme consists of four algorithms (KeyGen, SigGen, GenProof, VerifyProof). KeyGen is a

key generation algorithm that is run by the user to setup the scheme. SigGen is used by the user to generate

verification metadata, which may consist of digital signa-tures. GenProof is run by the cloud server to generate a

proof of data storage correctness, while VerifyProof is run by the TPA to audit the proof Running a public

auditing system consists of two phases,

Setup and Audit:

. Setup: The user initializes the public and secret parameters of the system by executing KeyGen, and

preprocesses the data file F by using SigGen to generate the verification metadata. The user then stores the data

file F and the verification metadata at the cloud server, and deletes its local copy. As part of preprocessing, the

user may alter the data file F by expanding it or including additional metadata to be stored at server.

. Audit: The TPA issues an audit message or challenge to the cloud server to make sure that the cloud

server has retained the data file F properly at the time of the audit. The cloud server will derive a response

message by executing GenProof using F and its verification metadata as inputs. The TPA then verifies the

response via VerifyProof.

Our framework assumes that the TPA is stateless, i.e., TPA does not need to maintain and update state between

audits, which is a desirable property especially in the public auditing system [13]. Note that it is easy to extend

the framework above to capture a stateful auditing system, essentially by splitting the verification metadata into

two parts which are stored by the TPA and the cloud server, respectively. Our design does not assume any

additional property on the data file. If the user wants to have more error resilience, he can first redundantly

encodes the data file and then uses our system with the data that has error-correcting codes integrated.
1

3.3 The Basic Schemes

Before giving our main result, we study two classes of schemes as a warmup. The first one is a MAC-

based solution which suffers from undesirable systematic demerits— bounded usage and stateful verification,

which may pose additional online burden to users, in a public auditing setting. This also shows that the auditing

problem is still not easy to solve even if we have introduced a TPA. The second one is a system based on

homomorphic linear authentica-tors, which covers many recent proof of storage systems. We will pinpoint the

reason why all existing HLA-based systems are not privacy preserving. The analysis of these basic schemes

leads to our main result, which overcomes all these drawbacks. Our main scheme to be presented is based on a

specific HLA scheme.

MAC-based solution. There are two possible ways to make use of MAC to authenticate the data. A trivial way is

just uploading the data blocks with their MACs to the server, and sends the corresponding secret key sk to the

A Study on Data Controller-Preserving Public Auditing For Secure Cloud Storage

| IJMER | ISSN: 2249–6645 | ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 31 |

1. We refer readers to [17], [18] for the details on integration of error-correcting codes and remote data integrity

checking.

TPA. Later, the TPA can randomly retrieve blocks with their MACs and check the correctness via sk.

Apart from the high (linear in the sampled data size) communication and computation complexities, the TPA

requires the knowledge of the data blocks for verification.

To circumvent the requirement of the data in TPA verification, one may restrict the verification to just

consist of equality checking. The idea is as follows: Before data outsourcing, the cloud user chooses s random

message authentication code keys fsk g1 s, precomputes s (deter-ministic) MACs, fMACsk ðF Þg1 s for the whole

data file F , and publishes these verification metadata (the keys and the MACs) to TPA. The TPA can reveal a

secret key sk to the cloud server and ask for a fresh keyed MAC for comparison in each audit. This is privacy

preserving as long as it is impossible to recover F in full given MACsk ðF Þ and sk . However, it suffers from the

following severe draw-backs: 1) the number of times a particular data file can be audited is limited by the

number of secret keys that must be fixed a priori. Once all possible secret keys are exhausted, the user then has

to retrieve data in full to recompute and republish new MACs to TPA; 2) The TPA also has to maintain and

update state between audits, i.e., keep track on the revealed MAC keys. Considering the potentially large

number of audit delegations from multiple users, maintaining such states for TPA can be difficult and error

prone; 3) it can only support static data, and cannot efficiently deal with dynamic data at all. However,

supporting data dynamics is also of critical importance for cloud storage systems. For the reason of brevity and

clarity, our main protocol will be presented based on static data. Section 3.6 will describe how to adapt our

protocol for dynamic data.

HLA-based solution. To effectively support public auditability without having to retrieve the data blocks

themselves, the HLA technique [9], [13], [8] can be used. HLAs, like MACs, are also some unforgeable

verification metadata that authenticate the integrity of a data block. The difference is that HLAs can be

aggregated. It is possible to compute an aggregated HLA which authenticates a linear combination of the

individual data blocks.

At a high level, an HLA-based proof of storage system works as follow. The user still authenticates each

element of F ¼ fmig by a set of HLAs . The TPA verifies the cloud storage by sending a random set of challenge

f ig. The

P authenticator computed from .

cloud server then returns ¼ i i mi and its aggregated

Though allowing efficient data auditing and consuming only constant bandwidth, the direct adoption of these

HLA-based techniques is still not suitable for our purposes. This is because the linear combination of blocks, ¼
P

i i mi, may potentially reveal user data information to TPA, and violates the privacy-preserving guarantee.

Specifically, by challenging the same set of c block m1; m2; . . . ; mc using c different sets of random coefficients

f ig, TPA can accumulate c different linear combinations 1; . . . ; c. With f i g and f ig, TPA can derive the user’s

data m1; m2; . . . ; mc by simply solving a system of linear equations.

TABLE 1 The Privacy-Preserving Public Auditing Protocol

3.4 Privacy-Preserving Public Auditing Scheme

Overview. To achieve privacy-preserving public auditing, we propose to uniquely integrate the homomorphic

linear authenticator with random masking technique. In our protocol, the linear combination of sampled blocks

in the server’s response is masked with randomness generated by the server. With random masking, the TPA no

longer has all the necessary information to build up a correct group of linear equations and therefore cannot

derive the user’s data content, no matter how many linear combinations of the same set of file blocks can be

collected. On the other hand, the correctness validation of the block-authenticator pairs can still be carried out in

A Study on Data Controller-Preserving Public Auditing For Secure Cloud Storage

| IJMER | ISSN: 2249–6645 | ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 32 |

a new way which will be shown shortly, even with the presence of the randomness. Our design makes use of a

public key-based HLA, to equip the auditing protocol with public auditability. Specifically, we use the HLA

proposed in [13], which is based on the short signature scheme proposed by Boneh, Lynn, and Shacham

(hereinafter referred as BLS signature) [19].

