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I. INTRODUCTION
The Hamilton-Poisson systems appear naturally in many areas of physical science and engineering,
robotics, spatial dynamics and secure communications [9, 3]. A special class of Hamilton-Poisson systems is

formed by a family of differential equations on R which depends by a triple of real parameters (¢, @,, ;)

and two parameters @ and b, called the (general) Euler top system with two parameters. This family contains

various integrable systems, for instance: a particular case of Rikitake system, a special case of Rabinovich
system and many others. The Rikitake system serves as model for the reversals of polarity of the Earth's
magnetic field [14]. The Rabinovich system models the dynamics of three resonantly coupled waves,
parametrically excited [12].

The fractional calculus has been found to be an important tool in various fields, such as mathematics, physics,
engineering, chemistry, biology, economics, chaotic dynamics and other complex dynamical systems [1, 5, 7,
11, 13]. A class of fractional dynamical systems is formed by a family of fractional differential equations on

R? associated to general Euler top system with two parameters, called the (general) fractional Euler top system
with two parameters.

This paper is structured as follows. In Section 2, the general Euler top system with two parameters is
realized as a Hamilton-Poisson system. In Section 3 we introduce the fractional Euler top system with two linear

controls (3.1) . This section is devoted to studying of the fractional stability of equilibrium states for the
fractional system (3.1). In Section 4, the numerical integration and numerical simulation for the perturbed
fractional Euler top system associated to dynamics (3.1) is discussed.

Il. GENERAL EULER TOP SYSTEM WITH TWO PARAMETERS
For details on Hamiltonian dynamics, see e.g. [9].

We consider the following differential system of Euler type on R3:
X*H(t) = X2 (1) X3 (1) + ax?(t)
X% (t) = a, XM (£)x3 (t) + bx' (1), (21
X3 (1) = a, X (1)X* (t)
where X' (t) =dx'(t)/dt, o;,a,beR for i =1,3 such that o,o,0, #0 and t s the time.
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If ab =0, (2.1) iscalled the (general) Euler top system with two linear controls.
If a=b=0, (2.1) becomes the (general) Euler top system [6], given by:

(1) =X OX°(1); X (1) =X Ox° (1), X°(1) = X ()X (1), (2.2)
where a;,a,, 0, € R suchthat o, # 0.

We will denote the vector of parameters ¢, , =13 by a=(a,,a,,a;).
Remark 2.1. In [6] is showed that the general Euler top system may be realized as a

Hamilton-Poisson system in an infinite number of different ways. O

: 1 1 1
Example 2.1. (i) Let a, =|—,a2 =—,8; =— suchthat I, > 1, >1,>0.

1 |2 3
Ifin (2.1) wetake o =(a;—a,,a8, —a;,8, —4a,), a,beR", then:
X' =(a, —a,)x’x* +ax®;  x*=(a —a)x'x*+bx'; Xx*=(a,—a)x'x% (2.3)
The dynamics (2.3) is called the rigid body equations with two linear controls, where
x = (x*, x%,x%) represents the angular velocity vector of rigid body, I,,1,,1; the components

of its inertia tensor and a,b € R™ are parameters.

Ifin (2.3) wetake a =b =0, then we obtain the Euler equations of the free rigid body
on orthogonal group SO(3) [9].

(i) For o =(k,1,-1) and a=—-b= g, thesystem (2.1) becomes:

X =k*xP+ px% X =x—-pxt X =—x'x%, (2.4)
where K, € R with Kk <0 are parameters. This system is called the Rikitake-Hamilton
system with one quadratic control [14, 8].

