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I. INTRODUCTION 
Now-a-days sliding mode control is the most interesting concept from the technical point of view. 

Sliding mode control (SMC) is known to be a robust control method appropriate for uncertain systems. High 

robustness is maintained against various kinds of uncertainties such as external disturbances and measurement 

error. 

To obtain a second-order sliding mode control based on a PID sliding surface with independent gain 

coefficients and address issues related to sliding mode control. Equivalent control approach is used in solution 

based on the second-order plant model. Experimental validation of the present design proves that the control and 

tracking performance is improved in the presence of uncertainties and disturbances while maintaining the 

stability. The formal descriptions of traditional SMC, 2-SMC, model description is given with control strategy 

and results [1]. 

The study of second order sliding mode control is done for an uncertain  plant which uses the 

equivalent approach to show the improved performance of the system. In recent years, control of such systems 

has attracted greater search interest. It is well known that most of the control systems have nonlinear and time-

varying behavior with various uncertainties and disturbances. The SMC method has some advantages such as 

robustness to parameter uncertainty, insensitivity to bounded disturbances, fast dynamic response are mark able 

computational simplicity with respect to other robust control approaches and easy implementation of the 

controller[2,4]. 

In the early sixties this method has gained the significant research attention it the former USSR and its 

wide variety of applications are seen in the late seventies [3]. The aim of the controller is to bring the error to 

sliding surface and further it is bounded to remain on the sliding surface. The control process is based on these 

two phases: sliding phase and reaching phase. So that two types of control laws can be derived separately, the 

equivalent controls law and the switching law. The second order sliding mode approach proposed to reduce the 

chattering problem and it gives good robustness for the closed loop system   [5]. 

For the robust finite time controller design higher order sliding mode control algorithm is given as: 

design finite time controller and discontinuous control laws, gives finite time stabilization of the nominal system 

and rejects the uncertainties of the system respectively [6].Systematic assessment of chattering problem and 

sliding mode control solution for real life engineering problems are well covered in [7].The second-order sliding 
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mode control, compared to first-order  SMC has the advantage that it provides a smooth control and better 

performance in the control implementation yielding less chattering and better convergence accuracy while 

preserving the robustness properties [8]. The peculiar focus is to reduce the error to zero, not only the sliding 

surface, but also its second-order derivative. It means that the second-order sliding mode corresponds to the 

control acting on the second derivative of the sliding surface [9].There are different types of second order sliding 

mode control algorithms methods. For these methods proposed solution is classified into model based and non-

model based technique. Model-based control design is systematic and can be applied in general cases, and 

specifications  in terms of robustness and tracking accuracy can be priori assigned, as well as various criteria can 

be fulfilled [4]. 

The description of electromechanical plant and its online identification is available in this paper. In 

short we get the examination of dc motor behavior which constitutes a useful effort for analysis and control of 

many practical applications [10]. 

In this paper second order sliding mode results are improved by using the power rate reaching law. The 

reaching laws are of different classical types out of which power rate reaching law is one. The problem of 

chattering is better overcome by this law and the response we get is also faster from the previous responses as in 

traditional SMC, 2-SMC [1]. The equivalent control approach is used in the plant model and the stability is 

proved using the direct Lyapunov approach. The dc motor drive is the component of the electromechanical 

systems, have been used extensively in several industrial applications as actuating elements to follow a 

predetermined as speed or position trajectory under load for their advantages of easy speed and position control  

and wide adjustable range. For the analysis and control of many practical applications examination of dc motor 

behavior constitutes a useful effort. 

 

II. SLIDING MODE CONTROL 
2.1. Theory of sliding mode control  

The sliding mode control or SMC, is a nonlinear control method that alters the dynamics of a nonlinear 

system by application of a discontinuous control signal that forces the system to "slide" along a cross-section of 

the system's normal behavior. The state-feedbacks control law is not a continuous function of time. Instead, it 

can switch from one continuous structure to another based on the current position in the state space. Hence, 

sliding mode control is a variable structure control method. The multiple control structures are designed so that 

trajectories always move toward an adjacent region with a different control structure, and so the ultimate 

trajectory will not exist entirely within one control structure. Instead, it will slide along the boundaries of the 

control structures. The motion of the system as it slides along these boundaries is called a sliding mode and the 

geometrical locus consisting of the boundaries is called the sliding surface [12]. 

