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ABSTRACT: 
A noise is introduced in the transmission medium due to a 

noisy channel, errors during the measurement process and 

during quantization of the data. For digital storage each 

element in the imaging chain such as lenses, film, digitizer, 

etc. contributes to the degradation.  Image noise removal is 

often used in the field of photography or publishing where 

an image was somehow degraded but needs to be 

improved before it can be printed. This paper reviews the 

Bayesian Estimation process for statistical signal 

processing. Different noise models including additive and 

multiplicative types are used. They include Gaussian noise, 

salt and pepper noise, speckle noise and Poisson noise. 

Selection of the denoising algorithm is application 

dependent. Hence, it is necessary to have knowledge about 

the noise present in the image so as to select the 

appropriate noise removal algorithm. The filtering 

approach has been proved to be the best when the image is 

corrupted with salt and pepper noise. The wavelet based 

approach finds applications in denoising images corrupted 

with Gaussian noise. In the case where the noise 

characteristics are complex, the multifractal approach can 

be used. Bayesian estimation process is used to optimize 

the removal of Poisson noise. A quantitative measure of 

comparison is provided by the signal to noise ratio of the 

image. 

 

KEYWORDS: Bayesian estimator, prior Distribution, 

Posterior Distribution, Likelihood, Gaussian, salt and 

pepper, speckle, Poisson Noise. 

1. INTRODUCTION 
Visual information transmitted in the form of digital 

images is becoming a major method of communication in 

the modern age, but the image obtained after transmission 

is often corrupted with noise. The received image needs 

processing before it can be used in applications. Image 

noise removal involves the manipulation of the image data 

to produce a visually high quality image. For this type of 

application we need to know something about the 

degradation process in order to develop a model for it. 

When we have a model for the degradation process, the 

inverse process can be applied to the image to restore it 

back to the original form. This type of image restoration is 

often used in space exploration to help eliminate artifacts 

generated by mechanical jitter in a spacecraft or to 

compensate for distortion in the optical system of a 

telescope. Image denoising finds applications in fields  

 

 

such as astronomy where the resolution limitations are 

severe, in medical imaging where the physical 

requirements for high quality imaging are needed for 

analyzing images of unique events, and in forensic science 

where potentially useful photographic evidence is 

sometimes of extremely bad quality. 

Nonlinear filtering is the process of estimating and 

tracking the state of a nonlinear stochastic system from 

non-Gaussian noisy observation data. In this technical 

memorandum, we present an overview of techniques for 

nonlinear filtering for a wide variety of conditions on the 

nonlinearities and on the noise. We begin with the 

development of a general Bayesian approach to filtering 

which is applicable to all linear or nonlinear stochastic 

systems. We show how Bayesian filtering requires 

integration over probability density functions that cannot 

be accomplished in closed form for the general nonlinear, 

non-Gaussian multivariate system. 

2. ADDITIVE AND MULTIPLICATIVE 

NOISES 
Noise is undesired information that contaminates the 

image. In the image denoising process, information about 

the type of noise present in the original image plays a 

significant role. Typical images are corrupted with noise 

modeled with either a Gaussian, uniform, or salt or pepper 

distribution. Another typical noise is a speckle noise, 

which is multiplicative in nature. The behavior of each of 

these noises is described below. The digital image 

acquisition process converts an optical image into a 

continuous electrical signal that is, then, sampled. At every 

step in the process there are fluctuations caused by natural 

phenomena, adding a random value to the exact brightness 

value for a given pixel. 

 

2.1 GAUSSIAN NOISE 

Gaussian noise is evenly distributed over the signal. This 

means that each pixel in the noisy image is the sum of the 

true pixel value and a random Gaussian distributed noise 

value. As the name indicates, this type of noise has a 

Gaussian distribution, which has a bell shaped probability 

distribution function given by, 

  

             ( 1 ) 

COMPARISION OF VARIOUS NOISE REMOVALS USING 

BAYESIAN FRAMEWORK 
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Where g represents the gray level, m is the mean or 

average of the function and σ is the standard deviation of 

the noise. Graphically, it is represented as shown in Fig 1. 