(iiiyFor ¢ =(L—11) and a=b = R, thesystem (2.1) becomes:

X' =x2C+ px% X ==xI+pxh X =xXA (2.5)
Note that the system (2.5) is the general Rabinovich studied in [12] in the case
v, =V, =v, =0. Itis called the Rabinovich system with two linear controls. For =0, the dynamics
(2.5) is the Rabinovich system [2, 15]. O

Remark 2.2. Among the studied topics related to the systems given in Example 2.1 we
recall the construction of Hamilton-Poisson realizations and nonlinear stability problem

for the systems (2.3) with k =0 [9], (2.4) [8] and (2.5) with f=0 [2,15]. O
Proposition 2.1. Let a,b € R,a # 0. A Hamilton-Poisson realization of the Euler top

system (2.1) is (R®, P2 H ;) with the Casimir CJ, eC”*(R® R), where

1T ab?
0 ba, —aa, 3 —x2
aa,
Paab — aaz—_balx3 0 _Exl , (26)
' aa, a
X2 Exl 0
a
He :3[(% “b)()? +a(x?)? + ba, —aa, - aa (xs)z}—aﬁ, 2.7)
’ 2 a;
o
Cly = lbers (¢)” ~aa, ()" + (aa, ~ba) ()] (28)
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H, oH; oH;, ba,—aa,-a«a
Proof. We have i’b = (o, —b)xl, z'b =ax?, a3vb — " 2 193 33 _a
OX OX a,
oC? oC? oC“
X X X
a a _
Then P, -VH] =
0 ba, —aa, NCIR.
X s (cry ~b)x*
aa, —ba
Pf, - VH, =| ——=x%° 0 —=x" | ax? =
aa, a ba, —aa, —aa;
b x* —a
x? =xt 0 Qy
a, x*x° +ax? x*
=] o, x' x> +bx' | =] X?
o XX x°

Hence X (t) = PY, - VHZ,, where
oH;, oH7, oH7,
ox' T ox? T oax®

system. Also, C. is a Casimir, since P, -VC; =0.0

X = (0.0,£0), VH, :[

.
J and (2.1) is an Hamilton-Poisson

Corollary 2.1. (i) A Hamilton-Poisson realization of the Rikitake-Hamilton system (2.4)
is (R?, P¥, H;) with the Casimir C* € C*(R?,R), where

0 (k+1)x*> —x?
P =| —(k +1)x° 0 x|,
x° —x' 0

1
Hj = 2[00 + p0C) + (Bl +D k)Y |- e
o= %[(xl)2 —(x%)% + (k+1)(x*)?]
(ii) A Hamilton-Poisson realization of the Rabinovich system (2.4) is (R®,P, H,) with the
Casimir C € C*(R?,R), where
0 2x* -x?
P=|-2x* 0 -x

Hy =2 [a- M0+ 000+ @a-00ey]-pe, e = o) - 02 - 206)°].

Proof. The above assertions follows from Proposition 2.1 by replacement of parameters
a,,a,,0;,a and b with the corresponding values. O
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Proposition 2.2. The functions H;,C\ e C”(R®* R),givenby (2.7) and (2.8) are constants of the

ab?
motion (first integrals) for the dynamics (2.1).
Proof. Indeed,
) L, ba —aa, —a,a ) )
dH 7, /dt = (e, —b)x'x" +ax*x* +—= a2 L3 %% —ax® = (a; —b)x" (e, x°x® +ax?) +
3

ba, —aa, —a,a
+ax® (a,x'x® +bx*) + —2 2 173

X (a;x'x?) —a(azx'x?) = 0.
a;
Similarly, we have dC_ /dt =0.0

Remark 2.3. Since H,:fb and C;b are first integrals, it follows that the trajectories of
motion of the dynamics (2.1) are intersections of the surfaces:
—aa, —a

(o, —b)(x")* +a(x?)? + ba, % (x%)? —2ax* = constant  and

s
ba,(x")* —aa, (x*)? + (aa, —ba,)(x*)* = constant. o

I11. FRACTIONAL EULER TOP SYSTEM WITH TWO LINEAR CONTROLS

Let f eC”(R) and qeR,q>0. The g—order Caputo differential operator [5],
is described by D2 f (t) = 1™ f ™ (), q > 0, where f ™ (t) representsthe M — order

derivative of the function f, m e N" isaninteger suchthat m—1<g<mand |% is
the g —order Riemann-Liouville integral operator [13], which is expressed as follows:

19f(t) :%j(t—s)ql f(s)ds, qg>0,

where T is the Euler Gamma function. If ¢ =1, then D/ f (t) = df /dt.
In this paper we suppose that ¢ € (0,1].