 

2.2. Equations for linear uncertain plant 

Let a single-input second-order linear uncertain plant [1]: 

                                 ÿm(t ) = -(An ±∆A) ẏm  (t ) - (Bn±∆B) ym(t ) + (Cn±∆C)(t ) + d(t )                              (1) 

Where ym(t)  Ʀ+ ,ym(t) is the output, u(t) is control input, u(t)  Ʀ+ ,An, Bn & Cn are the nominal plant 

parameters ,∆A, ∆B and ∆C are the unknown model uncertainties introduced by the plant parameters, nonlinear 

friction and unmodeled dynamics, d(t)denotes uncertain external disturbance ,is the independent time variable, 

denotes set of real constants. The second-order plant model, Eq.(1),can be rearranged as: 

 

                                               ÿm(t) = - An ẏm(t) –  Bn ym(t) + Cn u(t) + D(t,u(t))                                                 (2) 

 

Where,  

D (t , u (t )) denoting the lumped uncertainty that is bounded and unknown satisfying |D| ≤ Dmax, is given 

                                                

                                          D(t ,u(t )) = ± ∆A ẏm(t ) ± ∆Bym(t ) ± ∆C u(t ) +  d(t )                                             (3) 

  

The upper bound for the uncertainty Dmax is, 

                                                Dmax  = ∆A |ẏm(t )| + ∆B |ym(t )| + ∆C ū(t ) + |d(t ) |                                         (4) 

Where ū is the input hard constraint, |u(t)| ≤ ū, Dmax € Ʀ+, Ʀ+ set of positive r al constants. The control 

problem is to find suitable control input such that the output tracks desired command asymptotically in the 

presence of model uncertainties & disturbances. The tracking error e (t), e (t) ∈ Ʀ, in terms of command 

signal yr (t) (yr (t) ∈ Ʀ) and measured output signal ym(t),is defined as, 

                                                         e (t )  =  yr (t ) - ym (t )                                                                                   (5) 

The Sliding mode control is of different types one is first order sliding mode control and another is the 

second order sliding mode control. 
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In the first order sliding mode control the condition is given like this s (t) = 0 and s (t)ṡ (t ) < 0. The aim of 

the first order sliding mode control is to force the error to move on the switching surface. The sliding surface 

in traditional SMC depends on the tracking error.[1] 

The sliding surface for the traditional SMC it depends on tracking error and derivatives of tracking error, 

given as, 

                                                           s (t)  =  c   + ( ) (n-1)  e(t)                                                                     (6) 

Where c is positive constant it belongs to Ʀ+, n denotes the order of uncontrolled system. The error 

starting from a certain initial value will converge to the boundary layer and move inside the boundary layer 

towards the horizontal axis until it reaches ė(t) = 0. 

The first time derivative of the sliding surface Eq. (6), 

                                                          ṡ (t)  =  λc ė(t) + ë (t)                                                                                (7)  

Now take the second time derivative of error in term of plant parameters. Using the Eq. (5), 

                                                          ë (t) =  r (t)  -  m (t)                                                                               (8)  

 Substitute the value of m (t) by using the Eq. (2) in such a manner as follows, 

                                                         (t)  =  r (t) + An ẏm(t)  +  Bn ym(t) - Cn u(t) - D(t, u(t))                          (9) 

This equation is further used at the time of deriving second order sliding mode control derivation. 

 

2.3. Second-order sliding mode control 

In the 2-SMC the condition is given like this “for any rth order sliding mode, s(t) = (t) = ……….= 

s(r-1) = 0. The purpose of higher order sliding mode control is to enable the error to move on the switching 

surface s(t) = 0 and the first successive derivative (r-1) null. The PID sliding surface introduced for the 

second order sliding mode control is give as, 

                                             (t) + βs (t) =  k p e (t) + dτ + k d ė (t)                                        (10) 

Where kp  ,ki and kd are the independent positive constants denoting proportional, integral and 

derivative gains, respectively, all these constants belong to Ʀ+, β is also a positive constant and belongs to 

Ʀ+. After the sliding mode is enforced it determines the rate of decay for s (t) and contributes in damping too. For 

the flexibility of the sliding surface the gains are provided in the above equation. 