Scheme details. Let G1, G2, and GT be multiplicative cyclic groups of prime order p, and e : G1 G2 ! GT be a

bilinear map as introduced in preliminaries. Let g be a generator of G2. Hð Þ is a secure map-to-point hash

function: f0; 1g ! G1, which maps strings uniformly to G1. Another hash function hð Þ : GT ! Zp maps group

element of GT uniformly to Zp. Our scheme is as follows:

Setup Phase: The cloud user runs KeyGen to generate the public and secret parameters. Specifically, the user

 spk; ssk

Þ, a

Random

chooses a random signing key pair ð x

X Zp, a random element u G1, and computes v g .

The secret parameter is sk ¼ ðx; sskÞ and the Public

parameters are pk ¼ ðspk; v; g; u; eðu; vÞÞ.

Given a data file F ¼ fmig, the user runs SigGen to compute authenticator i ðHðWiÞ u
mi

 Þ
x
 2 G1 for each i. Here,

Wi ¼ nameki and name is chosen by the user uniformly at random from Zp as the identifier of file F . Denote the

set of authenticators by ¼ f ig1 i n.

The last part of SigGen is for ensuring the integrity of the unique file identifier name. One simple way to do this

is

to compute t ¼ namekSSigsskðnameÞ as the file tag for F , where SSigsskðnameÞ is the signature on name under

the

private key ssk. For simplicity, we assume the TPA knows the number of blocks n. The user then sends F along

with the verification metadata ð ; tÞ to the server and deletes them from local storage.

Audit Phase: The TPA first retrieves the file tag t. With respect to the mechanism we describe in the Setup

phase,

the TPA verifies the signature SSigsskðnameÞ via spk, and quits by emitting FALSE if the verification fails.

Otherwise,

the TPA recovers name.

Now it comes to the ―core‖ part of the auditing process. To generate the challenge message for the audit ―chal,‖

the TPA picks a random c-element subset I ¼ fs1; . . . ; scg of set ½1; n&. For each element i 2 I, the TPA also

chooses a random value i (of bit length that can be shorter than jpj, as explained in [13]). The message ―chal‖

specifies the positions of the blocks required to be checked. The TPA sends chal ¼ fði; iÞgi2I to the server.

Upon receiving challenge chal ¼ fði; iÞgi2I , the server runs GenProof to generate a response proof of data

storage correctness. Specifically, the server chooses a random element r Zp, and calculates R ¼ eðu; vÞ
r
 2 GT .

Let
0

denote the linear combination of sampled blocks specified in chal:
0
 ¼

P
i2I imi. To blind

0
 with r, the server

computes: ¼ r þ
0
 mod p, where ¼ hðRÞ 2 Zp. Mean-

while, the server also calculates an aggregated authenticator

¼

Q

f ; ; Rg as the response i2I i
i
 2 G1. It then sends

proof of storage correctness to the TPA. With the response, the TPA runs VerifyProof to validate it by first

comput-ing ¼ hðRÞ and then checking the verification equation

 Y

?

s
c

i¼s1 HðWiÞ
i

!
 u ; v

!
:

R eð ; gÞ ¼ e ð1Þ

The protocol is illustrated in Table 1. The correctness of the above verification equation is elaborated as follows:

R eð ; gÞ ¼ eðu; vÞ
r

e i
s
cs ðHðWiÞ umi Þ

x
 i

!
 ; g

!

 Y

¼ eðu
r
; vÞ e

¼ 1
!
 ; g

!
x i

s
cs ðHðWiÞ i u i

m
i

A Study on Data Controller-Preserving Public Auditing For Secure Cloud Storage

| IJMER | ISSN: 2249–6645 | ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 33 |

 Y

¼ eðu
r
; vÞ e

¼ 1

u
0

; v
!

i
s
cs HðWiÞ i

!

 Y

¼ e i
s
cs

¼
 1

HðWiÞ
i !

 u 0 þr; v
!

 Y

¼ e

¼ 1 HðWiÞ
i !

u ; v
!
:

i
s
cs

 Y

 ¼ 1

WANG ET AL.: PRIVACY-PRESERVING PUBLIC AUDITING FOR SECURE CLOUD STORAGE

Properties of our protocol. It is easy to see that our protocol achieves public auditability. There is no

secret keying material or states for the TPA to keep or maintain between audits, and the auditing protocol does

not pose any potential online burden on users. This approach ensures the privacy of user data content during the

auditing process by employing a random masking r to hide , a linear combination of the data blocks. Note that

the value R in our protocol, which enables the privacy-preserving guarantee, will not affect the validity of the

equation, due to the circular relationship between R and in ¼ hðRÞ and the verification equation. Storage

correctness thus follows from that of the underlying protocol [13]. The security of this protocol will be formally

proven in Section 4. Besides, the HLA helps achieve the constant communica-tion overhead for server’s

response during the audit: the size of f ; ; Rg is independent of the number of sampled blocks c.

Previous work [9], [8] showed that if the server is missing a fraction of the data, then the number of blocks that

needs to be checked in order to detect server misbehavior with high probability is in the order of Oð1Þ. In

particular, if t fraction of data is corrupted, then random sampling c blocks would reach the detection probability

P ¼ 1 ð1 tÞ
c
. Here, every block is chosen uniformly at random. When t ¼ 1% of the data F , the TPA only needs

to audit for c ¼ 300 or 460 randomly chosen blocks of F to detect this misbehavior with probability larger than

95 and 99 percent, respectively. Given the huge volume of data outsourced in the cloud, checking a portion of

the data file is more affordable and practical for both the TPA and the cloud server than checking all the data, as

long as the sampling strategies provides high-probability assurance. In Section 4, we will present the experiment

result based on these sampling strategies.

For some cloud storage providers, it is possible that certain information dispersal algorithms (IDA) may be used

to fragment and geographically distribute the user’s out-sourced data for increased availability. We note that

these cloud side operations would not affect the behavior of our proposed mechanism, as long as the IDA is

systematic, i.e., it preserves user’s data in its original form after encoding with redundancy. This is because from

user’s perspective, as long as there is a complete yet unchanged copy of his outsourced data in cloud, the

precomputed verification metadata ð ; tÞ will remain valid. As a result, those metadata can still be utilized in our

auditing mechanism to guarantee the correctness of user’s outsourced cloud data.

Storage and communication tradeoff. As described above, each block is accompanied by an authenticator of

equal size of jpj bits. This gives about 2 storage overhead on server. However, as noted in [13], we can

introduce a parameter s in the authenticator construction to adjust this storage overhead, in the cost of commu-

nication overhead in the auditing protocol between TPA and cloud server. In particular, we assume each block

mi

consists of s sectors fmijg with 1 j s, where mij 2 Zp. The public parameter pk is now ðspk; v; g; fujg; feðuj;

vÞgÞ, the storage overhead to ð1 þ 1=sÞ .