The original image is shown in Fig 2 and the image after 

Gaussian Noise (variance = 0.05) addition is shown in Fig 

3. 

 
Fig1: PDF for Gaussian Noise 

 

Gaussian noise can be reduced using a spatial filter. 

However, it must be kept in mind that when smoothing an 

image, we reduce not only the noise, but also the fine-

scaled image details because they also correspond to 

blocked high frequencies. The most effective basic spatial 

filtering techniques for noise removal include: mean 

filtering, median filtering and Gaussian smoothing 

Crimmins Speckle Removal filter can also produce good 

noise removal. More sophisticated algorithms which utilize 

statistical properties of the image and/or noise fields exist 

for noise removal. For example, adaptive smoothing 

algorithms may be defined which adjust the filter response 

according to local variations in the statistical properties of 

the data. 

 

 
           Fig 2: Original Image 

 
Fig 3: Image after Gaussian Noise addition 

 (Noise Variance = 0.05) 

2.2 SALT AND PEPPER NOISE 

For this kind of noise, conventional low pass filtering, e.g. 

mean filtering or Gaussian smoothing is relatively 

unsuccessful because the corrupted pixel value can vary 

significantly from the original and therefore the mean can 

be significantly different from the true value. A median 

filter removes drop-out noise more efficiently and at the 

same time preserves the edges and small details in the 

image better. Conservative smoothing can be used to 

obtain a result which preserves a great deal of high 

frequency detail, but is only effective at reducing low 

levels of noise. In salt and pepper noise (sparse light and 

dark disturbances), pixels in the image are very different in 

color or intensity from their surrounding pixels; the 

defining characteristic is that the value of a noisy pixel 

bears no relation to the color of surrounding pixels. 

Generally this type of noise will only affect a small 

number of image pixels. When viewed, the image contains 

dark and white dots, hence the term salt and pepper noise. 

Typical sources include flecks of dust inside the camera 

and overheated or faulty CCD elements. 

Salt and pepper noise is an impulse type of noise, which is 

also referred to as intensity spikes. This is caused generally 

due to errors in data transmission. It has only two possible 

values, a and b. The probability of each is typically less 

than 0.1. The corrupted pixels are set alternatively to the 

minimum or to the maximum value, giving the image a 

“salt and pepper” like appearance. Unaffected pixels 

remain unchanged. For an 8-bit image, the typical value 

for pepper noise is 0 and for salt noise 255. The salt and 

pepper noise is generally caused by malfunctioning of 

pixel elements in the camera sensors, faulty memory 

locations, or timing errors in the digitization process. The 

probability density function for this type of noise is shown 

in Fig 4. Salt and pepper noise with a variance of 0.05 is 

shown in Fig 5. 
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    a           b    Grey Level 
  Fig 4: PDF for Salt and Pepper Noise 

 

 

Fig 5: Image after Salt and Pepper Noise addition (Noise 

Variance = 0.05) 

2.3 SPECKLE NOISE 

Speckle noise is a multiplicative noise. This type of noise 

occurs in almost all coherent imaging systems such as 

laser, acoustics and SAR (Synthetic Aperture Radar) 

imagery. The source of this noise is attributed to random 

interference between the coherent returns. Fully developed 

speckle noise has the characteristic of multiplicative noise. 

Speckle noise follows a gamma distribution and is given 

as, 

       (2) 
 

where variance is a
2
α and g is the gray level. The gamma 

distribution is given below in Fig 6. On an image, speckle 

noise  (with variance 0.05) looks as shown in Fig 7. 

 

 
Fig 6: Gamma Distribution 

Speckle noise is a granular noise that inherently exists in 

and degrades the quality of the active radar and synthetic 

aperture radar (SAR) images. Speckle noise in 

conventional radar results from random fluctuations in the 

return signal from an object that is no bigger than a single 

image-processing element. It increases the mean grey level 

of a local area. There are many forms of adaptive speckle 

filtering, including the Lee filter, the Frost filter, and the 

Refined Gamma Maximum-A-Posteriori (RGMAP) filter. 