The system is initially in the region s (t) > 0 and that input is not sufficient to drive the error towards 

sliding surface. So that it results in increasing s (t) and error moves far from the sliding surface. To force the 

error to move towards the sliding surface the integral action is used so that it increase the control action 

accordingly and it satisfy the condition (t) = 0. Now as the s(t) reaches the sliding surface, the control action 

gets reduced because s(t) is decreasing. The system is said to be in sliding mode when s(t) is on the sliding 

surface  and so the problem of tracking set point is equivalent to that of remaining on the zero sliding surface for 

at>0.The control input is given as, 

  U (t)   =  ueq(t)  +  usw(t)                            

Where ueq(t ) and usw(t ) are the equivalent control and the switching control respectively. The equivalent 

control is given by Utkin is based on the nominal plant parameters with D (t, u(t)) = 0 and it provides 

the main control action. And the switching control ensures the discontinuity of the control law across 

the sliding surface. The controller must be designed such that it can drive the error to sliding surface and 

when it reach to sliding surface it is said to be the reaching phase. 

 

2.3.1. Equivalent control equation 

The equivalent control is obtained from the equation (6), take the second time derivative of the sliding 

surface as such below,  

                                                   (t) + β ṡ (t)  =  kp ė(t) + ki e(t) + kd ë(t)                                                      (11) 

The error converges to zero exponetionally if the system trapped on the sliding surface and the coefficients, kp, ki 

and kd, are selected properly. The plant Eq. (1) satisfies second order mode with respect to the sliding surface 

s(t) if its error lies on the intersection of s(t) =0 and (t) = 0. Now   substitute Eq. (9) into Eq. (11), as such, 

 

                          (t) + β ṡ(t)  =  ki e(t) + kp ė(t) + kd (ÿr (t) + Anẏm(t) + Bn ym(t) - Cn u(t) - D(t, u(t)))         (12) 

By recognizing (t) = 0 the equivalent control is found and it’s the necessary condition for error to stay on 

sliding surface, D (t, u(t) ) is not taken into account. When (t) =0 we get the equivalent control as, 

 

                                   ueq(t)   =   (kd Cn)-1 ki e(t)  +  kp ė(t)  +  kd (ÿr(t)  +  Anẏm(t) + Bb ym (t) - β ṡ(t))           (13) 

The equivalent signal with the uncertainty is given as such below, 

                    

                                           =    +    D (t, u (t))                                               (14) 



Power Rate Reaching Law Based Second Order SMC 

| IJMER | ISSN: 2249–6645 |                                     www.ijmer.com                   | Vol. 8 | Iss. 7 | July 2018 | 20 | 

 

2.3.2. Switching control equation 

If the switching control is function is introduced directly as, 

                        

                                                           Usw(t ) = λ1 s(t ) +  ks sign (ṡ(t ))                                                        (15) 

 

Where   λ1, ks∈Ʀ+  with  λ1> ,ks>  with  Dmax  =   sup∀t ,s,ṡ=0{D(t ,u(t ))}. If Eqs. (13) and (15) are 

substituted into Eq. (12) one has 

                                                       (t )  =  -kd  D(t ,u(t )) – kd Cn λ1 s(t ) - kd Cn ks sign(ṡ(t ))                          (16) 

The second order sliding mode switching controller using the hyperbolic tangent function instead of the sin 

function can be given as, 

                                                           Usw(t ) = λ1 s(t ) + ks tanh(ṡ(t )/Ω)                                                (17) 

 

2.3.3. Lyapunov Stability 

For the stability here we are using the Lyapunov stability function as such given below, 

                                                            V(t)  =  + (t)                                                              (18) 

With V(0)=0 and V(t )>0 for s(t )=0,ṡ(t )=0.The stability is guaranteed if the derivative of the Lyapunov 

function is negative definite, also known as the reaching condition[1]:    V (t ) < 0, s (t ) = 0, ṡ (t ) = 0                                                                        

 

Taking the first time derivative of Eq. (18) yields: 

                                   

                       V (t)  =  s (t) (t)  +  (t)  (t)                                                                                              (19) 

=  s(t) (t) + (t) (-kd  D(t , u(t )) - kd Cn λ1 s(t) - kd Cn ks sign(ṡ(t )) 