1 j s, where u1; u2; . . . ; us are randomly chosen from

G1. The authenticator i of mi is constructed as:

I ðHðWiÞ j
s
¼1 uj

mij
 Þ

x
 2 G1. Because we now have

One

authenticator per block (or per s sectors), we reduce

Q

 To respond to the auditing challenge chal ¼ fði; iÞgi2I ,

A Study on Data Controller-Preserving Public Auditing For Secure Cloud Storage

| IJMER | ISSN: 2249–6645 | ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 34 |

for

1

j

s

, the cloud server

chooses a random elements

 rj

2 GT . Then, the server rj Zp, and calculates Rj ¼ eðu; vÞ

blinds each j
0
 ¼ i2I imij with rj, and derives the blinded

j ¼ rj þ j

0
 mod

P
, where

¼ ð 1k 2k k sÞ 2 Zp. The

 p h R R R

aggregated authenticator is still computed as before. It then sends f ; f j; Rjg1 j sg as the proof response to TPA.

With the proof, TPA first computes ¼ hðR1kR2k kRsÞ, and then checks the following verification:

 Y Y

?

sc s

i¼s1
H
ð

W
iÞ

i

!

R1 Rs eð ; gÞ ¼ e j¼1 uj
j
 ; v

!
: ð2Þ

The correctness elaboration is similar to (1) and thus omitted. The overall storage overhead is reduced to ð1 þ

1=sÞ , but the proof size now increases roughly s due to the additional s element pairs f j; Rj g1 j s that the cloud

server has to return. For presentation simplicity, we continue to choose s ¼ 1 in our following scheme descrip-

tion. We will present some experiment results with larger choice of s in Section 4.

3.5 Support for Batch Auditing

With the establishment of privacy-preserving public auditing, the TPA may concurrently handle

multiple auditing upon different users’ delegation. The individual auditing of these tasks for the TPA can be

tedious and very inefficient. Given K auditing delegations on K distinct data files from K different users, it is

more advantageous for the TPA to batch these multiple tasks together and audit at one time. Keeping this natural

demand in mind, we slightly modify the protocol in a single user case, and achieves the aggregation of K

verification equations (for K auditing tasks) into a single one, as shown in (3). As a result, a secure batch

auditing protocol for simultaneous auditing of multiple tasks is obtained. The details are described as follows:

Setup phase: Basically, the users just perform Setup independently. Suppose there are K users in the system, and

each user k has a data file Fk ¼ ðmk;1; . . . ; mk;nÞ to be outsourced to the cloud server, where k 2 f1; . . . ; Kg.

For simplicity, we assume each file Fk has the same number of n blocks. For a particular user k, denote his/her

secret key as ðxk; sskkÞ, and the corresponding public parameter as ðspkk; vk; g; uk; eðuk; vkÞÞ where vk ¼ g
xk

 .

Similar to the single user case, each user k has already randomly chosen a different (with overwhelming

probability) name namek 2 Zp for his/her file Fk, and has correctly generated the corresponding file tag tk ¼

namekkSSigsskk ðnamekÞ. Then, each user k runs SigGen and computes k;i for block

m
k;i

:
 k;i HðnamekkiÞ uk

mk;i x
k

i 1; . . . ; n ; H Wk;i

Þ

uk
m

k;i

x

k

2

G1

¼ ð ð 2 f gÞ

where Wk;i ¼ namekki. Finally, each user k sends file Fk, set of authenticators k, and tag tk to the server and

deletes them from local storage.

Audit phase: TPA first retrieves and verifies file tag tk for each user k for later auditing. If the verification fails,

TPA quits by emitting FALSE. Otherwise, TPA recovers

TABLE 2 The Batch Auditing Protocol

A Study on Data Controller-Preserving Public Auditing For Secure Cloud Storage

| IJMER | ISSN: 2249–6645 | ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 35 |

namek and sends the audit challenge chal ¼ fði; iÞgi2I to

the server for auditing data files of all K users.

Upon receiving chal, for each user k 2 f1; . . . ; Kg, the

server rrandomlyk picks rk 2 Zp and computes Rk ¼

eðuk; vkÞ . Denote R ¼ R1 R2 RK , and L ¼ vk1kvk2k

kvkK , our protocol further requires the server to compute k ¼ hðRkvkkLÞ. Then, the randomly masked

responses can be generated as follows:

X Y

sc sc

k ¼ kimk;i þ rk mod p and k ¼ k;i
i
:

i¼s1 i¼s1

The server then responds with ff k; kg1 k K ; Rg.

To verify the response, the TPA can first compute k ¼ hðRkvkkLÞ for 1 k K. Next, TPA checks if the following

equation holds:

 Y

k ; g
!

Y Y

HðWk;iÞ i
!

!:

 K K sc

 ?

R e k¼1 k
¼
 k¼1 e i¼s1

k
 uk

k
 ; vk ð3Þ

The batch protocol is illustrated in Table 2. Here, the left-hand side (LHS) of (3) expands as

 Y

 K

e k
k
 ; g LHS ¼ R1 R2 RK

Y

k¼1

 k

K

Rk e k
k
 ; g

¼

k¼1

Y

Y

K sc

HðWk;iÞ i
!
ukk ; vk

!
; ¼ e i s

k¼1 ¼ 1

which is the right-hand side, as required. Note that the last equality follows from (1).

Efficiency improvement. As shown in (3), batch audit-ing not only allows TPA to perform the multiple auditing

tasks simultaneously, but also greatly reduces the computa-tion cost on the TPA side. This is because

aggregating K verification equations into one helps reduce the number of relatively expensive pairing operations

from 2K, as required in the individual auditing, to K þ 1, which saves a considerable amount of auditing time.

Identification of invalid responses. The verification equation (3) only holds when all the responses are valid, and

fails with high probability when there is even one single invalid response in the batch auditing, as we will

show in Section 4. In many situations, a response collection may contain invalid responses, especially f kg1 k K ,

caused by accidental data corruption, or possibly malicious activity by a cloud server. The ratio of invalid

responses to the valid could be quite small, and yet a standard batch auditor will reject the entire collection. To

further sort out these invalid responses in the batch auditing, we can utilize a recursive divide-and-conquer

approach (binary search), as suggested by Ferrara et al. [20]. Specifically, if the batch auditing fails, we can

simply divide the collection of responses into two halves, and repeat the auditing on halves via (3). TPA may

now require the server to send back all the fRkg1 k K , as in individual auditing. In Section 4.2.2, we show

through carefully designed experiment that using this recursive binary search approach, even if up to 20 percent

of responses are invalid, batch auditing still performs faster than individual verification.

