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I. INTRODUCTION 
The interest in the problem of the synthesis of superheavy atomic nuclei increased significantly over 

the past years. It is connected with Dubna’ssuccessful experiments [1] on the synthesis of the 114 isotopes with 

A=287, 288, 289 where the last nucleus with N=175 neutrons has a last half-life of 30 seconds. Neutrons act as 

glue to hold protons together. Optimal relation N/Z corresponds approximately to 1.54. The announcement at 

Berkeley [2] was about detection of nuclei with Z=118 in the 
86

Kr + 
208

Pb fusion reaction with large cross 

section. Due to the strong Coulomb repulsion among protons, according to the liquid drop model, the nuclei 

would split immediately for Z>104 at less values of N/Z. Only the quantum shell effects [3] allow very heavy 

elements to exist for a longer time. For consideration of stability of the external shell of the heaviest nuclei, the 

highly accurate mathematical methods must be used. In the external shells of superheavy elements, the rest 

interaction is small [4] and the shells’ energies can be calculated using the Woods-Saxon single-particle 

potential [5] where relativistic corrections for the nucleons’ mass or kinetic energy must be included [6],[7]. The 

relativistic corrections for mass of nucleons in external shells, depending on state, can achieve –1.1 MeV and 

significantly increase the binding energies of nucleons in the external shells [7] by increasing the stability of 

heavy nuclei. In this case we must solve the semi-relativistic differential equation of the fourth order with 

sufficient accuracy. For this aim, the semi-relativistic equation has been reduced to the integral-differential 

equation with the kernel, which is proportional to the Green’s function. It can be expressed by unperturbed wave 

functions and nonphysical solutions of the Schrodinger equation for model potential. This method allows us to 

ABSTRACT: The impossibility to reach the center of the nuclei island of stability by fusion 

reactions with stable projectiles requires theoretical analysis. We used the multiplicative 

perturbation theory for the discrete energies, which was developed by using the modified 

Lagrange's method with the model harmonic oscillator potential. Using this original method of 

perturbation theory for semi-relativistic equation, we have calculated single-nucleon energy 

levels for shells of neutrons and protons, where the relativistic corrections for the mass and 

potential were included. We have found that the heaviest atomic nuclei
298

114 X, 
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Z=94 because more neutrons and relativistic corrections can compensate the proton-proton 

repulsion. 

The closed proton-neutron shells with magic pairs of proton-neutron numbers Z=114, N=184; 

Z=114, N=214; Z=120, N=214; Z=126, N=214 were obtained. The highly accurate method for 

solution of semi-relativistic equation for calculation of one-nucleon energy levels was used. The 
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solve the semi - relativistic equation where the relativistic corrections for mass and potential are included [7]. 

The corrections for mass are comparable with the energies of excited states and they are significantly increasing 

the external shells’ stability of heavy nuclei. The corrections for potential are positive and small [7], except for 

some light nuclei, and do not play any role in the stability of nuclei. The energies of the one-nucleon levels E nlj  

with the relativistic corrections for the mass E m  and the potential E v  for heavy nucleus [3] 
285

114 X, hypothetical 

nucleus[4] 
310

126 X and proposed in the paper[8] 
298

114 X, 
328

114 X, 
334

120 X, 
340

126 X like candidates to the more stable have 

been calculated for the spherically symmetric Woods-Saxon potential [5], [8] 

 V  r = - V
pn,

[1+exp[
pn, (r-R)]]

1
, (1) 

and the spin-orbit potential  

 V sl  r = - 
r

1

dr

d
V  r  𝝈 ∗ 𝒍 , (2) 

with the following parameters [5]:  

  pn,
=1.5873 fm

1
, R=1.24 A

3/1
, V

pn,
=V m 







 

A

ZN
1 ,  (3) 

  =0.63, V m  = 53.3 MeV,  =0.263 






 


A

ZN
21 fm

2
. (4) 

These parameters were fitted to the one-nucleon levels [5], [7], [8] in the region .34015  A The Coulomb 

potential has been introduced in the usual form [9], [10] 

 V c  r = ,
4

)1(

0

2

P
r

eZ




P=

R

r

2

3
-

2

1
3










R

r
,  r ,R  (5) 

P=1 ,  r>R.  

