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I. INTRODUCTION 
CLOUD: computing has been envisioned as the next-generation information technology (IT) 

architecture for enterprises, due to its long list of unprecedented advantages in  the  IT  history:  on-demand  

self-service,  ubiquitous network access, location independent resource pooling, rapid resource elasticity, usage-

based pricing and transfer-ence of risk [2]. As a disruptive technology with profound implications, cloud 

computing is transforming the very nature of how businesses use information technology. One fundamental 

aspect of this paradigm shifting is that data are being centralized or outsourced to the cloud. From users’ 

perspective, including both individuals and IT enterprises, storing data remotely to the cloud in a flexible on-

demand manner brings appealing benefits: relief of the burden for storage management, universal data access 

with location independence, and avoidance of capital expenditure on hardware, software, and personnel 

maintenances, etc., [3]. 

 While cloud computing makes these advantages more appealing than ever, it also brings new and 

challenging security threats toward users’ outsourced data. Since cloud service providers (CSP) are separate 

administrative entities, data outsourcing is actually relinquishing user’s ultimate control over the fate of their 

data. As a result, the correctness of the data in the cloud is being put at risk due to the following reasons. First of 

all, although the infrastructures under the cloud are much more powerful and reliable than personal computing 

devices, they are still facing the broad range of both internal and external threats for data integrity [4]. Examples 

of outages and security breaches of noteworthy cloud services appear from time to time [5], [6], [7]. Second, 

there do exist various motivations for CSP to behave unfaithfully toward the cloud users regarding their 

outsourced data status. For examples, CSP might reclaim storage for monetary reasons by discarding data that 

have not been or are rarely accessed, or even hide data loss incidents to maintain a reputation [8], [9], [10]. In 

short, although outsourcing data to the cloud is economic-ally attractive for long-term large-scale storage, it 

does not immediately offer any guarantee on data integrity and availability. This problem, if not properly 

addressed, may impede the success of cloud architecture. 

As users no longer physically possess the storage of their data, traditional cryptographic primitives for 

the purpose of data security protection cannot be directly adopted [11]. In particular, simply downloading all the 

data for its integrity verification is not a practical solution due to the expensiveness in I/O and transmission cost 

across the network. Besides, it is often insufficient to detect the data corruption only when accessing the data, as 

it does not give users correctness assurance for those unaccessed data and might be too late to recover the data 

loss or damage. 
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Considering the large size of the outsourced data and the user’s constrained resource capability, the 

tasks of auditing the data correctness in a cloud environment can be formidable and expensive for the cloud 

users [12], [8]. Moreover, the overhead of using cloud storage should be minimized as much as possible, such 

that a user does not need to perform too many operations to use the data (in additional to retrieving the data). In 

particular, users may not want to go through the complexity in verifying the data integrity. Besides, there may 

be more than one user accesses the same cloud storage, say in an enterprise setting. For easier management, it is 

desirable that cloud only entertains verification request from a single designated party. 

To fully ensure the data integrity and save the cloud users’ computation resources as well as online 

burden, it is of critical importance to enable public auditing service for cloud data storage, so that users may 

resort to an independent third-party auditor (TPA) to audit the outsourced data when needed. The TPA, who has 
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expertise and capabilities that users do not, can periodically check the integrity of all the data stored in the cloud 

on behalf of the users, which provides a much more easier and affordable way for the users to ensure their 

storage correctness in the cloud. Moreover, in addition to help users to evaluate the risk of their subscribed 

cloud data services, the audit result from TPA would also be beneficial for the cloud service providers to 

improve their cloud-based service platform, and even serve for indepen-dent arbitration purposes [10]. In a 

word, enabling public auditing services will play an important role for this nascent cloud economy to become 

fully established, where users will need ways to assess risk and gain trust in the cloud. 

Recently, the notion of public auditability has been proposed in the context of ensuring remotely stored data 

integrity under different system and security models [9], [13], [11], [8]. Public auditability allows an external 

party, in addition to the user himself, to verify the correctness of remotely stored data. However, most of these 

schemes [9], [13], [8] do not consider the privacy protection of users’ data against external auditors. Indeed, 

they may potentially reveal user’s data to auditors, as will be discussed in Section 3.4. This severe drawback 

greatly affects the security of these protocols in cloud computing. From the perspective of protecting data 

privacy, the users, who own the data and rely on TPA just for the storage security of their data, do not want this 

auditing process introducing new vulnerabilities of unauthorized information leakage toward their data security 

[14], [15]. Moreover, there are legal regulations, such as the US Health Insurance Port-ability and 

Accountability Act (HIPAA) [16], further demanding the outsourced data not to be leaked to external parties 

[10]. Simply exploiting data encryption before outsourcing [15], [11] could be one way to mitigate this privacy 

concern of data auditing, but it could also be an overkill when employed in the case of unencrypted/public cloud 

data (e.g., outsourced libraries and scientific data sets), due to the unnecessary processing burden for cloud 

users. Besides, encryption does not completely solve the problem of protecting data privacy against third-party 

auditing but just reduces it to the complex key management 

domain. Unauthorized data leakage still remains possible due to the potential exposure of decryption keys. 

Therefore, how to enable a privacy-preserving third-party auditing protocol, independent to data 

encryption, is the problem we are going to tackle in this paper. Our work is among the first few ones to support 

privacy-preserving public auditing in cloud computing, with a focus on data storage. Besides, with the 

prevalence of cloud computing, a foreseeable increase of auditing tasks from different users may be delegated to 

TPA. As the individual auditing of these growing tasks can be tedious and cumbersome, a natural demand is 

then how to enable the TPA to efficiently perform multiple auditing tasks in a batch manner, i.e., 

simultaneously. 

To address these problems, our work utilizes the technique of public key-based homomorphic linear 

authen-ticator (or HLA for short) [9], [13], [8], which enables TPA to perform the auditing without demanding 

the local copy of data and thus drastically reduces the communication and computation overhead as compared to 

the straightforward data auditing approaches. By integrating the HLA with random masking, our protocol 

guarantees that the TPA could not learn any knowledge about the data content stored in the cloud server (CS) 

during the efficient auditing process. The aggregation and algebraic properties of the authenticator further 

benefit our design for the batch auditing. Specifically, our contribution can be summarized as the following 

three aspects: 

 

1. We motivate the public auditing system of data storage security in cloud computing and provide a 

privacy-preserving auditing protocol. Our scheme enables an external auditor to audit user’s cloud data without 

learning the data content. 

2. To the best of our knowledge, our scheme is the first to support scalable and efficient privacy-

preserving public storage auditing in cloud. Specifically, our scheme achieves batch auditing where multiple 

delegated auditing tasks from different users can be performed simultaneously by the TPA in a privacy-

preserving manner. 

3. We prove the security and justify the performance of our proposed schemes through concrete experi-

ments and comparisons with the state of the art. 

The rest of the paper is organized as follows: Section 2 introduces the system and threat model, and our design 

goals. Then, we provide the detailed description of our scheme in Section 3. Section 4 gives the security analysis 

and performance evaluation. Section 5 presents further discussions on a zero-knowledge auditing protocol, fol-

lowed by Section 6 that overviews the related work. Finally, Section 7 gives the concluding remark of the whole 

paper. 

 

II. PROBLEM STATEMENT 
2.1 The System and Threat Model 

We consider a cloud data storage service involving three different entities, as illustrated in Fig. 1: the cloud user, 

who has large amount of data files to be stored in the cloud; the cloud server, which is managed by the cloud 

service provider to provide data storage service and has significant storage 
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Fig. 1. The architecture of cloud data storage service. 