3.6 Support for Data Dynamics

In cloud computing, outsourced data might not only be accessed but also updated frequently by users for various

application purposes [21], [8], [22], [23]. Hence, supporting data dynamics for privacy-preserving public

A Study on Data Controller-Preserving Public Auditing For Secure Cloud Storage

| IJMER | ISSN: 2249–6645 | ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 36 |

auditing is also of paramount importance. Now, we show how to build upon the existing work [8] and adapt our

main scheme to support data dynamics, including block level operations of modification, deletion, and insertion.

In [8], data dynamics support is achieved by replacing the index information i with mi in the computation of

block authenticators and using the classic data structure— Merkle hash tree (MHT) [24] for the underlying

block sequence enforcement. As a result, the authenticator for each block is changed to i ¼ ðHðmiÞ u
mi

 Þ
x
. We

can adopt this technique in our design to achieve privacy-preserving public auditing with support of data

dynamics. Specifi-cally, in the Setup phase, the user has to generate and send the tree root T RMHT to TPA as

additional metadata, where the leaf nodes of MHT are values of HðmiÞ. In the Audit phase, besides f ; ; Rg, the

server’s response should also include fHðmiÞgi2I and their corresponding auxiliary authentication information

aux in the MHT. Upon receiving the response, TPA should first use T RMHT and aux to authenticate fHðmiÞgi2I

computed by the server. Once fHðmiÞgi2I are authenticated, TPA can then perform

the auditing on f ; ; R; fHðmiÞg g via (1), where

Q
i2

Q
I

s1 i sc
HðW

i
Þ

i

is now replaced by
 s1 i sc

WANG ET AL.: PRIVACY-PRESERVING PUBLIC AUDITING FOR SECURE CLOUD

STORAGE

these changes does not interfere with the proposed random masking technique, so data privacy is still preserved.

To support data dynamics, each data update would require the user to generate a new tree root T RMHT , which is

later sent to TPA as the new metadata for storage auditing task. The details of handling dynamic operations are

similar to [8] and thus omitted.

Application to version control system. The above scheme allows TPA to always keep the new tree root for

auditing the updated data file. But it is worth noting that our mechanism can be easily extended to work with

version control system, where both current and previous versions of the data file F and the corresponding

authenticators are stored and need to be audited on demand. One possible way is to require TPA to keep tracks

of both the current and

previous tree roots generated by the user, denoted as

f

T R
1

2 T R
V

 V

is the number of MHT
; T R

MHT
;

. . .

;
V MHT g. Here,

file versions and T RMHT is the root related to the most

current version of the data file F . Then, whenever a

 v 1

v

V file is to be audited,

designated version () of data v

the TPA just uses the corresponding T RMHT to perform the auditing. The cloud server should also keep track of

all the versions of data file F and their authenticators, in order to correctly answer the auditing request from

TPA. Note that cloud server does not need to replicate every block of data file in every version, as many of them

are the same after updates. However, how to efficiently manage such block storage in cloud is not within the

scope of our paper.

The extractor controls the random oracle hð Þ and answers the hash query issued by the cloud server,

which is treated as an adversary here. For a challenge ¼ hðRÞ returned by the extractor, the cloud server outputs

f ; ; Rg such that the following equation holds:

R eð ; gÞ ¼ e i
s
cs HðWiÞ i

!
u ; v

!
: ð4Þ

 Y

¼

1

Suppose that our extractor can rewind a cloud server in the execution of the protocol to the point just before the

challenge hðRÞ is given. Now, the extractor sets hðRÞ to be ¼6 . The cloud server outputs f ; ; Rg such that the

following equation holds:

R eð ; gÞ ¼ e
0

sc HðWiÞ
i

!

u ; v 1 :ð5Þ

@ Y A

i¼s

1

The extractor then obtains f ;
0
 ¼ ð Þ=ð Þg as a valid response of the underlying proof of storage system [13].

To see why, recall that i ¼ ðHðWiÞ u
mi

 Þ
x
. If we divide (4) by (5), we have

A Study on Data Controller-Preserving Public Auditing For Secure Cloud Storage

| IJMER | ISSN: 2249–6645 | ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 37 |

eð; gÞ ¼ e 0 sc HðWiÞ
i

u ; v 1

 @
Y

 A

eð; gÞ ¼ e 0

i¼s1

HðWiÞ
i
!

1 eðu ; g
x
Þ sc ! ; g

x

 @
Y

 A

3.7 Generalization

As mentioned before, our protocol is based on the HLA in [13]. It has been shown in [25] that HLA

can be constructed by homomorphic identification protocols. One may apply the random masking technique we

used to construct the corresponding zero knowledge proof for different homo-morphic identification protocols.

Therefore, our privacy-preserving public auditing system for secure cloud storage can be generalized based on

other complexity assumptions, such as factoring [25].

IV. EVALUATION

Ysc
!
 i

i

i¼s1

uxð Þ

uxð Þ

 i¼s1

¼ i
s
cs

1
HðWiÞ i

!xð Þ
 uxð Þ

 ¼

 Y

HðWiÞ i
!xð Þ

 uxð Þ ¼ i
s
cs

1 ¼

 Y

ð i=HðWiÞxÞ i
!

¼ i
s
cs

1 ¼

 Y

ðuxmi Þ i
!

¼ i
s
cs

1 ¼

 Y

! sc

 X

We evaluate the security of the proposed scheme by analyzing its fulfillment of the security guarantee described

in Section 2.2, namely, the storage correctness and privacy-

X
s
c

!

mi i

¼ mi i ð Þ

i¼s1

¼ ð Þ=ð Þ:

preserving property. We start from the single user case, where our main result is originated. Then, we show the

security guarantee of batch auditing for the TPA in multiuser setting.

4.1.1 Storage Correctness Guarantee

We need to prove that the cloud server cannot generate valid response for the TPA without faithfully storing the

data, as captured by Theorem 1.

Theorem 1. If the cloud server passes the Audit phase, it must indeed possess the specified data intact as it is.

Proof. We show that there exists an extractor of
0
 in the random oracle model. With valid f ;

0
g, our theorem

follows from [13, Theorem 4.2].

i¼s1

A Study on Data Controller-Preserving Public Auditing For Secure Cloud Storage

| IJMER | ISSN: 2249–6645 | ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 38 |

Finally, we remark that this extraction argument and the random oracle paradigm are also used in the proof of

the underlying scheme [13]. ut

4.1.2 Privacy-Preserving Guarantee

The below theorem shows that TPA cannot derive users’ data from the information collected during auditing.