II. THE INTEGRAL-DIFFERENTIAL SEMI-RELATIVISTIC EQUATIONS 
If we consider relativistic corrections for mass and potential as perturbation, the semi-relativistic equation [7] 

can be expressed in the form  

 
2

2

dr

d
U - U

r

ll
2

)1( 
+C   UrVVE Da )(1 =0.  (6)  

Here we introduced the differential operator of the fourth order representing relativistic corrections for the mass: 

 V D =V  r +V sl  r -V 1  r +
C

C1 D  r +C 1 r  







rV

dr

d

dr

d

r

1
,  (7) 

C=
2

2



m
, C 1 =

2

2









mc


,  

 D  r =
4

4

dr

d
-

2

2

2

02

dr

d

r

L
+

 
4

0

2

0

3

0 64

r

LL

dr

d

r

L 
 ,

0L =  1ll .  (8) 

The last term in (7) represents relativistic corrections of energy levels of the nucleons in the model potential V 

[6], [11] 

 V 1  r =
2

22rm
 (9) 

for average field of the nucleus. The radial wave functions [11] 

 U nl =e
5.0  15.0 l 





1

0

n

k

k

ka  , ,
2



rm
   n=1, 2, 3  (10) 

 a 1k =
 

  5.11

5.15.0





lkk

lk nl
a k , a 0 =1 (11) 

and linearly independent nonphysical solutions [11] for model potential (9)  
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 F nl =e
5.0 l5.0   ,  =



0k

k

kb  , (12) 

 b 1k =
 

  5.01

5.05.0





lkk

lk nl
b k , b 0 =1 (13) 

have the following eigenvalues  

 E nl =  nl ,  nl = 5.02  ln  (14) 

and Wronskian  

 W 0 =  
2

1

12 











m
l

.

 (15) 

The eigenfunctions of Eq. (6), in the case of multiplicative perturbation theory [11], must be expressed by 

multiplying the eigenfunction (10) U nl of model potential (11)V 1  r by the factor function [7] nlj,2  which 

depends on the potential operator V D  r  for relativistic corrections, i. e.  

 U = nlj,2  U .  (16) 

Substituting (16) into Eq. (6) we obtain this equation in the potential representation [7]  

 U nl 2

2

dr

d
2 +2 
















 nlU

dr

d

dr

d
2 -CV  U nl 2 =0, (17) 

 V  = V D  r - nljE  ,         E = E nl + nljE .  (18) 

Using the modified method of Lagrange [7],a very handy integral equation was obtained: 

 nlU2 =U nl +

0W

U nl

12

0

drUCVF nl

r

nl   -  
r

nl

nl U
W

F

00

12 drUCV nl , (19) 

 nljE = 












0

1,2

0

1,2

drUU

drUVU

nlnljnl

nlnljDnl

.  (20) 

The obtained integral equation (19) was solved by the iteration method. For the zero approximation at 

the right- hand side of the integral equations, we must take 2 =1 and then find the first approach for nljE

from (20) .We can freely choose the model potential (9), but it is better when unperturbed wave functions are 

close to perturbed wave functions .2 nlU  Then a small number of the iterations provides highly accurate 

results. In our method, the frequency   = 0d  for the model harmonic potential can be determined by the 

r.m.s. radius of the nuclei [12] 

 0  = 41A 3

1




MeV
. (21) 

The constant d  was found by variation in the interval 2.18.0  d  demanding the minimum of the 

energy.   