 

space and computation resources (we will not differentiate CS and CSP hereafter); the third-party 

auditor, who has expertise and capabilities that cloud users do not have and is trusted to assess the cloud storage 

service reliability on behalf of the user upon request. Users rely on the CS for cloud data storage and 

maintenance. They may also dynamically interact with the CS to access and update their stored data for various 

application purposes. As users no longer possess their data locally, it is of critical importance for users to ensure 

that their data are being correctly stored and maintained. To save the computation resource as well as the online 

burden potentially brought by the periodic storage correctness verification, cloud users may resort to TPA for 

ensuring the storage integrity of their outsourced data, while hoping to keep their data private from TPA. 

We assume the data integrity threats toward users’ data can come from both internal and external attacks at CS. 

These may include: software bugs, hardware failures, bugs in the network path, economically motivated 

hackers, malicious or accidental management errors, etc. Besides, CS can be self-interested. For their own 

benefits, such as to maintain reputation, CS might even decide to hide these data corruption incidents to users. 

Using third-party auditing service provides a cost-effective method for users to gain trust in cloud. We assume 

the TPA, who is in the business of auditing, is reliable and independent. However, it may harm the user if the 

TPA could learn the outsourced data after the audit. 

Note that in our model, beyond users’ reluctance to leak data to TPA, we also assume that cloud servers 

has no incentives to reveal their hosted data to external parties. On the one hand, there are regulations, e.g., 

HIPAA [16], requesting CS to maintain users’ data privacy. On the other hand, as users’ data belong to their 

business asset [10], there also exist financial incentives for CS to protect it from any external parties. Therefore, 

we assume that neither CS nor TPA has motivations to collude with each other during the auditing process. In 

other words, neither entities will deviate from the prescribed protocol execution in the following presentation. 

To authorize the CS to respond to the audit delegated to TPA’s, the user can issue a certificate on TPA’s public 

key, and all audits from the TPA are authenticated against such a certificate. These authentication handshakes 

are omitted in the following presentation. 

 

2.2 Design Goals 

To enable privacy-preserving public auditing for cloud data storage under the aforementioned model, our 

protocol 

design should achieve the following security and perfor-mance guarantees: 

 

1. Public auditability: to allow TPA to verify the correctness of the cloud data on demand without 

retrieving a copy of the whole data or introducing additional online burden to the cloud users. 

2. Storage correctness: to ensure that there exists no cheating cloud server that can pass the TPA’s audit 

without indeed storing users’ data intact. 

3. Privacy preserving: to ensure that the TPA cannot derive users’ data content from the information 

collected during the auditing process. 

4. Batch auditing: to enable TPA with secure and efficient auditing capability to cope with multiple 

auditing delegations from possibly large number of different users simultaneously. 

5. Lightweight: to allow TPA to perform auditing with minimum communication and computation 

overhead. 

III. THE PROPOSED SCHEMES 
This section presents our public auditing scheme which provides a complete outsourcing solution of 

data—not only the data itself, but also its integrity checking. After introducing notations and brief preliminaries, 

we start from an overview of our public auditing system and discuss two straightforward schemes and their 

demerits. Then, we present our main scheme and show how to extent our main scheme to support batch auditing 
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for the TPA upon delegations from multiple users. Finally, we discuss how to generalize our privacy-preserving 

public auditing scheme and its support of data dynamics. 

 

3.1 Notation and Preliminaries 

. F —the data file to be outsourced, denoted as a sequence of n blocks m1; . . . ; mi; . . . ; mn 2 Zp for 

some large prime p. 

 

. MACð Þð Þ—message authentication code (MAC) function, defined as: K f0; 1g ! f0; 1g
l
 where K 

denotes the key space. 

 

. Hð Þ, hð Þ—cryptographic hash functions. 

 

We now introduce some necessary cryptographic back-ground for our proposed scheme. 

Bilinear Map. Let G1, G2, and GT be multiplicative cyclic groups of prime order p. Let g1 and g2 be generators of 

G1 and G2, respectively. A bilinear map is a map e : G1 G2 ! GT such that for all u 2 G1, v 2 G2 and a; b 2 Zp, 

eðu
a
; v

b
Þ ¼ eðu; vÞ

ab
. This bilinearity implies that for any u1, u2 2 G1, v 2 G2, eðu1 u2; vÞ ¼ eðu1; vÞ eðu2; vÞ. 

Of course, there exists an efficiently computable algorithm for com-puting e and the map should be nontrivial, 

i.e., e is nondegenerate: eðg1; g2Þ ¼6 1. 

 

3.2 Definitions and Framework 

We follow a similar definition of previously proposed schemes in the context of remote data integrity checking 

[9], [11], [13] and adapt the framework for our privacy-preserving public auditing system. 
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A public auditing scheme consists of four algorithms (KeyGen, SigGen, GenProof, VerifyProof). KeyGen is a 

key generation algorithm that is run by the user to setup the scheme. SigGen is used by the user to generate 

verification metadata, which may consist of digital signa-tures. GenProof is run by the cloud server to generate a 

proof of data storage correctness, while VerifyProof is run by the TPA to audit the proof Running a public 

auditing system consists of two phases, 

 

Setup and Audit: 

. Setup: The user initializes the public and secret parameters of the system by executing KeyGen, and 

preprocesses the data file F by using SigGen to generate the verification metadata. The user then stores the data 

file F and the verification metadata at the cloud server, and deletes its local copy. As part of preprocessing, the 

user may alter the data file F by expanding it or including additional metadata to be stored at server. 

. Audit: The TPA issues an audit message or challenge to the cloud server to make sure that the cloud 

server has retained the data file F properly at the time of the audit. The cloud server will derive a response 

message by executing GenProof using F and its verification metadata as inputs. The TPA then verifies the 

response via VerifyProof. 

Our framework assumes that the TPA is stateless, i.e., TPA does not need to maintain and update state between 

audits, which is a desirable property especially in the public auditing system [13]. Note that it is easy to extend 

the framework above to capture a stateful auditing system, essentially by splitting the verification metadata into 

two parts which are stored by the TPA and the cloud server, respectively. Our design does not assume any 

additional property on the data file. If the user wants to have more error resilience, he can first redundantly 

encodes the data file and then uses our system with the data that has error-correcting codes integrated.
1 

 

3.3 The Basic Schemes 

Before giving our main result, we study two classes of schemes as a warmup. The first one is a MAC-

based solution which suffers from undesirable systematic demerits— bounded usage and stateful verification, 

which may pose additional online burden to users, in a public auditing setting. This also shows that the auditing 

problem is still not easy to solve even if we have introduced a TPA. The second one is a system based on 

homomorphic linear authentica-tors, which covers many recent proof of storage systems. We will pinpoint the 

reason why all existing HLA-based systems are not privacy preserving. The analysis of these basic schemes 

leads to our main result, which overcomes all these drawbacks. Our main scheme to be presented is based on a 

specific HLA scheme. 

MAC-based solution. There are two possible ways to make use of MAC to authenticate the data. A trivial way is 

just uploading the data blocks with their MACs to the server, and sends the corresponding secret key sk to the 
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1. We refer readers to [17], [18] for the details on integration of error-correcting codes and remote data integrity 

checking. 

TPA. Later, the TPA can randomly retrieve blocks with their MACs and check the correctness via sk. 