Theorem 2. From the server’s response f ; ; Rg, TPA cannot recover
0
.

Proof. We show the existence of a simulator that can produce a valid response even without the knowledge of
0
,

in the random oracle model. Now, the TPA is treated as an adversary. Given a valid from the

cloud server, first, randomly pick ; from Zp, set

eðð

Q

HðWiÞ
i
 Þ u ; vÞ=eð ; gÞ.

R i
s
¼

c
s1 Finally, back-

patch ¼ hðRÞ since the simulator is controlling the random oracle hð Þ. We remark that this backpatching

technique in the random oracle model is also used in the proof of the underlying scheme [13]. tu

4.1.3 Security Guarantee for Batch Auditing

Now, we show that our way of extending our result to a multiuser setting will not affect the aforementioned

security insurance, as shown in Theorem 3.

Theorem 3. Our batch auditing protocol achieves the same storage correctness and privacy-preserving guarantee

as in the single-user case.

Proof. The privacy-preserving guarantee in the multiuser setting is very similar to that of Theorem 2, and thus

omitted here. For the storage correctness guarantee, we are going to reduce it to the single-user case. We use the

forking technique as in the proof of Theorem 1. However, the verification equation for the batch audits involves

K challenges from the random oracle. This time we need to ensure that all the other K 1 challenges are

determined before the forking of the concerned random oracle response. This can be done using the idea in [26].

As soon as the adversary issues the very first random oracle query for i ¼ hðRkvikLÞ for any i 2 ½1; K&, the

simulator immediately determines the values j ¼ hðRkvj kLÞ for all j 2 ½1; K&. This is possible since they are

all using the same R and L. Now, all but one of the k’s in (3) are equal, so a valid response can be extracted

similar to the single-user case in the proof of Theorem 1.ut

4.2 Performance Analysis

We now report some performance results of our experi-ments. We consider our auditing mechanism happens

between a dedicated TPA and some cloud storage node, where user’s data are outsourced to. In our experiment,

the TPA/user side process is implemented on a workstation with an Intel Core 2 processor running at 1.86 GHz,

2,048 MB of RAM, and a 7,200 RPM Western Digital 250 GB Serial ATA drive. The cloud server side process

is implemented on Amazon Elastic Computing Cloud (EC2) with a large instance type [27], which has 4 EC2

Compute Units, 7.5 GB memory, and 850 GB instance storage. The randomly generated test data is of 1 GB

size. All algorithms are implemented using C language. Our code uses the Pairing-Based Cryptography (PBC)

library version 0.4.21. The elliptic curve utilized in the experiment is an MNT curve, with base field size of 159

bits and the embedding degree 6. The security level is chosen to be 80 bit, which means j ij ¼ 80 and jpj ¼ 160.

All experimental results represent the mean of 20 trials.

Because the cloud is a pay-per-use model, users have to pay both the storage cost and the bandwidth cost (for

data transfer) when using the cloud storage auditing. Thus, when implementing our mechanism, we have to take

into consideration both factors. In particular, we conducts the experiment with two different sets of

storage/communica-tion tradeoff parameter s as introduced in Section 3.4. When s ¼ 1, the mechanism incurs

extra storage cost as large as

TABLE 3 Notation of Cryptographic Operations

the data itself, but only takes very small auditing bandwidth cost. Such a mechanism can be adopted

when the auditing has to happen very frequently (e.g., checking the storage correctness every few minutes [21]),

because the resulting data transfer charge could be dominant in the pay-per-use-model. On the other hand, we

A Study on Data Controller-Preserving Public Auditing For Secure Cloud Storage

| IJMER | ISSN: 2249–6645 | ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 39 |

also choose a properly larger s ¼ 10, which reduces the extra storage cost to only 10 percent of the original data

but increases the auditing bandwidth cost roughly 10 times larger than the choice of s ¼ 1. Such a case is

relatively more desirable if the auditing does not need to happen frequently. In short, users can flexibly choose

the storage/communication tradeoff parameter s for their different system application scenarios.

On our not-so-powerful workstation, the measurement shows that the user setup phase (i.e., generating

authentica-tors) achieves a throughput of around 9.0 KB/s and 17.2 KB/s when s ¼ 1 and s ¼ 10, respectively.

These results are not very fast due to the expensive modular exponentiation operations for each 20 byte block

sector in the authenticator computation. (See [28] for some similar experimental results.) Note that for each data

file to be outsourced, such setup phase happens once only. Further, since the authenticator genera-tion on each

block is independent, these one-time operations can be easily parallelized by using multithreading technique on

the modern multicore systems. Therefore, various optimization techniques can be applied to speedup the user

side setup phase. As our paper focuses on privacy-preserving storage auditing performance, in the following, we

will primarily assess the performance of the proposed auditing schemes on both TPA side and cloud server side,

and show they are indeed lightweight. We will focus on the cost of the privacy-preserving protocol and our

proposed batch audit-ing technique.

4.2.1 Cost of Privacy-Preserving Protocol

We begin by estimating the cost in terms of basic cryptographic operations (refer to Table 3 for notations).

Suppose there are c random blocks specified in the challenge message chal during the Audit phase. Under this

setting, we quantify the cost introduced by the privacy-preserving auditing in terms of server computation,

auditor computation as well as communication overhead. Since the difference for choices on s has been

discussed previously, in the following privacy-preserving cost analysis we only give the atomic operation

analysis for the case s ¼ 1 for simplicity. The analysis for the case of s ¼ 10 follows similarly and is thus

omitted.

On the server side, the generated response includes an

aggregated

authenticator

¼ i2I

i

2

G

, a random r

G

i 1

factor

R e u; v

Þ 2

 blinded linear combination

 ¼ ð T , and a Q

WANG ET AL.: PRIVACY-PRESERVING PUBLIC AUDITING FOR SECURE CLOUD

STORAGE

TABLE 4 Performance under Different Number of Sampled Blocks c for High Assurance (95%) Auditing

A Study on Data Controller-Preserving Public Auditing For Secure Cloud Storage

| IJMER | ISSN: 2249–6645 | ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 40 |

of sampled blocks ¼ i2I i
m
i þ

r
 2

Z
p

,
where ¼

h R Z

p. The

corresponding computation cost is

ð Þ 2 P

c-MultExpG
1

1 ðj ijÞ, ExpG
1

T ðjpjÞ, a n d HashZ
1

p þ AddZ
c
p þ

Multcþ1
, respectively. Compared to the existing HLA-based

Z
p

solution for ensuring remote data integrity [13], the extra cost resulted from the random mask R is only a

constant: Exp
1
GT ðjpjÞ þ Mult

1
Zp þ Hash

1
Zp þ Add

1
Zp , which has nothing to do with the number of sampled

blocks c. When c is set to be 300 to 460 for high assurance of auditing, as discussed in Section 3.4, the extra cost

on the server side for privacy-preserving guarantee would be negligible against the total server computation for

response generation.