The fractional Euler top system with two linear controls associated to dynamics (2.1)
is defined by the following set of fractional differential equations:

DX (t) = o, X* (1) X3 (t) + ax?(t)
DIX(t) = o, X ()X° (1) + bx} (1), g e (0) (31)
DIx3(t) = o, X' ()X (t)

where «;,a,beR for i =13

Example 3.1. (i) If in (3.1) wetake a =(k,,—1) with Kk <Oand a=—-b= R, thenthenone
obtains the fractional Rikitake-Hamilton system, given by:

DIx' =kx*x® + g x*;  DIx*=xx*-pgx"; DIx®=-x'x% (3.2)
(i) For ¢ =(,—11) and a=b = R, thesystem (3.1) becomes:
DIx' =x*x*+ g x?* DIx*=-x'x*+p8x" Dx®=x"x% (3.3)

The system (3.3) is called the fractional Rabinovich system with two linear controls.
For 2 =0, itis the fractional Rabinovich system. O

Proposition 3.1. The equilibrium states of the fractional Euler top system (3.1) are
given as the union of the following three families:
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E, = {el’“ = (m,o,—i) eR®|me R}, E, = {e;“ = (O,m,—i) eR*|Ime R}!
a, o,

E, = {eé“ =(0,00meR® me R}.
Proof. The equilibrium states are solutions of the equations f; (X) =0,i = ]3, where
f,(x) = a,x°x* +ax?, f,(x)=a,x'x* +bx" and f,(x)=a,x'x*.0
Let us we present the study of fractional stability of equilibrium states for the system (3.1). Finally, we will

discuss how to stabilize the unstable equilibrium states of system (3.1)
via fractional order derivative. For this study we apply the Matignon's test [10].
The Jacobian matrix associated to system (3.1) is:

0 ax’+a ax?
Jap(X) =| a,x* +b 0 a,x' |
2 1
05X 05X 0

Proposition 3.2. ([10]) Let X, be an equilibrium state of system (3.1) and J,,(X,) be
the Jacobian matrix J,, (X) evaluated at X, .

(i) X, islocally asymptotically stable, iff all eigenvalues of the matrix J ab (X,) satisfy:

qr
larg(A(J,, (X)) > R
(if) X, islocally stable, iff either it is asymptotically stable, or the critical eigenvalues

of J,,(X.) which satisfy |arg(A(J,, (Xe)))|=q7ﬂ- have geometric multiplicity one. O

Proposition 3.3. The equilibrium states €/, i =13 are unstable (M)g € (0,0).

ba
0 -—+a O
,
Proof. The characteristic polynomial of the matrix J, , (e;") =| 0 0 Ma, | s
0 Mo, 0

P, (B = A6t (&) — A1) = —AA —a,a;m?).
The characteristic polynomials of matrices J,, (€;') and J,, (€5') are the following:

P, ey D=4 —ayozm”) and  p, o (A)==ALE —(egm+a)(a;m+Db)].

The equations b(e{”)(ﬂ) =0, p, b(egﬂ)(/l) =0, p, b(egm)(/l) =0 have the root A4, =0.

T
Since arg(4,)=0< q? forall g e (0,1), by Proposition 3.1 follows that the equilibrium states
e, =13 are unstable forall g e (0,1).0
In the case when X, is a unstable equilibrium state of the fractional system (3.1), we associate to (3.1) anew
fractional system, called the perturbed fractional Euler top
system with two linear controls for the equilibrium state X,.
If one selects the parameters which then make the eigenvalues of Jacobian matrix
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of the perturbed fractional system associated to system (3.1) for the equilibrium state X, satisfy one of the
conditions from Proposition 3.2, then the trajectories of them asymptotically approaches the unstable
equilibrium state X, in the sense that lim || X(t) — X, [|= 0, where ||-|| is the Euclidean norm.