Apart from the high (linear in the sampled data size) communication and computation complexities, the TPA 

requires the knowledge of the data blocks for verification. 

To circumvent the requirement of the data in TPA verification, one may restrict the verification to just 

consist of equality checking. The idea is as follows: Before data outsourcing, the cloud user chooses s random 

message authentication code keys fsk g1 s, precomputes s (deter-ministic) MACs, fMACsk ðF Þg1 s for the whole 

data file F , and publishes these verification metadata (the keys and the MACs) to TPA. The TPA can reveal a 

secret key sk to the cloud server and ask for a fresh keyed MAC for comparison in each audit. This is privacy 

preserving as long as it is impossible to recover F in full given MACsk ðF Þ and sk . However, it suffers from the 

following severe draw-backs: 1) the number of times a particular data file can be audited is limited by the 

number of secret keys that must be fixed a priori. Once all possible secret keys are exhausted, the user then has 

to retrieve data in full to recompute and republish new MACs to TPA; 2) The TPA also has to maintain and 

update state between audits, i.e., keep track on the revealed MAC keys. Considering the potentially large 

number of audit delegations from multiple users, maintaining such states for TPA can be difficult and error 

prone; 3) it can only support static data, and cannot efficiently deal with dynamic data at all. However, 

supporting data dynamics is also of critical importance for cloud storage systems. For the reason of brevity and 

clarity, our main protocol will be presented based on static data. Section 3.6 will describe how to adapt our 

protocol for dynamic data. 

HLA-based solution. To effectively support public auditability without having to retrieve the data blocks 

themselves, the HLA technique [9], [13], [8] can be used. HLAs, like MACs, are also some unforgeable 

verification metadata that authenticate the integrity of a data block. The difference is that HLAs can be 

aggregated. It is possible to compute an aggregated HLA which authenticates a linear combination of the 

individual data blocks. 

At a high level, an HLA-based proof of storage system works as follow. The user still authenticates each 

element of F ¼ fmig by a set of HLAs . The TPA verifies the cloud storage by sending a random set of challenge 

f ig. The 

P authenticator computed from . 

cloud server then returns   ¼  i  i  mi and its aggregated 

Though allowing efficient data auditing and consuming only constant bandwidth, the direct adoption of these 

HLA-based techniques is still not suitable for our purposes. This is because the linear combination of blocks, ¼ 
P

i i mi, may potentially reveal user data information to TPA, and violates the privacy-preserving guarantee. 

Specifically, by challenging the same set of c block m1; m2; . . . ; mc using c different sets of random coefficients 

f ig, TPA can accumulate c different linear combinations 1; . . . ; c. With f i g and f ig, TPA can derive the user’s 

data m1; m2; . . . ; mc by simply solving a system of linear equations. 

 

TABLE 1 The Privacy-Preserving Public Auditing Protocol 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Privacy-Preserving Public Auditing Scheme 

Overview. To achieve privacy-preserving public auditing, we propose to uniquely integrate the homomorphic 

linear authenticator with random masking technique. In our protocol, the linear combination of sampled blocks 

in the server’s response is masked with randomness generated by the server. With random masking, the TPA no 

longer has all the necessary information to build up a correct group of linear equations and therefore cannot 

derive the user’s data content, no matter how many linear combinations of the same set of file blocks can be 

collected. On the other hand, the correctness validation of the block-authenticator pairs can still be carried out in 
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a new way which will be shown shortly, even with the presence of the randomness. Our design makes use of a 

public key-based HLA, to equip the auditing protocol with public auditability. Specifically, we use the HLA 

proposed in [13], which is based on the short signature scheme proposed by Boneh, Lynn, and Shacham 

(hereinafter referred as BLS signature) [19]. 

 

Scheme details. Let G1, G2, and GT be multiplicative cyclic groups of prime order p, and e : G1 G2 ! GT be a 

bilinear map as introduced in preliminaries. Let g be a generator of G2. Hð Þ is a secure map-to-point hash 

function: f0; 1g ! G1, which maps strings uniformly to G1. Another hash function hð Þ : GT ! Zp maps group 

element of GT uniformly to Zp. Our scheme is as follows: 

Setup Phase: The cloud user runs KeyGen to generate the public and secret parameters. Specifically, the user 

 

 spk; ssk 

Þ, a 

Random 

chooses a random signing key pair ð  x  

X Zp, a random element u   G1, and computes v   g  . 

The secret  parameter  is  sk ¼ ðx; sskÞ and the Public 

parameters are pk ¼ ðspk; v; g; u; eðu; vÞÞ.     

Given a data file F ¼ fmig, the user runs SigGen to compute authenticator i ðHðWiÞ u
mi

 Þ
x
 2 G1 for each i. Here, 

Wi ¼ nameki and name is chosen by the user uniformly at random from Zp as the identifier of file F . Denote the 

set of authenticators by ¼ f ig1 i n. 

The last part of SigGen is for ensuring the integrity of the unique file identifier name. One simple way to do this 

is 

to compute t ¼ namekSSigsskðnameÞ as the file tag for F , where SSigsskðnameÞ is the signature on name under 

the 

private key ssk. For simplicity, we assume the TPA knows the number of blocks n. The user then sends F along 

with the verification metadata ð ; tÞ to the server and deletes them from local storage. 

Audit Phase: The TPA first retrieves the file tag t. With respect to the mechanism we describe in the Setup 

phase, 

the TPA verifies the signature SSigsskðnameÞ via spk, and quits by emitting FALSE if the verification fails. 

Otherwise, 

the TPA recovers name. 

 

Now it comes to the ―core‖ part of the auditing process. To generate the challenge message for the audit ―chal,‖ 

the TPA picks a random c-element subset I ¼ fs1; . . . ; scg of set ½1; n&. For each element i 2 I, the TPA also 

chooses a random value i (of bit length that can be shorter than jpj, as explained in [13]). The message ―chal‖ 

specifies the positions of the blocks required to be checked. The TPA sends chal ¼ fði; iÞgi2I to the server. 

Upon receiving challenge chal ¼ fði; iÞgi2I , the server runs GenProof to generate a response proof of data 

storage correctness. Specifically, the server chooses a random element r Zp, and calculates R ¼ eðu; vÞ
r
 2 GT . 

Let 
0 

denote the linear combination of sampled blocks specified in chal: 
0
 ¼ 

P
i2I imi. To blind 

0
 with r, the server 

computes: ¼ r þ 
0
 mod p, where ¼ hðRÞ 2 Zp. Mean- 

while, the server also calculates an aggregated authenticator 

¼ 

Q 

f ;  ; Rg as the response i2I  i 
i
  2 G1. It then sends 

 

proof of storage correctness to the TPA. With the response, the TPA runs VerifyProof to validate it by first 

comput-ing ¼ hðRÞ and then checking the verification equation 

 Y   

? 

s
c   

i¼s1 HðWiÞ 
i
 
!
 u ; v

!
: 

 

R  eð  ; gÞ ¼ e ð1Þ 

 

The protocol is illustrated in Table 1. The correctness of the above verification equation is elaborated as follows: 

R  eð  ; gÞ ¼ eðu; vÞ
r
  

e i 
s
cs ðHðWiÞ umi Þ

x
  i 

!
 ; g

! 

   Y   

¼ eðu
r
; vÞ e 

¼ 1  
!
 ; g

!
x i 

s
cs ðHðWiÞ i   u i 

m
i 
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   Y   

¼ eðu
r
; vÞ e 

¼ 1 

u 
0 

; v
! 

i 
s
cs HðWiÞ i 

! 