Similarly, on the auditor side, upon receiving the response f ; R; g, the corresponding computation cost for

response

v a l i d a t i o n i s Hash
1

Zp þ c MultExp
1

G1 ðj ijÞ þ Hash
c
G1 þ Mult

1
G1 þ Mult

1
GT þ Exp

3
G1 ðjpjÞ þ P air

2
G1;G2 ,

among which only Hash
1
Zp þ Exp

2
G1 ðjpjÞ þ Mult

1
GT account for the addi-

tional constant computation cost. For c ¼ 460 or 300, and considering the relatively expensive pairing

operations, this extra cost imposes little overhead on the overall cost of response validation, and thus can be

ignored. For the sake of completeness, Table 4 gives the experiment result on performance comparison between

our scheme and the state of the art [13]. It can be shown that the performance of our scheme is almost the same

as that of [13], even if our scheme supports privacy-preserving guarantee while [13] does not. For the extra

communication cost of our scheme when compared with [13], the server’s response f ; R; g contains an

additional random element R, which is a group element of GT and has the size close to 960 bits.

4.2.2 Batch Auditing Efficiency

Discussion in Section 3.5 gives an asymptotic efficiency analysis on the batch auditing, by considering only the

total number of pairing operations. However, on the practical side, there are additional less expensive operations

required for batching, such as modular exponentiations and multi-plications. Thus, whether the benefits of

removing pairings significantly outweighs these additional operations remains to be verified. To get a complete

view of batching efficiency, we conduct a timed batch auditing test, where the number of auditing tasks is

increased from 1 to approximately 200 with intervals of 8. Note that we only focus on the choice of

Fig. 2. Comparison on auditing time between batch and individual auditing: Per task auditing time denotes the

total auditing time divided by the number of tasks.

s ¼ 1 here, from which similar performance results can be directly obtained for the choice of s ¼ 10. The

performance of the corresponding nonbatched (individual) auditing is provided as a baseline for the

measurement. Following the same settings c ¼ 300 and c ¼ 460, the average per task auditing time, which is

computed by dividing total auditing time by the number of tasks, is given in Fig. 2 for both batch and individual

auditing. It can be shown that compared to individual auditing, batch auditing indeed helps reducing the TPA’s

computation cost, as more than 15 percent of per-task auditing time is saved.

4.2.3 Sorting Out Invalid Responses

Now, we use experiment to justify the efficiency of our recursive binary search approach for the TPA to sort out

the invalid responses for negative batch auditing result, as discussed in Section 3.5. This experiment is tightly

pertained to the work in [20], which evaluates the batch verification of various short signatures.

The feasibility of the recursive approach is evaluated under the choice of s ¼ 1, which is consistent with the

experiment settings in Section 4.2.2. We do not duplicate evaluation of the recursive binary search methodology

for s ¼ 10, because similar results can be easily deduced from the choice of s ¼ 1. We first generate a collection

of 256 valid responses, which implies the TPA may concurrently handle 256 different auditing delegations. We

then conduct the tests repeatedly while randomly corrupting an -fraction, ranging from 0 to 20 percent, by

replacing them with random values. The average auditing time per task against the individual auditing approach

is presented in Fig. 3. The result shows that even when the number of invalid responses exceeds 18 percent of

the total batch size, the performance of batch auditing can still be safely concluded as more preferable than the

straightforward individual auditing. Note that the random distribution of invalid responses within the collection

A Study on Data Controller-Preserving Public Auditing For Secure Cloud Storage

| IJMER | ISSN: 2249–6645 | ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 41 |

is nearly the worst case for batch auditing. If invalid responses are grouped together, even better results can be

expected.

5 ZERO KNOWLEDGE PUBLIC AUDITING

Though our scheme prevents the TPA from directly deriving
0
 from , it does not rule out the possibility of

offline

Fig. 3. Comparison on auditing time between batch and individual auditing, when -fraction of 256 responses are

invalid: Per task auditing time denotes the total auditing time divided by the number of tasks.

as the response proof of storage correctness to the TPA, where & ¼ r þ mod p. With the response from the

server, the TPA runs VerifyProof to validate the response by first computing ¼ hðRÞ and then checking the

verification equation

 Y

?

sc

i¼s1 HðWiÞ
i

!
 u ; v

!
 eðg1; gÞ

&
 :

R eð ; gÞ ¼ e ð6Þ

To see the correctness of the above equation, we have

R eð ; gÞ ¼ eðg1; gÞ
r
 eðu; vÞ

rm
 eðð g1Þ ; gÞ

¼ eðg1; gÞ
r
 eðu; vÞ

rm
 eðð ; gÞ eðg1 ; gÞ ¼ eðu; vÞ

rm
 eðð ; gÞ eðg1; gÞ

r

þ

 Y

HðWiÞ i
!
u ; v

!
 eðg1; gÞ

&
 : ¼ e i

s
cs

 ¼ 1

guessing threat by TPA using valid from the response.

Specifically, the TPA can always guess whether
0

? ~
0
, by

Checking

? sc HðWi

Þ
i

Þ u

~
0

 ¼

~
0
 is eð ; gÞ ¼ eðð i¼s1 ; vÞ, where

constructed from random coefficients chosen by the TPA in the challenge and the guessed message

fm~igs1 i sc . However, we must note that ~
0
 is chosen from Zp and jpj is usually larger than 160 bits in practical

security settings (see Section 4.2). Given no background information, the success of this all-or-nothing guess on
0
 launched by TPA over such a large space Zp can be very difficult. Besides, because TPA must at least make c

successful guesses on the same set of blocks to derive fmigs1 i sc from the system of c linear equations, we can

specify c to be large enough in the protocol (e.g., as discussed in Section 3.4, a strict choice of c should be at

least larger than 460), which can significantly decrease the TPA’s successful guessing probability. In addition,

we can also restrict the number of reauditing on exactly the same set of blocks (e.g., to limit the repeated

auditing times on exactly the same set of blocks to be always less than c). In this way, TPA can be kept from

accumulating successful guesses on
0
 for the same set of blocks, which further diminishes the chance for TPA to

solve for fmigs1 i sc . In short, by appropriate choices of parameter c and group size Zp, we can effectively defeat

such potential offline guessing threat.