The perturbed fractional Euler top system with two linear controls for the equilibrium

b
state e;" = (m,0,——) is defined by:
a,

DX (t) = o, X2 (1)x3 (1) + ax’ (t) + ¢, (X' —m)
DX (t) = a, x* (t)x° (t) + bx* (t) + ¢, X7, qe (0 (34)

DX (1) = a X" (t)X* (t) + cl{xs + ﬁj

2%
where C,;,C;, € R are real constants.

The Jacobian matrix of the perturbed fractional Euler top system (3.4) for ;" is

Cyy ax’+a ax’
2 1
Jap (X,Cyy,Cp) =| X" +D Ci a X
ax’ ax" C,

Proposition 3.4. Let be the perturbed fractional Euler top system (3.4).

(i) Let &,a, <0 and me R,

(1) If ¢, <0,¢, <O, then e, is asymptotically stable (¥)q e (0,1);

2) If ¢, <0,¢, >0, then " is asymptotically stable (¥)q € (0,0,), where

2 m|./|a,x
q, =_|arctanM

| and itis stable for 0 = Q.
T Ci»

(i) Let a5 > 0. 1f C;; <0,Cp, <0, then € is asymptotically stable for all

C C
me e - 12 and ge<(02).
\/' a,a; | \/l a0 |
b,
c, ——+a 0
&,
Proof. The characteristic polynomial of J, (e/",C;;,C;,)=| 0 C, ma,
0 Mo, Cp,

is p,(1) =—(4—cy)(A-Cp,)* —a,a;m?]. The roots of the characteristic equation p,(4) =0

are Ay =Cyy, Az =Cp M| a0 .
(i) Case a,a3 <0. Then A, =Cy, A,;=Cp, ximy|a,a,|.
(i.1) We suppose that C;; <0 and C,, <0. Inthis case we have 4, <0 and Re(4,,) <0. Since

larg(L) =7 >q7”, i =13 forall q € (0,1), by Proposition 3.2(i), it implies that €," is locally

asymptotically stable for all m € R.
(i.2) For ¢; <0 and C;, >0, wehave 4, <0 and Re(A4,,) > 0. Applying Proposition 3.2(i),
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Myl aya, | |
.

Hence, the assertion (i.2) holds. If 0 = @, then € isstable. For 0, <q <1, " isunstable (V)m e R.

(i.3) Let ¢, >0 and C, €R. since 4, >0, J,,(€",C;;,C;,) hasat least a positive

2
e’ is locally asymptotically stable, for 0 < ¢ < ¢, where ¢, = — |arctan
T

eigenvalue and so €/ is unstable for all m € R. Therefore, the assertions (i) hold.
(i) Case a,at; >0. Then A, =Cpy, A,;=Cp, M|, |.
(ii.1) Suppose C;; <0 and C, <0. Then 4, <0, 4, =c,, +m/| a,; | <O for

C C
me|—oo,———2—| and A, =C, —My/| @,a; | <0 for m e | —2— +o |. Since the
|y, | Vo |

ClZ

it follows that elm is asymptotically stable

eigenvalues are all negative for m €

_ 12
\/l a,a, | \/' a,a; |
forall q € (0,1).
(ii.2) If ¢y, <0and c, >0, then 4, <0, 4, =c, +my| @, | <O for

C C
me|—oo,——2—| and A, =C, —M/| @, | <0 for m € | ——=— ,+ |. Hence,

|, | \/| a,a, |

Jab (e",C;;,Cpy) hasat least a positive eigenvalue and so €/ is unstable.

(i.2) Let ¢y >0 and Cy, € R. Since 4, >0, J,,(e",C;;,Cp,) hasat least a positive

eigenvalue and so €, is unstable (V)m e R. Hence, the assertion (ii) holds. O

Ifin (3.4) wetake o = (k,1,—1) with Kk <Oand a=-b =€ R", thenone

obtains the perturbed fractional Rikitake-Hamilton system for €;" = (m,0, /3).

Corollary 3.1. Let be the perturbed fractional Rikitake-Hamilton system for €" = (m,0, 3). If ¢,; <0 and
C,, <0, then € isasymptotically stable (V)meR and q e (0,).