   Y   

¼ e i 
s
cs 

 
¼
 1   

HðWiÞ 
i !

 u 0  þr; v
! 

 

 Y      

¼ e 

¼ 1 HðWiÞ 
i ! 

u ; v
!
: 

  

i 
s
cs   

 Y      

 ¼ 1      
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Properties of our protocol. It is easy to see that our protocol achieves public auditability. There is no 

secret keying material or states for the TPA to keep or maintain between audits, and the auditing protocol does 

not pose any potential online burden on users. This approach ensures the privacy of user data content during the 

auditing process by employing a random masking r to hide , a linear combination of the data blocks. Note that 

the value R in our protocol, which enables the privacy-preserving guarantee, will not affect the validity of the 

equation, due to the circular relationship between R and in ¼ hðRÞ and the verification equation. Storage 

correctness thus follows from that of the underlying protocol [13]. The security of this protocol will be formally 

proven in Section 4. Besides, the HLA helps achieve the constant communica-tion overhead for server’s 

response during the audit: the size of f ; ; Rg is independent of the number of sampled blocks c. 

Previous work [9], [8] showed that if the server is missing a fraction of the data, then the number of blocks that 

needs to be checked in order to detect server misbehavior with high probability is in the order of Oð1Þ. In 

particular, if t fraction of data is corrupted, then random sampling c blocks would reach the detection probability 

P ¼ 1 ð1 tÞ
c
. Here, every block is chosen uniformly at random. When t ¼ 1% of the data F , the TPA only needs 

to audit for c ¼ 300 or 460 randomly chosen blocks of F to detect this misbehavior with probability larger than 

95 and 99 percent, respectively. Given the huge volume of data outsourced in the cloud, checking a portion of 

the data file is more affordable and practical for both the TPA and the cloud server than checking all the data, as 

long as the sampling strategies provides high-probability assurance. In Section 4, we will present the experiment 

result based on these sampling strategies. 

For some cloud storage providers, it is possible that certain information dispersal algorithms (IDA) may be used 

to fragment and geographically distribute the user’s out-sourced data for increased availability. We note that 

these cloud side operations would not affect the behavior of our proposed mechanism, as long as the IDA is 

systematic, i.e., it preserves user’s data in its original form after encoding with redundancy. This is because from 

user’s perspective, as long as there is a complete yet unchanged copy of his outsourced data in cloud, the 

precomputed verification metadata ð ; tÞ will remain valid. As a result, those metadata can still be utilized in our 

auditing mechanism to guarantee the correctness of user’s outsourced cloud data. 

Storage and communication tradeoff. As described above, each block is accompanied by an authenticator of 

equal size of jpj bits. This gives about 2 storage overhead on server. However, as noted in [13], we can 

introduce a parameter s in the authenticator construction to adjust this storage overhead, in the cost of commu-

nication overhead in the auditing protocol between TPA and cloud server. In particular, we assume each block 

mi 

 

consists of s sectors fmijg with 1 j s, where mij 2 Zp. The public parameter pk is now ðspk; v; g; fujg; feðuj; 

vÞgÞ, the storage overhead to ð1 þ 1=sÞ  . 

 

1   j   s, where u1; u2; . . . ; us are randomly chosen from 

G1. The  authenticator   i of  mi  is constructed  as: 

I ðHðWiÞ   j
s
¼1 uj

mij
 Þ

x
 2 G1.  Because we  now  have 

One 

authenticator per block (or per s sectors), we reduce 

Q   

 

 

 To respond to the auditing challenge chal ¼ fði; iÞgi2I , 
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for 

1 

 

j 

 

s 

, the cloud server 

chooses a random elements 

   rj 

2 GT . Then, the server rj  Zp, and calculates Rj ¼ eðu; vÞ  

blinds each  j
0
 ¼ i2I  imij with rj, and derives the blinded 

 
j ¼ rj þ   j

0
 mod

P
, where 

 

¼ ð 1k 2k   k sÞ 2 Zp. The 

      p   h R  R R 

 

aggregated authenticator is still computed as before. It then sends f ; f j; Rjg1 j sg as the proof response to TPA. 

With the proof, TPA first computes ¼ hðR1kR2k kRsÞ, and then checks the following verification: 

 

 Y  Y   

? 

sc  s 

 

 

i¼s1 
H
ð

W
iÞ 

i
 
! 

   

R1     Rs  eð  ; gÞ ¼ e  j¼1 uj 
j
 ; v

!
: ð2Þ 

 

The correctness elaboration is similar to (1) and thus omitted. The overall storage overhead is reduced to ð1 þ 

1=sÞ , but the proof size now increases roughly s due to the additional s element pairs f j; Rj g1 j s that the cloud 

server has to return. For presentation simplicity, we continue to choose s ¼ 1 in our following scheme descrip-

tion. We will present some experiment results with larger choice of s in Section 4. 

 

3.5 Support for Batch Auditing 

With the establishment of privacy-preserving public auditing, the TPA may concurrently handle 

multiple auditing upon different users’ delegation. The individual auditing of these tasks for the TPA can be 

tedious and very inefficient. Given K auditing delegations on K distinct data files from K different users, it is 

more advantageous for the TPA to batch these multiple tasks together and audit at one time. Keeping this natural 

demand in mind, we slightly modify the protocol in a single user case, and achieves the aggregation of K 

verification equations (for K auditing tasks) into a single one, as shown in (3). As a result, a secure batch 

auditing protocol for simultaneous auditing of multiple tasks is obtained. The details are described as follows: 

 

Setup phase: Basically, the users just perform Setup independently. Suppose there are K users in the system, and 

each user k has a data file Fk ¼ ðmk;1; . . . ; mk;nÞ to be outsourced to the cloud server, where k 2 f1; . . . ; Kg. 

For simplicity, we assume each file Fk has the same number of n blocks. For a particular user k, denote his/her 

secret key as ðxk; sskkÞ, and the corresponding public parameter as ðspkk; vk; g; uk; eðuk; vkÞÞ where vk ¼ g
xk

 . 

Similar to the single user case, each user k has already randomly chosen a different (with overwhelming 

probability) name namek 2 Zp for his/her file Fk, and has correctly generated the corresponding file tag tk ¼ 

namekkSSigsskk ðnamekÞ. Then, each user k runs SigGen and computes k;i for block 

m
k;i 

:
  k;i HðnamekkiÞ uk

mk;i x
k 

i 1; . . . ; n  ; H Wk;i 

Þ 

uk
m

k;i 

x

k 

2 

G1 

¼ ð    ð 2 f gÞ 

where Wk;i ¼ namekki. Finally, each user k sends file Fk, set of authenticators k, and tag tk to the server and 

deletes them from local storage. 

 

Audit phase: TPA first retrieves and verifies file tag tk for each user k for later auditing. If the verification fails, 

TPA quits by emitting FALSE. Otherwise, TPA recovers 

  

TABLE 2 The Batch Auditing Protocol 
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namek  and sends the audit challenge chal ¼ fði; iÞgi2I  to 

the server for auditing data files of all K users. 