=  s(t ) ṡ(t ) - kd Cn λ1 s(t ) ṡ(t ) - ṡ(t ) kd  D(t , u(t )) kd Cn ks |ṡ(t )| 

≤ |ṡ(t )| (s(t ) - kd Cn λ1 s(t ) - kd D(t , u(t )) - kd Cn ks) 

≤ |ṡ(t )| (|s(t )| - kd Cn λ1 |s(t )| - kd D(t , u(t )) -  kd Cn ks) 

≤ |ṡ(t )| (|s(t )|- kd Cn λ1 |s(t )| + kd Dmax - kd Cn ks) 

= -|ṡ(t )| (|s(t )| (kdCnλ1 - 1) + kd Cn ks - kd Dmax) < 0.                                            (20) 

 

III. SLIDING MODE CONTROL BASED ON REACHING LAW 

Sliding mode based on reaching law includes reaching phase and sliding phase. The reaching 

phase drive system is to maintain a stable manifold and the sliding phase drive system ensures slide to 

equilibrium. One of the classical reaching law is given below. The equation for the power rate reaching 

law is given as [11]: 

                                                     (t) = -k α sgn (s)           k > 0, 1 > α > 0                                   (21)   

 

 
Fig.2. The idea of sliding mode 

 

This law increases the reaching speed when this state is far away from the switching manifold. 

Power rate reaching law reduces the rate when state is near the manifold and the result gives us fast & 

low chattering reaching mode. There are different classical reaching laws out of them here the power 

rate reaching law is used.  

 

3.1. Equivalent control equation 

As we know for the second order sliding mode the condition is s(t) = (t) =…………….= s(r-1) = 

0 and in power rate reaching law the Eq.(20) is used while deriving the equation for equivalent control. 

˙ 
 
 
 
˙ 
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Now use Eq.(12),as given below: 

                 (t) + β ṡ(t) = ki e(t) + kp ė(t) + kd (ÿr (t) + Anẏm(t) + Bn ym(t) - Cn u(t) - D(t, u(t)))              (22) 

 If we substitute the (t) = 0 and the Eq. (20) we get, 

            β (-k α  sgn (s))  = ki e(t) + kp ė(t) + kd (ÿr (t) + Anẏm(t) + Bn ym(t) - Cn u(t) - D(t, u(t)))         (23) 

By rearranging the terms we get, 

                          kd Cn u(t) = ki e(t) + kp ė(t) + kd (ÿr (t) + Anẏm(t)) + β (k α  sgn (s))                           (24) 

Considering the necessary conditions we kept the error on the sliding surface, D (t, u (t)) is not taken 

into account so the equivalent control is obtained as follows: 

                                ueq(t) = (kd Cn)-1(ki e(t) + kp ė(t) + kd (ÿr (t) + Anẏm(t)) + β (k α  sgn (s))            (25)      

3.2. Switching control equation 

 The equation for the switching control is given as follows: 

                                                            usw(t ) = λ1 s(t ) + ks tanh(ṡ(t )/Ω)                                                  (26) 

    

IV. DC MOTOR MODEL 
4.1. Description 

Almost every mechanical movement that we see around us is accomplished by an electric motor. 

Electric machines are a means of converting energy. Motors take electrical energy and produce mechanical 

energy. Some examples of large motor applications include elevators, electric trains, hoists, and heavy 

metal rolling mills. Examples of small motor applications include motors used in automobiles, robots, 

hand power tools and food blenders. Micro-machines are electric machines with parts the size of red blood 

cells, and find many applications in medicine. 

 

 
 

A dc motor connected to a load via a shaft, is shown in Fig.1, the  dc  motor , as components of 

electromechanical systems, have been widely used in several industrial applications as actuating elements 

to follow a predetermined speed or position trajectory under load for their advantages of easy speed and 

position control and wide adjust ability range. Consequently, examination of dc motor behavior 

constitutes a useful effort for analysis and control of many practical applications [10].The electrical and 

mechanical equations for the electromechanical plant, shown in Fig.2, consisting of a dc motor connected 

to a load via along shaft can be given as above: 

                                   

4.2. Equations 

           Va (t)  =  La  ia(t) + Ra ia(t) + Kmωt                                                                                         (27) 

 

Jm (  )  =  Tm(t) - Ts(t) - Rm ωm(t) - Tf(ωm)                                                     (28) 