Proof. Since a,a; = —1< 0, the assertion follows from Proposition 3.4(i). O

The perturbed fractional Euler top system with two linear controls for the equilibrium

a
state e, = (0,m,——) is defined by:
a,

DIX'(t) = o, x* (1) X3 (t) + ax’ (t) + ¢,y X"
DIX?(t) = o, x* (t)x3(t) + bx' (t) + C,, (X* —m), qe (0,0 (35)

DIX3(t) = ar,x* ()X (t) + cﬂ(xs n i}

o,
where C,;,C,, € R are real constants.

The Jacobian matrix of the perturbed fractional Euler top system (3.5) for e;‘ is
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Cyy ax’+a ax?
2 1

Jap (%1€, Cp0) =| X" +b C2 X |
o, X’ a X' C,yy

Proposition 3.5. Let be the perturbed fractional Euler top system (3.5).

(i) Let oy <0 and meR.

(1) If ¢y, <0,C,, <0, then €, isasymptotically stable (V)q e (0,1);

(2) If ¢y, <0,C,, >0, then e, is asymptotically stable (V)q € (0,0,), where

|m|\/|a1a3|
Cyy |

2
q, = —|arctan——————| and itis stable for 4 = 0,.
4 | 21

(i) Let gy >0.1f C,; <0,C,, <0, then €] is asymptotically stable for all

C C
me 2 - 2 and e (02).
\/' a,a | \/l a,a |

Proof. Letbe P,(A) the characteristic polynomial of matrix J,, (€5',C,,,C,,). The roots of the

characteristic roots of P, (1) =—(4 —C,,)[(A—Cy)* —aya;m?] are A, =C,,,

Ay =Cy * my| s |.

Applying the same reasoning as in the demonstration of Proposition 3.4 it is easy to prove that the the

assertions (i) and (ii) hold. O
Ifin (3.5) wetake @ =(1,—11) and a=Db = € R, then one obtains the perturbed fractional

Rabinovich system for ;' = (0, m,— /).
Corollary 3.2. Let be the perturbed fractional Rabinovich system for ;' = (0, m,— /).
If ¢,y <0and C,, <O, then €] isasymptotically stable (¥)m € (C,;,~C,,) and q € (0,1).
Proof. Since a,a; =1> 0, the assertion follows from Proposition 3.5 (ii). O
The perturbed fractional Euler top system with two linear controls for the equilibrium
state e; = (0,0, m) is defined by:

DX (t) = o, X (1)x° (t) + ax® (t) + ¢, X

DIX2 (t) = a, X (t)x* (t) + bx* (t) + ¢, X2, qe(0)) (36)

DIX®(t) = ar, X" ()X2 (t) + Cyy (x° —m)
where C,;,C,, € R are real constants.
The Jacobian matrix of the perturbed fractional Euler top system (3.6) for e;" is

C, X +a ox
Jap(X,Ca1,C5p) = a X" +b Ca1 aX |
ax’? axt  Cy

Proposition 3.6. Let be the perturbed fractional Euler top system (3.6).
(i) Let (oym+a)(a,m+b)<0and meR.
(1) If Cy <0,Cq <O, then €, is asymptotically stable (V)q € (0,1);

_______________________________________________________________________________________________________________________________________|]
| IIMER | ISSN: 2249-6645 | WWw.ijmer.com | Vol. 8 | Iss. 4 | April 2018 | 17 |



On The Fractional Euler Top System With Two Parameters

(2) If €y >0,Cy <O, then €5 is asymptotically stable (V)q € (0,0;), where

J(@m+a)(a,m+b)|
| Cay |

(i) Let (ym+a)(a,m+b)>0.1f ¢, <0,Cy <0 and (ym+a)(a@,m+b)<cZ, then e is

asymptotically stable for all g € (0,1).

2
gs =—|arctan | and it is stable for g = 0.
7

Proof. Letbe P, (4) the characteristic polynomial of matrix Ja,b (eg‘,csl,c32), where

Ps(A) = —(1 = ¢5,)[(A —¢5,)? — (a;m + @)(er,M + b)]. The roots of equation P (1) =0 are
A =Cy, Ay =Cy £4/|d], where d = (a;m+a)(a,m+b).