 

Upon receiving chal, for each user k 2 f1; . . . ; Kg, the 

server rrandomlyk picks  rk 2 Zp  and  computes  Rk ¼ 

eðuk; vkÞ . Denote R ¼ R1  R2    RK , and L ¼ vk1kvk2k 

 

kvkK , our protocol further requires the server to compute k ¼ hðRkvkkLÞ. Then, the randomly masked 

responses can be generated as follows: 

X Y 

sc sc 

k ¼  kimk;i þ rk    mod p and  k ¼ k;i
i
: 

i¼s1 i¼s1 

 

The server then responds with ff k;  kg1  k  K ; Rg. 

To verify the response, the TPA can first compute k ¼ hðRkvkkLÞ for 1 k K. Next, TPA checks if the following 

equation holds: 

 Y  

k ; g
! 

Y  Y 

HðWk;iÞ i 
! 

  

!: 

 

 K  K  sc    

   ?      

R e k¼1 k 
¼
 k¼1 e i¼s1 

k
   uk 

k
 ; vk ð3Þ 

The batch protocol is illustrated in Table 2. Here, the left-hand side (LHS) of (3) expands as 

   Y  

   K 

e  k
k
 ; g LHS ¼ R1  R2    RK 

Y 

 

 

k¼1  

  k 

K 

Rk  e  k
k
 ; g 

 

¼  

k¼1  

Y 

 

Y   

K  sc 

HðWk;iÞ i 
!
ukk ; vk

!
; ¼ e i  s 

k¼1  ¼ 1  

which is the right-hand side, as required. Note that the last equality follows from (1). 

Efficiency improvement. As shown in (3), batch audit-ing not only allows TPA to perform the multiple auditing 

tasks simultaneously, but also greatly reduces the computa-tion cost on the TPA side. This is because 

aggregating K verification equations into one helps reduce the number of relatively expensive pairing operations 

from 2K, as required in the individual auditing, to K þ 1, which saves a considerable amount of auditing time. 

Identification of invalid responses. The verification equation (3) only holds when all the responses are valid, and 

fails with high probability when there is even one single invalid response in the batch auditing, as we will 

show in Section 4. In many situations, a response collection may contain invalid responses, especially f kg1 k K , 

caused by accidental data corruption, or possibly malicious activity by a cloud server. The ratio of invalid 

responses to the valid could be quite small, and yet a standard batch auditor will reject the entire collection. To 

further sort out these invalid responses in the batch auditing, we can utilize a recursive divide-and-conquer 

approach (binary search), as suggested by Ferrara et al. [20]. Specifically, if the batch auditing fails, we can 

simply divide the collection of responses into two halves, and repeat the auditing on halves via (3). TPA may 

now require the server to send back all the fRkg1 k K , as in individual auditing. In Section 4.2.2, we show 

through carefully designed experiment that using this recursive binary search approach, even if up to 20 percent 

of responses are invalid, batch auditing still performs faster than individual verification. 

 

3.6 Support for Data Dynamics 

In cloud computing, outsourced data might not only be accessed but also updated frequently by users for various 

application purposes [21], [8], [22], [23]. Hence, supporting data dynamics for privacy-preserving public 
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auditing is also of paramount importance. Now, we show how to build upon the existing work [8] and adapt our 

main scheme to support data dynamics, including block level operations of modification, deletion, and insertion. 

In [8], data dynamics support is achieved by replacing the index information i with mi in the computation of 

block authenticators and using the classic data structure— Merkle hash tree (MHT) [24] for the underlying 

block sequence enforcement. As a result, the authenticator for each block is changed to i ¼ ðHðmiÞ u
mi

 Þ
x
. We 

can adopt this technique in our design to achieve privacy-preserving public auditing with support of data 

dynamics. Specifi-cally, in the Setup phase, the user has to generate and send the tree root T RMHT to TPA as 

additional metadata, where the leaf nodes of MHT are values of HðmiÞ. In the Audit phase, besides f ; ; Rg, the 

server’s response should also include fHðmiÞgi2I and their corresponding auxiliary authentication information 

aux in the MHT. Upon receiving the response, TPA should first use T RMHT and aux to authenticate fHðmiÞgi2I 

computed by the server. Once fHðmiÞgi2I are authenticated, TPA can then perform 

the  auditing  on  f ;  ; R; fHðmiÞg  g via  (1),  where 

Q
i2

Q
I 

s1  i  sc 
HðW

i
Þ
 
i
  

is now replaced by
 s1  i  sc 
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these changes does not interfere with the proposed random masking technique, so data privacy is still preserved. 

To support data dynamics, each data update would require the user to generate a new tree root T RMHT , which is 

later sent to TPA as the new metadata for storage auditing task. The details of handling dynamic operations are 

similar to [8] and thus omitted. 

Application to version control system. The above scheme allows TPA to always keep the new tree root for 

auditing the updated data file. But it is worth noting that our mechanism can be easily extended to work with 

version control system, where both current and previous versions of the data file F and the corresponding 

authenticators are stored and need to be audited on demand. One possible way is to require TPA to keep tracks 

of both the current and 

previous tree roots  generated by the user, denoted as 

f 

T R
1 

2   T R
V 

   V 

is the number of MHT 
; T R

MHT 
;
 
. . .

 
;
V  MHT g. Here,  

file versions and T RMHT  is the root related to the most 

current version of the data file F . Then, whenever a 

   v  1 

 

v 

 

V  file is to be audited, 

designated version  (    ) of data v  

the TPA just uses the corresponding T RMHT to perform the auditing. The cloud server should also keep track of 

all the versions of data file F and their authenticators, in order to correctly answer the auditing request from 

TPA. Note that cloud server does not need to replicate every block of data file in every version, as many of them 

are the same after updates. However, how to efficiently manage such block storage in cloud is not within the 

scope of our paper. 

The extractor controls the random oracle hð Þ and answers the hash query issued by the cloud server, 

which is treated as an adversary here. For a challenge ¼ hðRÞ returned by the extractor, the cloud server outputs 

f ; ; Rg such that the following equation holds: 

R  eð  ; gÞ ¼ e i 
s
cs HðWiÞ i 

!
u ; v

!
: ð4Þ 

 Y   

  

¼ 

1   

 

Suppose that our extractor can rewind a cloud server in the execution of the protocol to the point just before the 

challenge hðRÞ is given. Now, the extractor sets hðRÞ to be ¼6 . The cloud server outputs f ; ; Rg such that the 

following equation holds: 

R  eð  ; gÞ ¼ e
0 

sc HðWiÞ 
i 

! 

u  ; v 1 :ð5Þ 

@ Y   A  

 

i¼s

1     

 

The extractor then obtains f ; 
0
 ¼ ð Þ=ð Þg as a valid response of the underlying proof of storage system [13]. 

To see why, recall that i ¼ ðHðWiÞ u
mi

 Þ
x
. If we divide (4) by (5), we have 
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eð; gÞ ¼ e 0 sc HðWiÞ 
i 

u   ; v 1  

 @ 
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     A  

eð; gÞ ¼ e 0 

i¼s1 

HðWiÞ 
i 
!  

1 eðu ; g
x
Þ sc ! ; g

x 

 @ 
Y 

   A    

3.7 Generalization 

As mentioned before, our protocol is based on the HLA in [13]. It has been shown in [25] that HLA 

can be constructed by homomorphic identification protocols. One may apply the random masking technique we 

used to construct the corresponding zero knowledge proof for different homo-morphic identification protocols. 

Therefore, our privacy-preserving public auditing system for secure cloud storage can be generalized based on 

other complexity assumptions, such as factoring [25]. 