We verified the parameters for Woods-Saxon potential (3), (4) calculating one-nucleon energies’ levels of the 

double magic nucleus 
208

82 Pb taking in the care relativistic corrections for the mass and the potential (7). We 

used the results of calculations, where relativistic corrections for mass are significant;using some less interaction 

potential (1), (3) for neutrons 0.98V
n

is presented in TABLE 1. The experimental meanings [9] of one-nucleon 

energies’ levels for protons E
p

nlj  and neutrons E
n

nlj  in TABLE 1are presented as blacker and represent good 

coincidence with calculations taking 0.98V
n

 in (1) for neutrons. The double magic nucleus 
208

82 Pb is one of the 

best cases for shell-model calculations for definition [10] and optimization [7] of Woods-Saxon potentials. The 

nl
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included relativistic corrections for masses E
p

m  and E
n

m  are significant and improve the accuracy of energy 

levels of protons and neutrons and energy levels of excited states compared with experimental results [13], [14]. 

The obtained good coincidences in TABLE 1 propose possibility for application of Woods-Saxon potentials 

with some decreased 0.98 V m  parameter (3) of A. Chepurnov potentials [5] for considering stability of one 
298

114

X of the heaviest nuclei [8], [15]. The radial dependence of spin-orbit interaction (2) has maximum at the 

surface of nucleus. Excited states presented in TABLE 1 also must have strong dependence on significant 

relativistic corrections for mass. 

 

Table 1. The protons E
p

nlj
 and neutrons E

n

nlj
of one-nucleon levels and relativistic corrections for 

mass E
p

m , E
n

m  for nuclei 
208

82 Pb. Z and N are numbers of protons and neutrons. 

nlj, Z E
p

nlj
, MeV E

p

m , MeV nlj, N E
n

nlj
, MeV E

n

m , MeV 

 3p

2

1
126 -0.198 -0.550 3d

2

3
 -0.272 -0.490 

3p

2

3
 -0.717 

-0.620 

-1.02 2g

2

7
 -0.310 -0.601 

2f

2

5  -0.974  

-0.920        

-0.803 4s

2

1 184 -1.21 -0.333 

1i

2

13 114 -2.46 

-2.15 

-0.587   3d

2

5  -1.72 

-2.30 

-0.500 

2f

2

7  -3.24 

-2.86 

-0.662 1j

2

15  -1.97 

-2.45 

-0.846 

1h

2

9  -3.76 

-3.76 

-0.381   1i

2

11
 -2.72 

-3.09 

-0.551 

3s

2

1 82 -8.74 

-8.97 

-0.387  2g

2

9  -3.73 

-3.86 

-0.557 

 2d

2

3  -9.36 

-9.32 

 -0.912  3p

2

1 126 -7.36 

-7.36 

-0.485 

1h

2

11  -10.0 

-10.3 

-0.368 2f

2

5  -7.94 

-7.93 

-0.417 

  2d

2

5  -10.8 

-10.6 

-0.321 3p

2

3  -8.27 

-8.25 

-0.480 

1g

2

7   

-12.2 

-12.4 

 

-0.281 
1i

2

13   

-8.74 

-9.00 

 

-0.530 

1g

2

9 50 -15.7 -0.234 2f

2

7  -10.4 -0.369 

   1h

2

9  -10.8 

-10.8 

-0.591 

   3s

2

1 82 -15.4  -0.315 

 

Table 2. The protons E  and neutrons E of one-nucleon levels and relativistic corrections for mass E , 