A Study on Data Controller-Preserving Public Auditing For Secure Cloud Storage

| IJMER | ISSN: 2249–6645 | ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 42 |

Nevertheless, we present a public auditing scheme with provably zero knowledge leakage. This scheme can

com-pletely eliminate the possibilities of above offline guessing attack, but at the cost of a little higher

communication and computation overhead. The setup phase is similar to our main scheme presented in Section

3.4. The secret para-

meters are sk ¼ ðx; sskÞ and the public parameters are

pk ¼ ðspk; v; g; u; eðu; vÞ; g1Þ, where g1 2 G1 is an additional

public group element. In the audit phase, upon receiving

challenge

chal

¼ fð

i;

iÞgi2I , the server chooses three

ran-

r

Dom

elements r ; r ;Z , and calculates R

¼

e g ; g

 r m p ð 1 Þ

eðu; vÞ
m
 2

GT and ¼ hðRÞ 2 Zp. Let
0

denote the linear

combination of sampled blocks
0

¼ i2I

m , and

 i i

denote the aggregated authenticator ¼
P
 i2I i

i
2 G1. To

 the server has to

ensure the auditing leaks zero knowledge,
Q

Blind both
0

 and . Specifically, the server computes:

¼

r

m þ

0
 mod p, and

¼

g . It then sends

f

&; ; ; R

 1 G

The last equality follows from the elaboration of (1) in Section 3.4.

Theorem 4. The above auditing protocol achieves zero-knowledge information leakage to the TPA, and it also

ensures the storage correctness guarantee.

Proof. Zero-knowledge is easy to see. Randomly pick ; ; &

from Zp and from G1, set R eðð
Qs

i¼
c
s1 HðWiÞ

i
 Þ u ; vÞ eðg1; gÞ

&
 =eð ; gÞ and backpatch ¼ hðRÞ. For

proof of storage correctness, we can extract similar to the extraction of
0
 as in the proof of Theorem 1. Likewise,

can be recovered from . To conclude, a valid pair of and
0
 can be extracted. tu

V. RELATED WORK
Ateniese et al. [9] are the first to consider public auditability in their ―provable data possession‖ (PDP)

model for ensuring possession of data files on untrusted storages. They utilize the RSA-based homomorphic

linear authenticators for auditing outsourced data and suggest randomly sampling a few blocks of the file.

However, among their two proposed schemes, the one with public auditability exposes the linear combination of

sampled blocks to external auditor. When used directly, their protocol is not provably privacy preser-ving, and

thus may leak user data information to the external auditor. Juels et al. [11] describe a ―proof of retrievability‖

(PoR) model, where spot-checking and error-correcting codes are used to ensure both ―possession‖ and

―retrieva-bility‖ of data files on remote archive service systems. However, the number of audit challenges a user

can perform is fixed a priori, and public auditability is not supported in their main scheme. Although they

describe a straightforward Merkle-tree construction for public PoRs, this approach only works with encrypted

data. Later, Bowers et al. [18] propose an improved framework for POR protocols that generalizes Juels’ work.

Dodis et al. [29] also give a study on different variants of PoR with private auditability. Shacham and Waters

[13] design an improved PoR scheme built from BLS signatures [19] with proofs of security in the security

model defined in [11]. Similar to the construction in [9], they use publicly verifiable homomorphic linear

authenticators that are built from provably secure BLS signatures. Based on

WANG ET AL.: PRIVACY-PRESERVING PUBLIC AUDITING FOR SECURE CLOUD

STORAGE

the elegant BLS construction, a compact and public verifiable scheme is obtained. Again, their

approach is not privacy preserving due to the same reason as [9]. Shah et al. [15], [10] propose introducing a

TPA to keep online storage honest by first encrypting the data then sending a number of pre-computed

symmetric-keyed hashes over the encrypted data to the auditor. The auditor verifies the integrity of the data file

and the server’s possession of a previously committed decryption key. This scheme only works for encrypted

A Study on Data Controller-Preserving Public Auditing For Secure Cloud Storage

| IJMER | ISSN: 2249–6645 | ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 43 |

files, requires the auditor to maintain state, and suffers from bounded usage, which potentially brings in online

burden to users when the keyed hashes are used up.

Dynamic data have also attracted attentions in the recent literature on efficiently providing the integrity

guarantee of remotely stored data. Ateniese et al. [21] is the first to propose a partially dynamic version of the

prior PDP scheme, using only symmetric key cryptography but with a bounded number of audits. In [22], Wang

et al. consider a similar support for partially dynamic data storage in a distributed scenario with additional

feature of data error localization. In a subsequent work, Wang et al. [8] propose to combine BLS-based HLA

with MHT to support fully data dynamics. Concurently, Erway et al. [23] develop a skip list-based scheme to

also enable provable data possession with full dynamics support. However, the verification in both protocols

requires the linear combination of sampled blocks as an input, like the designs in [9], [13], and thus does not

support privacy-preserving auditing.

In other related work, Sebe et al. [30] thoroughly study a set of requirements which ought to be

satisfied for a remote data possession checking protocol to be of practical use. Their proposed protocol supports

unlimited times of file integrity verifications and allows preset tradeoff between the protocol running time and

the local storage burden at the user. Schwarz and Miller [31] propose the first study of checking the integrity of

the remotely stored data across multiple distributed servers. Their approach is based on erasure-correcting code

and efficient algebraic signatures, which also have the similar aggregation property as the homomorphic

authenticator utilized in our approach. Curtmola et al. [32] aim to ensure data possession of multiple replicas

across the distributed storage system. They extend the PDP scheme in [9] to cover multiple replicas without

encoding each replica separately, providing guarantee that multiple copies of data are actually maintained. In

[33], Bowers et al. utilize a two-layer erasure-correcting code structure on the remotely archived data and extend

their POR model [18] to distributed scenario with high-data availability assurance. While all the above schemes

provide methods for efficient auditing and provable assurance on the correctness of remotely stored data, almost

none of them necessarily meet all the requirements for privacy-preserving public auditing of storage. Moreover,

none of these schemes consider batch auditing, while our scheme can greatly reduce the computation cost on the

TPA when coping with a large number of audit delegations.

Portions of the work presented in this paper have previously appeared as an extended abstract in [1].