 

IV. EVALUATION 

Ysc 
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We evaluate the security of the proposed scheme by analyzing its fulfillment of the security guarantee described 

in Section 2.2, namely, the storage correctness and privacy- 

 

X
s
c 

! 

mi  i 

¼ mi  i    ð Þ 

 

i¼s1 

 

¼ ð Þ=ð Þ: 

 

preserving property. We start from the single user case, where our main result is originated. Then, we show the 

security guarantee of batch auditing for the TPA in multiuser setting. 

 

4.1.1  Storage Correctness Guarantee 

We need to prove that the cloud server cannot generate valid response for the TPA without faithfully storing the 

data, as captured by Theorem 1. 

Theorem 1. If the cloud server passes the Audit phase, it must indeed possess the specified data intact as it is. 

Proof. We show that there exists an extractor of 
0
 in the random oracle model. With valid f ; 

0
g, our theorem 

follows from [13, Theorem 4.2]. 

i¼s1 
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Finally, we remark that this extraction argument and the random oracle paradigm are also used in the proof of 

the underlying scheme [13]. ut 

 

4.1.2  Privacy-Preserving Guarantee 

The below theorem shows that TPA cannot derive users’ data from the information collected during auditing. 

Theorem 2. From the server’s response f ; ; Rg, TPA cannot recover 
0
. 

Proof. We show the existence of a simulator that can produce a valid response even without the knowledge of 
0
, 

in the random oracle model. Now, the TPA is treated as an adversary. Given a valid from the 

 

cloud server, first, randomly pick  ; from Zp, set 

 

eðð 

Q 

HðWiÞ 
i
 Þ  u ; vÞ=eð  ; gÞ. 

 

R i
s
¼

c
s1 Finally,  back- 

patch ¼ hðRÞ since the simulator is controlling the random oracle hð Þ. We remark that this backpatching 

technique in the random oracle model is also used in the proof of the underlying scheme [13]. tu 

 

4.1.3  Security Guarantee for Batch Auditing 

Now, we show that our way of extending our result to a multiuser setting will not affect the aforementioned 

security insurance, as shown in Theorem 3. 

 

Theorem 3. Our batch auditing protocol achieves the same storage correctness and privacy-preserving guarantee 

as in the single-user case. 

Proof. The privacy-preserving guarantee in the multiuser setting is very similar to that of Theorem 2, and thus 

omitted here. For the storage correctness guarantee, we are going to reduce it to the single-user case. We use the 

forking technique as in the proof of Theorem 1. However, the verification equation for the batch audits involves 

K challenges from the random oracle. This time we need to ensure that all the other K 1 challenges are 

determined before the forking of the concerned random oracle response. This can be done using the idea in [26]. 

As soon as the adversary issues the very first random oracle query for i ¼ hðRkvikLÞ for any i 2 ½1; K&, the 

simulator immediately determines the values j ¼ hðRkvj kLÞ for all j 2 ½1; K&. This is possible since they are 

all using the same R and L. Now, all but one of the k’s in (3) are equal, so a valid response can be extracted 

similar to the single-user case in the proof of Theorem 1.ut 

 

4.2 Performance Analysis 

We now report some performance results of our experi-ments. We consider our auditing mechanism happens 

between a dedicated TPA and some cloud storage node, where user’s data are outsourced to. In our experiment, 

the TPA/user side process is implemented on a workstation with an Intel Core 2 processor running at 1.86 GHz, 

2,048 MB of RAM, and a 7,200 RPM Western Digital 250 GB Serial ATA drive. The cloud server side process 

is implemented on Amazon Elastic Computing Cloud (EC2) with a large instance type [27], which has 4 EC2 

Compute Units, 7.5 GB memory, and 850 GB instance storage. The randomly generated test data is of 1 GB 

size. All algorithms are implemented using C language. Our code uses the Pairing-Based Cryptography (PBC) 

library version 0.4.21. The elliptic curve utilized in the experiment is an MNT curve, with base field size of 159 

bits and the embedding degree 6. The security level is chosen to be 80 bit, which means j ij ¼ 80 and jpj ¼ 160. 

All experimental results represent the mean of 20 trials. 

Because the cloud is a pay-per-use model, users have to pay both the storage cost and the bandwidth cost (for 

data transfer) when using the cloud storage auditing. Thus, when implementing our mechanism, we have to take 

into consideration both factors. In particular, we conducts the experiment with two different sets of 

storage/communica-tion tradeoff parameter s as introduced in Section 3.4. When s ¼ 1, the mechanism incurs 

extra storage cost as large as 

TABLE 3 Notation of Cryptographic Operations 

 
 

the data itself, but only takes very small auditing bandwidth cost. Such a mechanism can be adopted 

when the auditing has to happen very frequently (e.g., checking the storage correctness every few minutes [21]), 

because the resulting data transfer charge could be dominant in the pay-per-use-model. On the other hand, we 
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also choose a properly larger s ¼ 10, which reduces the extra storage cost to only 10 percent of the original data 

but increases the auditing bandwidth cost roughly 10 times larger than the choice of s ¼ 1. Such a case is 

relatively more desirable if the auditing does not need to happen frequently. In short, users can flexibly choose 

the storage/communication tradeoff parameter s for their different system application scenarios. 

On our not-so-powerful workstation, the measurement shows that the user setup phase (i.e., generating 

authentica-tors) achieves a throughput of around 9.0 KB/s and 17.2 KB/s when s ¼ 1 and s ¼ 10, respectively. 

These results are not very fast due to the expensive modular exponentiation operations for each 20 byte block 

sector in the authenticator computation. (See [28] for some similar experimental results.) Note that for each data 

file to be outsourced, such setup phase happens once only. Further, since the authenticator genera-tion on each 

block is independent, these one-time operations can be easily parallelized by using multithreading technique on 

the modern multicore systems. Therefore, various optimization techniques can be applied to speedup the user 

side setup phase. As our paper focuses on privacy-preserving storage auditing performance, in the following, we 

will primarily assess the performance of the proposed auditing schemes on both TPA side and cloud server side, 

and show they are indeed lightweight. We will focus on the cost of the privacy-preserving protocol and our 

proposed batch audit-ing technique. 

 

4.2.1  Cost of Privacy-Preserving Protocol 

We begin by estimating the cost in terms of basic cryptographic operations (refer to Table 3 for notations). 

Suppose there are c random blocks specified in the challenge message chal during the Audit phase. Under this 

setting, we quantify the cost introduced by the privacy-preserving auditing in terms of server computation, 

auditor computation as well as communication overhead. Since the difference for choices on s has been 

discussed previously, in the following privacy-preserving cost analysis we only give the atomic operation 

analysis for the case s ¼ 1 for simplicity. The analysis for the case of s ¼ 10 follows similarly and is thus 

omitted. 

On the server side, the generated response includes an 

aggregated 

authenticator 

¼ i2I 

i 

2 

G 

,  a  random  r 

G 

i 1 

factor 

R e u; v 

Þ 2 

 blinded linear combination 

 ¼ ð  T , and a  Q     
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TABLE 4 Performance under Different Number of Sampled Blocks c for High Assurance ( 95%) Auditing 
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of  sampled blocks ¼    i2I  i
m
i þ 

r
 2 

Z
p

, 
where   ¼ 

h R Z 

p. The 

corresponding  computation  cost is 

ð Þ 2    P   

c-MultExpG
1 

1 ðj ijÞ, ExpG
1 

T ðjpjÞ,  a n d  HashZ
1 

p þ AddZ
c
p þ 

Multcþ1
, respectively. Compared to the existing HLA-based 

Z
p 

solution for ensuring remote data integrity [13], the extra cost resulted from the random mask R is only a 

constant: Exp
1
GT ðjpjÞ þ Mult

1
Zp þ Hash

1
Zp þ Add

1
Zp , which has nothing to do with the number of sampled 

blocks c. When c is set to be 300 to 460 for high assurance of auditing, as discussed in Section 3.4, the extra cost 

on the server side for privacy-preserving guarantee would be negligible against the total server computation for 

response generation. 