E  for nucleus 
298

114 X. Z and N are numbers of protons and neutrons. 

nlj   Z  E
p

nlj , MeV E,
p

m  

MeV 

nlj    N E
n

nlj , MeV E
n

m , MeV 

p

nlj

n

nlj

p

m

n

m
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1i

2

13 114  -5.89         -0.389 4s

2

1 184 -5.98 -0.486 

2f

2

7  -6.08 -0.345 3d

2

3  -6.11 -0.951 

1h

2

9  -7.01 -0.290 3d

2

5  -7.20 -0.497 

3s

2

1 82 -9.64 -0.290 2g

2

7  -7.26 -0.323 

2d

2

3  -10.2 -0.234 1j

2

15  -8.45 -0.681 

1h

2

11  -11.7 -0.259 2g

2

9  -9.49 -0.426 

2d

2

5  -12.7 -0.292 1i

2

11  -10.3 -1.26 

1g

2

7  -13.8 -0.180 3p

2

1 126   -12.7 -0.399 

1g

2

9 50 -16.4 -0.160 3p

2

3  -13.4 -0.391 

2p

2

1  -17.6 -0.149 2f

2

5  -13.9 -0.354 

2p

2

3  -18.3 -0.143 1i

2

13  -14.1 -0.421 

1f

2

5  -11.8 -0.250 2f

2

7  -15.8 -0.352 

1f

2

7 28 -20.9 -0.087 1h

2

9  -16.5 -0.240 

2s

2

1 20 -23.5 -0.166 3s

2

1 82 -19.8 -0.234 

1d

2

3  -24.1 -0.05 1h

2

11  -20.1 -0.318 

1d

2

5  -24.9 -0.05 2d

2

3  -20.5 -0.230 

1p

2

1 8 -27.6 -0.028 2d

2

5  -21.6 -0.222 

1p

2

3  -27.8 -0.028 1g

2

7  -22.7 -0.200 

1s

2

1 2 -29.9 -0.055 1g

2

9 50 -24.6 -0.178 

   

2p 2

1

 

-26.7 -0.131 

   

2p 2

3

 

-27.2 -0.134 

   

1f 2

5

 

-27.8 -0.214 

   

1f 2

7

  28 

-28.7 -0.194 
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2s  

20 

 

-32.8 

 

-0.260 

   

1d  

-32.8 -0.260 

   

1d 2

5

 

-33.3 -0.061 

   

1p 2

1

  8 

-37.0 -0.021 

   

1p 2

3

 

-37.9 -0.021 

   

1s   2 

-41.0 -0.007 

 

Table 3. The protons E  and neutrons E of one-nucleon levels and relativistic corrections for mass E , E  for 

nucleus 
294

112 X. Z and N are numbers of protons and neutrons. 

nlj  Z  E
p

nlj
, MeV E

p

m , MeV nlj    N E
n

nlj
, MeV E

n

m , MeV 

1i

2

13 112  -6.09         -0.392    

2f

2

7  -6.14 -0.351 3d

2

3 182   -5.43 -0.493 

1h

2

9  -7.15 -0.510 3d

2

5  -6.69 -0.499 

3s

2

1 82 -9.56 -0.271 2g

2

7  -6.87 -0.724 

2d

2

3  -10.4 -0.261 1j

2

15  -8.45 -0.681 

1h

2

11  -11.7 -0.241 2g

2

9  -9.47 -0.571 

2d

2

5  -12.7 -0.292 1i

2

11  -10.2 -0.950 

1g

2

7  -13.8 -0.180 3p

2

1 126 -12.3 -0.404 

1g

2

9 50  -16.4 -0.160 3p

2

3  -13.1 -0.392 

2p

2

1  -17.6 -0.149 2f

2

5  -13.6 -0.360 

2p

2

3  -18.3 -0.143 1i

2

13  -14.7 -0.375 

1f

2

5  -11.8 -0.250 2f

2

7  -15.5 -0.354 

1f

2

7 28 -20.9 -0.087 1h

2

9  -16.9 -0.319 

2s

2

1 20 -23.5 -0.166 3s

2

1 82 -19.6 -0.246 

2

1

2

3

2

1

p

nlj

n

nlj

p

m

n

m
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1d

2

3  -24.1 -0.05 1h

2

11  -19.8 -0.113 

1d

2

5  -24.9 -0.05 2d

2

3  -20.2 -0.241 

1p

2

1 8 -27.6 -0.028 2d

2

5  -21.3 -0.232 

1p

2

3  -27.8 -0.028 1g

2

7  -22.7 -0.176 

1s

2

1 2 -29.9 -0.055 1g

2

9 50 -24.6 -0.163 

   2p  -26.8 -0.131 

   2p  -27.4 -0.471 

   1f  -27.7 -0.144 

   1f 28 -28.7 -0.194 

   2s 20 -32.6 -0.005 

   1d  -32.7 -0.163 

   1d  -33.2 -0.061 

   1p 8 -37.1 -0.034 

   1p  -37.3 -0.023 

   1s  

2 

 