 

  JL (  ) = Ts(t) - Td(t) - RL ωL(t) - Tf(ωm)                                                        (29) 

 

               s(t) =  ks( m(t) – L(t)) + Bs(ωm(t) - ωL(t)                                                  (30) 

 

 (dθm(t))/dt =  ωm(t) , (dθL(t))/dt = ωL(t) 

Where va is the motor armature voltage, Ra & La are the armature coil resistance and inductance 

respectively, ia is the armature current, km is the torque coefficient, Tm is the generated motor torque, ωm 

are the rotational speeds of the motor, jm and jL are the moment of inertia Rm and RL are the coefficient 

of the viscous friction, Td is the external load disturbance, Tf is the nonlinear friction, Ts is the 

transmitted shaft torque and t is the time. 

There are several plant parameters in the plant model so in this case it is very much difficult 

while doing the experiments. We are not able to define each and every parameter at that time the 

simplification is needed. So to simplify the modeling process the plant can be approximated using a 
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second order model including disturbances and uncertainties as: 

                                 L (t)  =  -(An±∆A) L (t) - ( Bn±∆B) ωL(t) + (Cn±∆C)va(t) + f(t)                 (31) 

  

                                              L(t)  =  -An L(t) - Bn ωL(t) + vaCn(t) +  L(t, u(t))                             (32) 

 

 
 

Where the linear plant parameters are based on the nominal operating point should be 

determined experimentally (t, u(t)) in Eq. (38) denotes the lumped uncertainty that is bounded by 

unknown, |L(t, u(t))| ≤ Lm, Lm∈ R+, and it is defined by, 

 

                                          L(t, u(t)) =  -∆AωL(t) - ∆BωL(t) + ∆Cu(t) + f (t)                                    (33) 

 

And the upper bound Lm. 

  

                                                    Lm = ∆A |ωL(t)| + ∆B |ωL(t)| + ∆C ū + |f (t)|                                  (34) 

  

Where ū is the input hard constraint, |u(t)| ≤ ū. 

The control problem is to find suitable control input such that the output tracks desired command 

asymptotically in the presence of model uncertainties & disturbances. The tracking error e (t), e(t) ∈ Ʀ, 

in terms of command signal (t)  (  Ʀ) and measured output signal (t)                                   ,is 

defined as, 

                                                        e (t)  =  (t) - (t)                                                                 (35) 

          The second time derivative of the error with DC motor model can be given as follows. With help 

of the Eq.(8) we can write it directly. 

                                                        (t) =    - (t)                                                            (36) 

The single input second order linear uncertain plant equation we get it from the Eq.(2) in terms of dc 

motor as follows: 

                                       (t)  =  - An (t) - Bn (t)  + Cn (t) + D(t, ( (t))                          (37) 

By substituting the value of (t) in the above equation we get the (t) as follows:                                       

                                       (t) =  + An (t) + Bn (t)  - Cn (t) - D(t, ( (t))                  (38) 

Where (t) is the output, (t) ∈ Ʀ , (t) is the control input, (t) ∈ Ʀ , An , Bn  &  Cn  are the 

nominal plant parameters. D(t, (t)) it denotes  the lumped uncertantainty. The control input can be 

given as follows:       

                                                           (t) =   (t) +  (t)                                                          (39) 

Considering the necessary condition we kept error on the sliding surface, D(t, (t)) is not taken in to 

account so the equivalent control is obtained as ,       

               (t) = (kd Cn)-1(ki e(t) + kp ė(t) + kd ( + An (t) + β (k α   sgn (s))              (40) 

 

The equation for the switching control is given as follows: 

                                                  (t)   = λ1 s(t) + ks tanh(ṡ(t)/Ω)                                                 (41) 
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                           V. SECOND ORDER SLIDING MODE CONTROL WITH  POWER RATE 
5.1. Description 

The control diagram of the experimental setup is shown in the Fig.2. In this setup a dc motor is 

connected to load via a long shaft, ωr is the command signal, ωL is the output measured. The proposed 

second order sliding mode controller with power rate reaching law is implemented in Simulink Matlab 

software.    