Similarly, on the auditor side, upon receiving the response f ; R; g, the corresponding computation cost for 

response 

v a l i d a t i o n i s Hash
1

Zp þ c MultExp
1

G1 ðj ijÞ þ Hash
c
G1 þ Mult

1
G1 þ Mult

1
GT þ Exp

3
G1 ðjpjÞ þ P air

2
G1;G2 , 

among which only Hash
1
Zp þ Exp

2
G1 ðjpjÞ þ Mult

1
GT account for the addi- 

tional constant computation cost. For c ¼ 460 or 300, and considering the relatively expensive pairing 

operations, this extra cost imposes little overhead on the overall cost of response validation, and thus can be 

ignored. For the sake of completeness, Table 4 gives the experiment result on performance comparison between 

our scheme and the state of the art [13]. It can be shown that the performance of our scheme is almost the same 

as that of [13], even if our scheme supports privacy-preserving guarantee while [13] does not. For the extra 

communication cost of our scheme when compared with [13], the server’s response f ; R; g contains an 

additional random element R, which is a group element of GT and has the size close to 960 bits. 

 

4.2.2  Batch Auditing Efficiency 

Discussion in Section 3.5 gives an asymptotic efficiency analysis on the batch auditing, by considering only the 

total number of pairing operations. However, on the practical side, there are additional less expensive operations 

required for batching, such as modular exponentiations and multi-plications. Thus, whether the benefits of 

removing pairings significantly outweighs these additional operations remains to be verified. To get a complete 

view of batching efficiency, we conduct a timed batch auditing test, where the number of auditing tasks is 

increased from 1 to approximately 200 with intervals of 8. Note that we only focus on the choice of 

 

Fig. 2. Comparison on auditing time between batch and individual auditing: Per task auditing time denotes the 

total auditing time divided by the number of tasks. 

s ¼ 1 here, from which similar performance results can be directly obtained for the choice of s ¼ 10. The 

performance of the corresponding nonbatched (individual) auditing is provided as a baseline for the 

measurement. Following the same settings c ¼ 300 and c ¼ 460, the average per task auditing time, which is 

computed by dividing total auditing time by the number of tasks, is given in Fig. 2 for both batch and individual 

auditing. It can be shown that compared to individual auditing, batch auditing indeed helps reducing the TPA’s 

computation cost, as more than 15 percent of per-task auditing time is saved. 

 

4.2.3  Sorting Out Invalid Responses 

Now, we use experiment to justify the efficiency of our recursive binary search approach for the TPA to sort out 

the invalid responses for negative batch auditing result, as discussed in Section 3.5. This experiment is tightly 

pertained to the work in [20], which evaluates the batch verification of various short signatures. 

 

The feasibility of the recursive approach is evaluated under the choice of s ¼ 1, which is consistent with the 

experiment settings in Section 4.2.2. We do not duplicate evaluation of the recursive binary search methodology 

for s ¼ 10, because similar results can be easily deduced from the choice of s ¼ 1. We first generate a collection 

of 256 valid responses, which implies the TPA may concurrently handle 256 different auditing delegations. We 

then conduct the tests repeatedly while randomly corrupting an -fraction, ranging from 0 to 20 percent, by 

replacing them with random values. The average auditing time per task against the individual auditing approach 

is presented in Fig. 3. The result shows that even when the number of invalid responses exceeds 18 percent of 

the total batch size, the performance of batch auditing can still be safely concluded as more preferable than the 

straightforward individual auditing. Note that the random distribution of invalid responses within the collection 
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is nearly the worst case for batch auditing. If invalid responses are grouped together, even better results can be 

expected. 

 

5  ZERO KNOWLEDGE PUBLIC AUDITING 

Though our scheme prevents the TPA from directly deriving 
0
 from , it does not rule out the possibility of 

offline 

 
Fig. 3. Comparison on auditing time between batch and individual auditing, when -fraction of 256 responses are 

invalid: Per task auditing time denotes the total auditing time divided by the number of tasks. 

 

as the response proof of storage correctness to the TPA, where & ¼ r þ mod p. With the response from the 

server, the TPA runs VerifyProof to validate the response by first computing ¼ hðRÞ and then checking the 

verification equation 
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To see the correctness of the above equation, we have 

R  eð  ; gÞ ¼ eðg1; gÞ
r
   eðu; vÞ

rm
   eðð  g1Þ ; gÞ 

¼ eðg1; gÞ
r
 eðu; vÞ

rm
 eðð ; gÞ eðg1 ; gÞ ¼ eðu; vÞ

rm
 eðð ; gÞ eðg1; gÞ

r
 
þ 

 Y 

HðWiÞ i 
!
u ; v

!
 eðg1; gÞ

&
 : ¼ e i 

s
cs 

 ¼ 1  

 

guessing threat by TPA using valid   from the response. 

Specifically, the TPA can always guess whether  
0 

? ~
0
, by 

Checking 

? sc HðWi

Þ 
i 

Þ u 

~
0 

 ¼ 

~
0
  is eð ; gÞ ¼ eðð i¼s1   ; vÞ,  where 

constructed from random coefficients chosen by the TPA in the challenge and the guessed message 

fm~igs1 i sc . However, we must note that ~
0
 is chosen from Zp and jpj is usually larger than 160 bits in practical 

security settings (see Section 4.2). Given no background information, the success of this all-or-nothing guess on 
0
 launched by TPA over such a large space Zp can be very difficult. Besides, because TPA must at least make c 

successful guesses on the same set of blocks to derive fmigs1 i sc from the system of c linear equations, we can 

specify c to be large enough in the protocol (e.g., as discussed in Section 3.4, a strict choice of c should be at 

least larger than 460), which can significantly decrease the TPA’s successful guessing probability. In addition, 

we can also restrict the number of reauditing on exactly the same set of blocks (e.g., to limit the repeated 

auditing times on exactly the same set of blocks to be always less than c). In this way, TPA can be kept from 

accumulating successful guesses on 
0
 for the same set of blocks, which further diminishes the chance for TPA to 

solve for fmigs1 i sc . In short, by appropriate choices of parameter c and group size Zp, we can effectively defeat 

such potential offline guessing threat. 
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Nevertheless, we present a public auditing scheme with provably zero knowledge leakage. This scheme can 

com-pletely eliminate the possibilities of above offline guessing attack, but at the cost of a little higher 

communication and computation overhead. The setup phase is similar to our main scheme presented in Section 

3.4. The secret para- 

 

 

meters are sk ¼ ðx; sskÞ and the public parameters are 

pk ¼ ðspk; v; g; u; eðu; vÞ; g1Þ, where g1 2 G1 is an additional 

 

public group element. In the audit phase, upon receiving 

challenge 

chal 

¼ fð 

i; 

iÞgi2I , the server chooses three 

ran- 

     
r 

 

Dom 

elements r ; r  ;Z , and calculates R 

¼ 

e g ; g  

 r   m      p       ð 1 Þ  

eðu; vÞ 
m
  2 

GT  and   ¼ hðRÞ 2 Zp. Let  
0 

denote the linear 

combination of sampled  blocks   
0 

¼ i2I 

m ,  and   

                 i  i    

denote the aggregated authenticator   ¼
P
 i2I  i 

i 
2 G1. To 

                 the server has to 

ensure the auditing leaks zero knowledge,
Q 

       

Blind both   
0 

 and  . Specifically, the server computes: 

 

¼ 

r 

m þ 

0
 mod p, and 

¼ 

 

 

g . It then sends 

f 

&;  ;  ; R 

          1        G 

 

The last equality follows from the elaboration of (1) in Section 3.4. 