-40.9 

 

-0.007 

 

III. RESULTS AND CONCLUSIONS 

At first, we calculated one-nucleon levels for the hypothetical nucleus 
340

126 X and found closed proton-

neutron shells with magic pairs Z=114, N=184; Z=114, N=214; Z=120, N=214; Z=126, N=214 of proton-

neutron numbers. It is interesting to investigate the stability of the nucleus 
298

114 X with closed proton-neutrons 

shells in semi-relativistic approach using the potentials (1), (2), (5). We calculated the single-nucleon energy 

levels of protons and neutrons of the nuclei 
298

114 X, 
294

112 X. Results are presented in the TABLE 2. 

 

We used an expression of the kinetic energy for   particle ZAZAk EEEE ,2,4     for the binding 

energies ZAE ,  of decaying and daughter 2,4  ZAE  nuclei and   particle 3.28E MeV . Taking in the 

care that deeper, beginning from 50 nucleons, one-particle energy levels 2/91g  of nucleons presented in 

TABLE 2 andTABLE 3 for decaying 
298

114 X and daughter 
294

112 X nucleus practically coincide, we obtained

MeVMeVEk 62.1)86.240424.2403(   (disintegration energy 62.1kQ MeV ) and that 

nucleus 
298

114 X is stable [17] with respect to the   - decay. The similar but less exact calculations including less 

2

1

2

3

2

5

2

7

2

1

2

3

2

5

2

1

2

3

2

1
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energy levels of nucleons and without correction of neutrons’ potential  0.98V
n

 for the  nucleus 
298

114 X give 

stability [8] but with less disintegration energy [15] 68.0kQ MeV . The obtained results coincide with 

the prediction of possibility of an island of relatively stable super heavy elements 
298

114 X, 
328

114 X, 
334

120 X, 
340

126 X [13], 

[14] with the near magic proton numbers 114Z , 120, 126 and magic neutron numbers 214,184N . The 

reason of stability of heavy nuclei lies inthe balance between Coulomb forces and nuclear forces for double 

magic protons and neutron shells [15]. In this case, heavy nuclei can have very long half-lives, maybe the order 

of millions of ears. From the TABLE 1 we see that relativistic corrections for mass significantly increase the 

stability of the nucleus 
298

114 X. The same calculations [13] for the nucleus 
328

114 X approximately coincide with 

previously results [8] (disintegration energy 701.0kQ MeV ). The beta decay is forbidden for the proton 

and neutron shells’ energies presented in [8] in TABLE 2 for the nucleus 
298

114 X. Both nuclei
298

114 X and 
328

114 X are 

stable according to the beta decay. We obtained the nucleus 
298

114 X with the following upper one-particle level 4s

2/1 for neutrons –6.30 MeV and the second excited state2f 2/5  -3.35 MeV for protons. Then beta decay is 

forbidden for this case by the energy conservation law. The increasing ratio [16] ZN /  increases stability of 

nuclei, and the optimum of stability corresponds to approximately 1.54.  For the nucleus 
298

114 X we have the 

relation 1.61. For the proton state 1i 2/13  of nuclei 
298

114 X and 
328

114 X we have decreasing Coulomb energies from 

22.31 MeV  to 21.81 MeV consequently [18]. We have a similar situation for other proton states. Taking in 

the care this fact and relativistic corrections to the mass of nucleons, we can suppose that nuclei 
298

114 X, 
328

114 X 
334

120

X, 
340

126 X can be stable [8]. All results can be obtained only using the presented integral equations which can be 

solved with high accuracy for a mathematically complicated semi-relativistic task. The total nuclear energy 

evaluated by semi-empirical shell model calculations [18]does not coincide with stability calculations using the 

shell model. 
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