The PID sliding surface is used and surface parameters of the system kp, ki, kd, are given as 40, 2, 

0.5respectively. It is known that mathematical model of a plant based on physical describes dynamic 

behaviors. However, parameters in the model of a plant cannot be obtained precisely. Therefore, as a 

preliminary work, the present plant should be tested to calculate nominal plant parameters, An, Bn and 

Cn. This process is needed before the closed-loop operation is allowed. First-order plus dead-time 

model is one of the effective model types to approximate real plants, if the open-loop response to an 

applied signal does not possess any overshoot. 

The approximate plant model in transfer function form, based on the process reaction curve 

method, can be given: 

 

                                                      G(s)                                                      (42) 

 

Where k,  and T are the steady-state gain, time delay and time constant respectively. It’s 

obtained from the experimental results. 

The step input signal is provided & the output is measured from the approximated model 

response. The parameter values are calculated from the measured plant  

Output to be k = 0.822, = 0.009s and T = 0.1418s. Using the approximate plant model, the nominal 

parameters are calculated as =118.1663, = 783.5762 and = 644.0997, where =  

 = , = . Thus the transfer function of the electromechanical plant can 

be obtained approximately as, 

 

                                                  G(s) =  

 

It is clear that the transfer function of the plant, G(s) is a second-order over-damped and stable 

nominal transfer function with two poles located on the left half part of the complex s-plane. The plant 

model based on the state variable form with zero initials is, 

 

                                                          L (t)  = -118.1663 L (t) - 783.5763 ωL (t) + 644.0997 va(t)               (43) 

 

5.2. Results     

The result of this PRRL based on SOSMC is as given below. The switching control should be 

minimized to provide reasonable control activity in practical implementation not to hurt the actuators. 

For the plant, the overshoot at the output response is not desired. Conventional PID parameters are 

determined using the Ziegler-Nichols Quarter amplitude (1/4 decay ratio) method based on the real 

experimental test on plant.  

The speed response and associated control efforts of the proposed SOSMC and the PRRL based 

SOSMC is shown in the results. The performance specification of the PRRL based SOSMC is much 

better than the SOSMC. Such that smaller rise time, settling time and smaller output deviation in 

magnitude is seen in the PRRL. 

The performance specifications of the 2-SMC system are much better than that of the first-order 

SMC system such that the smaller rise time, settling time and the smaller output deviations in magnitude 

were obtained from the proposed 2-SMC system. The large overshoot (57.8%) is obtained from the PID 

control system that is unacceptable. The responses in smaller time range, in 0.20 s, are illustrated to 

check transient performance specifications. The 2-SMC input converges faster and the variations are 

smaller in steady-state conditions. Traditional sliding mode control input converges more slowly and the 

PID control input has larger variations in magnitude at the transient and steady-state conditions. Larger 

variations in the control effort are not desired.  

The sliding surface variations s(t) during the control are illustrated in Fig. 11 for the 2-SMC 

system and Fig. 12 for the traditional SMC system. The steady-state variations are smaller in the 2-SMC 
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system with faster convergence. It can be noted that the sliding surface is not zero, s(t) ≠ 0 when the 

error signal is not zero. This means that the sliding mode is in the reaching phase up to 0.1 s and then 

arrives sliding phase. The surface s(t) is near to zero when the error signal is very small or motor speed 

is trying to reach the command speed. Theoretically the sliding function is expected to be zero at steady-

state conditions, but there are always unmatched uncertainties ad disturbances, frictions and nonlinearities. The 

system is in the sliding phase since the steady state (average) value of the sliding function is zero. The system 

trajectories are plotted in the phase plane, e(t) and ė(t)  of the traditional SMC algorithm and e(t)  and ė(t)  of 

the 2-SMC algorithm in figs. 7and 8, respectively.   

The tracking of the SOSMC control system is show in the fig.3 and fig.9 shows the tracking of 

PRRL based SOSMC. With the help of this result we can analyze the difference in the result of SOSMC 

and PRRL based SOSMC. To test the tracking of the system, the closed-loop system is tested at 1500 

rpm of speed such that a square wave set-point change corresponding to 1500 -100 rpm is applied to the 

system. The figures confirm the fact that the system with the second-order sliding mode controller has a better 

tracking performance than the system with the traditional sliding mode controller and PID controller. Smaller 

speed variations, ±7 rpm in magnitude were obtained in the 2-SMC system. The control effort of the SOSMC 

is shown in the fig.4 and fig.10 show the control efforts of the PRRL. The response to speed change of 

the dc motor is shown in the fig.5 for the SOSMC and the fig.11 shows speed change response of the 

PRRL. The control signal for the SOSMC is shown in the fig.6 and for the PRRL is shown in the fig.12. 