We have revised the paper a lot and improved many technical details as compared to [1]. The primary

improvements are as follows: First, we provide a new privacy-preserving public auditing protocol with

enhanced security strength in

Section 3.4. For completeness, we also include an additional (but slightly less efficient) protocol design

for provably secure zero-knowledge leakage public auditing scheme in Section 5. Second, based on the

enhanced main auditing scheme, we provide a new provably secure batch auditing protocol. All the experiments

in our performance evaluation for the newly designed protocol are completely redone. Third, we extend our

main scheme to support data dynamics in Section 3.6, and provide discussions on how to generalize our privacy-

preserving public auditing scheme in Section 3.7, which are lacking in [1]. Finally, we provide formal analysis

of privacy-preserving guarantee and storage correctness, while only heuristic arguments are sketched in [1].

VI. CONCLUSION
In this paper, we propose a privacy-preserving public auditing system for data storage security in cloud

comput-ing. We utilize the homomorphic linear authenticator and random masking to guarantee that the TPA

would not learn any knowledge about the data content stored on the cloud server during the efficient auditing

process, which not only eliminates the burden of cloud user from the tedious and possibly expensive auditing

task, but also alleviates the users’ fear of their outsourced data leakage. Considering TPA may concurrently

handle multiple audit sessions from different users for their outsourced data files, we further extend our privacy-

preserving public auditing protocol into a multiuser setting, where the TPA can perform multiple auditing tasks

in a batch manner for better efficiency. Extensive analysis shows that our schemes are provably secure and

highly efficient. Our preliminary experiment conducted on Amazon EC2 instance further demonstrates the fast

performance of our design on both the cloud and the auditor side. We leave the full-fledged implementation of

the mechanism on commercial public cloud as an important future extension, which is expected to robustly cope

with very large scale data and thus encourage users to adopt cloud storage services more confidently.

ACKNOWLEDGMENTS
This work was supported in part by the US National Science Foundation (NSF) under grants CNS-1054317,

CNS-1116939, CNS-1156318, and CNS-1117111, and by Amazon web service research grant. A preliminary

version [1] of this paper was presented at the 29th IEEE Conference on Computer Communications (INFOCOM

’10).

A Study on Data Controller-Preserving Public Auditing For Secure Cloud Storage

| IJMER | ISSN: 2249–6645 | ww.ijmer.com | Vol. 8 | Iss. 01 | January 2018 | 44 |

REFERENCES
[1]. C. Wang, Q. Wang, K. Ren, and W. Lou, ―Privacy-Preserving Public Auditing for Storage Security in Cloud

Computing,‖ Proc. IEEE INFOCOM ’10, Mar. 2010.

[2]. P. Mell and T. Grance, ―Draft NIST Working Definition of Cloud Computing,‖

http://csrc.nist.gov/groups/SNS/cloud-computing/index.html, June 2009.

[3]. M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I.

Stoica, and M. Zaharia, ―Above the Clouds: A Berkeley View of Cloud Comput-ing,‖ Technical Report UCB-EECS-

2009-28, Univ. of California, Berkeley, Feb. 2009.

[4]. Cloud Security Alliance, ―Top Threats to Cloud Computing,‖ http://www.cloudsecurityalliance.org, 2010.

[5]. M. Arrington, ―Gmail Disaster: Reports of Mass Email Deletions,‖ http://www.techcrunch.com/2006/12/28/gmail-

disasterreports-of-mass-email-deletions/, 2006.

[6]. J. Kincaid, ―MediaMax/TheLinkup Closes Its Doors,‖ http:// www.techcrunch.com/2008/07/10/mediamaxthelinkup-

closes-its-doors/, July 2008.

[7]. Amazon.com, ―Amazon s3 Availability Event: July 20, 2008,‖ http://status.aws.amazon.com/s3-20080720.html, July

2008.

[8]. Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, ―Enabling Public Auditability and Data Dynamics for Storage

Security in Cloud Computing,‖ IEEE Trans. Parallel and Distributed Systems, vol. 22, no. 5, pp. 847-859, May 2011.

[9]. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song, ―Provable Data Possession at

Untrusted Stores,‖ Proc. 14th ACM Conf. Computer and Comm. Security (CCS ’07), pp. 598-609, 2007.

[10]. M.A. Shah, R. Swaminathan, and M. Baker, ―Privacy-Preserving Audit and Extraction of Digital Contents,‖

Cryptology ePrint Archive, Report 2008/186, 2008.

[11]. A. Juels and J. Burton, S. Kaliski, ―PORs: Proofs of Retrievability for Large Files,‖ Proc. ACM Conf. Computer and

Comm. Security (CCS ’07), pp. 584-597, Oct. 2007.

[12]. Cloud Security Alliance, ―Security Guidance for Critical Areas of Focus in Cloud Computing,‖

http://www.cloudsecurityalliance. org, 2009.

[13]. H. Shacham and B. Waters, ―Compact Proofs of Retrievability,‖ Proc. Int’l Conf. Theory and Application of

Cryptology and Information Security: Advances in Cryptology (Asiacrypt), vol. 5350, pp. 90-107, Dec. 2008.

[14]. C. Wang, K. Ren, W. Lou, and J. Li, ―Towards Publicly Auditable Secure Cloud Data Storage Services,‖ IEEE

Network Magazine, vol. 24, no. 4, pp. 19-24, July/Aug. 2010.

[15]. M.A. Shah, M. Baker, J.C. Mogul, and R. Swaminathan, ―Auditing to Keep Online Storage Services Honest,‖ Proc.

11th USENIX Workshop Hot Topics in Operating Systems (HotOS ’07), pp. 1-6, 2007.

[16]. 104th United States Congress, ―Health Insurance Portability and Accountability Act of 1996 (HIPPA),‖

http://aspe.hhs.gov/ admnsimp/pl104191.htm, 1996.

[17]. R. Curtmola, O. Khan, and R. Burns, ―Robust Remote Data Checking,‖ Proc. Fourth ACM Int’l Workshop Storage

Security and Survivability (StorageSS ’08), pp. 63-68, 2008.

[18]. K.D. Bowers, A. Juels, and A. Oprea, ―Proofs of Retrievability: Calgary,distributed systems security in general. He

serves on the program

[19]. D. Boneh, B. Lynn, and H. Shacham, ―Short Signatures from the committees of several international conferences

including ACNS 2012-Weil Pairing,‖ J. Cryptology, vol. 17, no. 4, pp. 297-319, 2004. 2013, ASIACRYPT 2012-

2013, WPES 2012, ASIACCS 2013, IEEE-CNS

Dr Sai Manoj Kudaravalli P ―A Study on Data Controller-Preserving Public Auditing For Secure Cloud

Storage‖ International Journal Of Modern Engineering Research (IJMER), vol. 08, no. 01, 2018, pp. 27–

44.