(i) Case d <O0. Then A, =Cyy, 4,3 =Cy _I\/_

(i.1) We suppose that C;, <0 and C5 < 0. Then 4, <0 and Re(4,;) <0. Since

larg(4) =7 >q7”, i =13 forall q € (0,1), by Proposition 3.2(i), it implies that €5 is locally

asymptotically stable for all m € R.
(i.2) For C;; <0 and ¢y >0cCy; <0and c, >0, wehave 4, <0 and Re(4,,) > 0. Applying
Proposition 3.2(i), e3rn is locally asymptotically stable, for 0 < q < q,, where

Jd]

31

| . Therefore, the assertion (i.2) holds. If g = (5, then e, is stable. For

2
g, =—|arctan
T

d; <q<1 e isunstable forall meR.
(i.3) Let Cy >0and C3 €R. then 4, >0 and J,, (e',Cy,Cqp) hasat least a positive
eigenvalue. Hence, e;“ is unstable for all (V)m € R. Therefore, the assertions (i) hold.
(i) Case d>0.Then A4, =Cy, A,3=0Cy _\/_| In this case, A, 1 =13 areall negative if and
only if C5; <0,Cq <0 and (a;m+a)(a,m+b) <. It follows that €] is asymptotically stable for
all qe(0).0
Ifin (3.6) wetake @ =(a; —a,,a, —a;,a, —a,), then one obtains the perturbed
fractional rigid body equations with two linear controls for e;' = (0,0, m).
Corollary 3.3. Let be the perturbed fractional rigid body equations with two linear controls for
e; =(0,0,m). If ¢;; <0,C,, <O, then €5 is asymptotically stable for all m e R™ satisfying the
condition ((a; —a,)m+a)(a, —a;)m+b)<0 and q  (0,1).
Proof. Since (a, —a,)(a, —a;) <0, the assertion follows from Proposition 3.6 (i). O
Example 3.2. (i) Let be the perturbed fractional Rikitake-Hamilton system for €" = (m,0, 5). For
¢, =-1,¢, =-2, f=1,m=0.75, the conditions of Corollary 3.1 are achieved. Then €, =(—0.75,0,1)
is asymptotically stable (V)q < (0,1).
(ii) Let be perturbed fractional Rabinovich system for e;" = (0,m,—f3). If we select
—2,C,, =—3,#=0.5 and m=0.75, then the conditions of Corollary 3.2 are achieved.
Then e, =(0,0.75,0.5) is asymptotically stable for g € (0,1).0
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IV. NUMERICAL INTEGRATION OF FRACTIONAL MODEL (4.1)

The fractional differential systems (3.4) —(3.6) can be written in the general form:
Dix' = a,x*x® +ax’ + kl(x1 - xi)
DIx* = a,x'x® +bx* +Kk, (x2 —xZ ) qe (0 (41)
DIx® = a x'x® + kg(x3 —~ xf)
where Kk;,K,,Kk; € R are real constants.
The fractional dynamics (4.1) is called the perturbed fractional Euler top system
with two linear controls for the equilibrium state X, = (Xe, e ,Xe)
For example, if in the system (4.1) wetake k; =cC;;,k,; =C, and X, = e," one obtains the perturbed

fractional Euler top system (3.4) for the equilibrium state €;".
Consider the fractional differential equations

{ DX (t) = F. (x*(t), X2 (t), X* (1)), te(0,7), i=13, qe(0)
X(0) = (x*(0), x2(0), x*(0) ) (42)

where
FL(X(1)) = a2 (£)X° (t) + ax? (t) + k, (X! (t) — x)
F, (X(1)) = e, X (t)X° (t) + bX:(t) + k, (x* (1) = x).
F, (X(1)) = ar, X (@) X2 (1) + K, (3 (1) - )

Since the functions F (t),i = 1,3 are continuous, then the initial value problem

(4.2) is equivalent to nonlinear Volterra integral equation of the second order [5], which
is given as follows:

)'(i(t):x(i)+%i‘(t—s)q‘lFi(xl(s),xz(s),xs(s))ds, i=13, q>0.  (4.3)

Diethelm et al. used the predictor-corrector scheme [4], based on the Adams-
Moulton algorithm to integrate the equations (4.3).