Now the phase plane trajectory of the SOSMC system is shown in the fig.7 and the phase plane 

trajectory of PRRL is shown in the fig.13. The sliding surface s(t) of the SOSMC is shown in the fig.8 

and the fig.14 shows sliding surface s(t) for the PRRL. 
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Fig.3.Tracking of 2-SMC control system 

 

                                        
Fig.4. Control efforts of the 2-SMC system 
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Fig.5. Response to speed change (0-1000 rpm) 
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Fig.6. Control signal for the 2-SMC system 
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Fig.7. The phase plane trajectory of the 2-SMC system 
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Fig.8. Sliding surface s(t) of the 2-SMC system. 
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Fig.9. Tracking of PRRL control system 
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Fig.10. Control efforts of the PRRL system 

 



Power Rate Reaching Law Based Second Order SMC 

| IJMER | ISSN: 2249–6645 |                                     www.ijmer.com                   | Vol. 8 | Iss. 7 | July 2018 | 27 | 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

Time(sec)

S
p
e
e
d
(r

p
m

)

 

 

PRRL

 
Fig.11. Response to speed change (0-1000 rpm) 
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Fig.12 Control signal for the 2-SMC system 
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Fig.13 The phase plane trajectory of the  PRRL system 

                      



Power Rate Reaching Law Based Second Order SMC 

| IJMER | ISSN: 2249–6645 |                                     www.ijmer.com                   | Vol. 8 | Iss. 7 | July 2018 | 28 | 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

0

200

400

600

800

1000

1200

Time in sec

s
(t

)

 

 

PRRL

 
Fig.14 Sliding surface s(t) for the PRRL system 

  

The speed responses and the associated control efforts of the proposed PRRL system, the 2-SMC  

system to a step command change (0_1000 rpm speed change) are illustrated in Figs. 15. The performance 

specifications of the 2-SMC system are much better than that of the first-order SMC system such that the smaller 

rise time, settling time and the smaller output deviations in magnitude were obtained from the proposed 2-SMC 

system.  The large overshoot (57.8%) is obtained from the PID control system & SMC that is unacceptable. 

Moreover, the switching control should be minimized to provide a reasonable control activity in practical 

implementation not to hurt actuators. 

The figures below confirm the fact that the proposed PRRL control system provides better the transient 

and the steady-state performance specifications. These verify that the proposed PRRL system provides better 

performance specifications of the closed-loop system, a faster convergence of the sliding surface and better 

behavior of the output in case of external disturbances. At last the comparison of the speed, the control 

signal and the phase trajectory are given in the figures below. The Fig.15 shows the comparison for 

speed of SOSMC and PRRL. The Fig.16 shows the comparison for control signal of SOSMC and 

PRRL. The Fig.17 shows the phase trajectory comparison of SOSMC and PRRL. 
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Fig.15 Combined result of SOSMC & PRRL for speed 
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Fig.16 Combined result of SOSMC & PRRL for control signal 
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Fig.17 Combined result OF SOSMC & PRRL for phase trajectory. 

 

V. CONCLUSION 
In the study of article, a second-order sliding mode control with power rate reaching law is 

proposed to improve performance of control systems. The stability of closed loop system is shown by 

using the specific approach. A second-order plant model is used in the present design, since many of the 

industrial plants can be modeled using a second-order model. Experimental results showing the 

effectiveness of the control method are presented for speed control of a dc motor while the nominal 

plant is assumed known. 

To test the effectiveness of the present sliding mode controller experimental application was 

carried. From the above experimental results the proposed sliding mode controller is more suitable to be 

applied to the dc motor speed control problems due to the uncertainty handling capabilities and 

disturbance rejection of the 2-SMC.The hyperbolic function is used in order to smoothen the response 

of switching signal.  

The tracking error converges to zero under the existence of parameter uncertainties and 

disturbances as the closed loop is in sliding mode. This system provides better performance 

specifications, a faster convergence of the sliding surface and better behavior of the output. So the 

chattering occurred is very low and response much faster and smoother than before. 
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