Theorem 4. The above auditing protocol achieves zero-knowledge information leakage to the TPA, and it also 

ensures the storage correctness guarantee. 

Proof. Zero-knowledge is easy to see. Randomly pick  ;  ; & 

from Zp and from G1, set R eðð
Qs

i¼
c
s1 HðWiÞ 

i
 Þ u ; vÞ eðg1; gÞ

&
 =eð ; gÞ and backpatch ¼ hðRÞ. For 

 

proof of storage correctness, we can extract similar to the extraction of 
0
 as in the proof of Theorem 1. Likewise, 

can be recovered from . To conclude, a valid pair of and 
0
 can be extracted. tu 

 

V. RELATED WORK 
Ateniese et al. [9] are the first to consider public auditability in their ―provable data possession‖ (PDP) 

model for ensuring possession of data files on untrusted storages. They utilize the RSA-based homomorphic 

linear authenticators for auditing outsourced data and suggest randomly sampling a few blocks of the file. 

However, among their two proposed schemes, the one with public auditability exposes the linear combination of 

sampled blocks to external auditor. When used directly, their protocol is not provably privacy preser-ving, and 

thus may leak user data information to the external auditor. Juels et al. [11] describe a ―proof of retrievability‖ 

(PoR) model, where spot-checking and error-correcting codes are used to ensure both ―possession‖ and 

―retrieva-bility‖ of data files on remote archive service systems. However, the number of audit challenges a user 

can perform is fixed a priori, and public auditability is not supported in their main scheme. Although they 

describe a straightforward Merkle-tree construction for public PoRs, this approach only works with encrypted 

data. Later, Bowers et al. [18] propose an improved framework for POR protocols that generalizes Juels’ work. 

Dodis et al. [29] also give a study on different variants of PoR with private auditability. Shacham and Waters 

[13] design an improved PoR scheme built from BLS signatures [19] with proofs of security in the security 

model defined in [11]. Similar to the construction in [9], they use publicly verifiable homomorphic linear 

authenticators that are built from provably secure BLS signatures. Based on 

 

WANG ET AL.: PRIVACY-PRESERVING PUBLIC AUDITING FOR SECURE CLOUD 

STORAGE  

the elegant BLS construction, a compact and public verifiable scheme is obtained. Again, their 

approach is not privacy preserving due to the same reason as [9]. Shah et al. [15], [10] propose introducing a 

TPA to keep online storage honest by first encrypting the data then sending a number of pre-computed 

symmetric-keyed hashes over the encrypted data to the auditor. The auditor verifies the integrity of the data file 

and the server’s possession of a previously committed decryption key. This scheme only works for encrypted 
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files, requires the auditor to maintain state, and suffers from bounded usage, which potentially brings in online 

burden to users when the keyed hashes are used up. 

Dynamic data have also attracted attentions in the recent literature on efficiently providing the integrity 

guarantee of remotely stored data. Ateniese et al. [21] is the first to propose a partially dynamic version of the 

prior PDP scheme, using only symmetric key cryptography but with a bounded number of audits. In [22], Wang 

et al. consider a similar support for partially dynamic data storage in a distributed scenario with additional 

feature of data error localization. In a subsequent work, Wang et al. [8] propose to combine BLS-based HLA 

with MHT to support fully data dynamics. Concurently, Erway et al. [23] develop a skip list-based scheme to 

also enable provable data possession with full dynamics support. However, the verification in both protocols 

requires the linear combination of sampled blocks as an input, like the designs in [9], [13], and thus does not 

support privacy-preserving auditing. 

In other related work, Sebe et al. [30] thoroughly study a set of requirements which ought to be 

satisfied for a remote data possession checking protocol to be of practical use. Their proposed protocol supports 

unlimited times of file integrity verifications and allows preset tradeoff between the protocol running time and 

the local storage burden at the user. Schwarz and Miller [31] propose the first study of checking the integrity of 

the remotely stored data across multiple distributed servers. Their approach is based on erasure-correcting code 

and efficient algebraic signatures, which also have the similar aggregation property as the homomorphic 

authenticator utilized in our approach. Curtmola et al. [32] aim to ensure data possession of multiple replicas 

across the distributed storage system. They extend the PDP scheme in [9] to cover multiple replicas without 

encoding each replica separately, providing guarantee that multiple copies of data are actually maintained. In 

[33], Bowers et al. utilize a two-layer erasure-correcting code structure on the remotely archived data and extend 

their POR model [18] to distributed scenario with high-data availability assurance. While all the above schemes 

provide methods for efficient auditing and provable assurance on the correctness of remotely stored data, almost 

none of them necessarily meet all the requirements for privacy-preserving public auditing of storage. Moreover, 

none of these schemes consider batch auditing, while our scheme can greatly reduce the computation cost on the 

TPA when coping with a large number of audit delegations. 

Portions of the work presented in this paper have previously appeared as an extended abstract in [1]. 

We have revised the paper a lot and improved many technical details as compared to [1]. The primary 

improvements are as follows: First, we provide a new privacy-preserving public auditing protocol with 

enhanced security strength in 

Section 3.4. For completeness, we also include an additional (but slightly less efficient) protocol design 

for provably secure zero-knowledge leakage public auditing scheme in Section 5. Second, based on the 

enhanced main auditing scheme, we provide a new provably secure batch auditing protocol. All the experiments 

in our performance evaluation for the newly designed protocol are completely redone. Third, we extend our 

main scheme to support data dynamics in Section 3.6, and provide discussions on how to generalize our privacy-

preserving public auditing scheme in Section 3.7, which are lacking in [1]. Finally, we provide formal analysis 

of privacy-preserving guarantee and storage correctness, while only heuristic arguments are sketched in [1]. 

 

VI. CONCLUSION 
In this paper, we propose a privacy-preserving public auditing system for data storage security in cloud 

comput-ing. We utilize the homomorphic linear authenticator and random masking to guarantee that the TPA 

would not learn any knowledge about the data content stored on the cloud server during the efficient auditing 

process, which not only eliminates the burden of cloud user from the tedious and possibly expensive auditing 

task, but also alleviates the users’ fear of their outsourced data leakage. Considering TPA may concurrently 

handle multiple audit sessions from different users for their outsourced data files, we further extend our privacy-

preserving public auditing protocol into a multiuser setting, where the TPA can perform multiple auditing tasks 

in a batch manner for better efficiency. Extensive analysis shows that our schemes are provably secure and 

highly efficient. Our preliminary experiment conducted on Amazon EC2 instance further demonstrates the fast 

performance of our design on both the cloud and the auditor side. We leave the full-fledged implementation of 

the mechanism on commercial public cloud as an important future extension, which is expected to robustly cope 

with very large scale data and thus encourage users to adopt cloud storage services more confidently. 
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