T

N’

We apply this scheme to fractional system (4.1). For this, let h = =nh for

n=01...,N.

The perturbed fractional system (4.1) can be integrated as follows:

X'[n+1]) = X +#:2)[§a[j,n+1]Fi(Xl[j]1X2[J'],X3[J'])]+

+F (¢ [n+1], x5 [n+1],x3 [n +1]), i=13, (44

xp[n+1]) =

ar( )(ZD[J n+10F (x'[j1,x°[1,x [J])J

where:
a[0,n+1] = n"-(n-g)(n +1)°
a[j,n+1] =(n—j+2)" +(n-j)** —2(n— j+1)*,
b[j,n+1] =(n—j+1* - (n-j)*,

N & [E—
Il I
sl 5l
Sl >
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The above scheme given by the relations (4.4) is called the Moulton-Adams algorithm
for perturbed fractional system (4.1) [4].
The error estimate for the algorithm described by (4.4) is

max,. . (X [~ X [i])|1 =13}=0(h"*).
Let us we apply the algorithm (4.4) and software Maple 11, to integrate two perturbed
fractional Euler top systems with two linear controls of type (4.1). For this, we take
h=0.01, & =0.01, N =500,t =502 and the initial conditions Xx(0) = (x*(0), x*(0), x*(0)), where
X (0)=e+x,i=13
These considerations are exemplified in the following cases.
(1) Let be the fractional model (4.1) for the equilibrium state €," = (m,0, 5) associated to Rikitake-
Hamilton system (2.4) with m=-0.75 and f =1, which has discussed in Example 3.2. (i). In the
relations (4.4) we take:
o, =-05a,=1a,=-La=1b=-1k =-1k, =k; =-2, X: = —O.75,Xe2 =0and Xe3 =1
In the coordinate system OX1X2X3, the orbits of solutions of fractional Rikitake-

Hamilton model (4.1) for the equilibrium state €, = (—0.75,0,1) have the representations
given in the figures Fig.1 (for g =0.75) and Fig. 2 (for g =1).

0,74
Fig.1. Orbits (Xl(n), x%(n), Xs(n)) of Rikitake model for q =0.75
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001
0745

074
Fig. 2. Orbits (Xl (n), x*(n), x* (n)) of Rikitake model for q =1

(2) Let be the fractional model (4.1) for the equilibrium state e, = (0, m,—5)

associated to Rabinovich system (2.5) with m=0.75 and S =—0.5, which has presented in Example 3.2.
(i). Inthe relations (4.4) we take:

a,=la,=-1a,=1,a=-05b=-05k, =k, =-2,k, =-3,x; =0,x> =0.75 and x? = 0.5.
In the coordinate system Ox'x? X3, the orbits of solutions of fractional Rabinovich

model (4.1) for the equilibrium state €, = (0,0.75,0.5) have the representations given

in the figures Fig.3 (for q =0.75) and Fig. 4 (for q =1).

0,01
Fig.3. Orbits (Xl(n), x%(n), x° (n)) of Rabinovich model for g = 0.75

_______________________________________________________________________________________________________________________________________|]
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]

076
0,003

0,004

0,005

0,006

0,007

0,008

0,009

0,01

Fig. 4. Orbits (Xl(n), x%(n), x* (n)) of Rabinovich model for g =1

The numerical simulations show the validity of the theoretical analysis.

V. CONCLUSIONS.
The dynamics of the fractional Euler top system with two control parameters (3.1) was studied. The

analysis of the fractional stability of for the perturbed fractional model associated to system (3.1) has
investigated. Finally, the numerical simulations for solutions of perturbed fractional Rikitake-Hamilton system

and perturbed fractional Rabinovich system are given. O
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