They all rely upon three fundamental assumptions in their 

mathematical models, however: 

 

1. Speckle noise in SAR is a multiplicative noise, i.e. it 

is in direct proportion to the local grey level in any 

area. 

2.  The signal and the noise are statistically independent 

of each other. 

3. The sample mean and variance of a single pixel are 

equal to the mean and variance of the local area. 

 

 
Fig 7: Image after Speckle Noise addition 

(Noise Variance = 0.05) 
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2.4 POISSON NOISE 

The dominant noise in the lighter parts of an image from 

an image sensor is typically that caused by statistical 

quantum fluctuations, that is, variation in the number of 

photons sensed at a given exposure level; this noise is 

known as photon shot noise or Poisson Noise. Poisson 

noise has a root-mean-square value proportional to the 

square root of the image intensity, and the noises at 

different pixels are independent of one another. Poisson 

noise follows a Poisson distribution, which is usually not 

very different from Gaussian. Poisson noise is a type of 

electronic noise that may be dominant when the finite 

number of particles that carry energy (such as electrons in 

an electronic circuit or photons in an optical device) is 

sufficiently small so that uncertainties due to the Poisson 

distribution, which describes the occurrence of 

independent random events, are of significance. It is 

important in electronics, telecommunications, optical 

detection, and fundamental physics. The magnitude of shot 

noise increases according to the square root of the 

expected number of events, such as the electrical current or 

intensity of light. But since the strength of the signal itself 

increases more rapidly, the relative proportion of Poisson 

noise decreases and the signal to noise ratio (considering 

only Poisson noise) increases anyway. Thus Poisson noise 

is more frequently observed with small currents or light 

intensities following sufficient amplification. Since the 

standard deviation of Poisson noise is equal to the square 

root of the average number of events N, the signal-to-noise 

ratio is given by: 

SNR = 𝑁/√𝑁 = N   (3) 

Thus when N is very large, the signal-to-noise ratio is very 

large as well.  

 

 
 

Fig 8: Image after Poisson Noise addition 

(Noise Variance = 0.05) 

3. BAYESIAN ESTIMATOR 

Bayesian estimation is a framework for the formulation 

of statistical inference problems. In the prediction or 

estimation of a random process from a related 

observation signal, the Bayesian philosophy is based on 

combining the evidence contained in the signal with prior 

knowledge of the probability distribution of the process. 

Bayesian methodology includes the classical estimators 

such as maximum a posteriori (MAP), maximum-

likelihood (ML), minimum mean square error (MMSE) 

and minimum mean absolute value of error (MAVE) as 

special cases. The hidden Markov model, widely used in 

statistical signal processing, is an example of a Bayesian 

model. Bayesian inference is based on minimization of 

the so-called Baye’s risk function, which includes a 

posterior model of the unknown parameters given the 

observation and a cost-of-error function. 

Estimation theory is concerned with the determination of 

the best estimate of an unknown parameter vector from an 

observation signal, or the recovery of a clean signal 

degraded by noise and distortion. For example, given a 

noisy sine wave, we may be interested in estimating its 

basic parameters (i.e. amplitude, frequency and phase), or 

we may wish to recover the signal itself. An estimator 

takes as the input a set of noisy or incomplete 

observations, and, using a dynamic model (e.g. a linear 

predictive model) and/or a probabilistic model (e.g. 

Gaussian model) of the process, estimates the unknown 

parameters. The estimation accuracy depends on the 

available information and on the efficiency of the 

estimator. 

Bayesian theory is a general inference framework. In the 

estimation or prediction of the state of a process, the 

Bayesian method employs both the evidence contained in 

the observation signal and the accumulated prior 

probability of the process. Consider the estimation of the 

value of a random parameter vector θ, given a related 

observation vector y. From Baye’s rule the posterior 

probability density function (pdf) of the parameter vector θ 

given y,𝑓(𝜃/𝑦) can be expressed as  

𝑓(𝜃/𝑦) =
𝑓(𝑦/𝜃)𝑓 𝜃 

𝑓 𝑦 
                          (4) 

 
Where for a given observation, f y  is a constant and has 

only a normalizing effect. Thus there are two variable 

terms in the Equation 4. One term 𝑓(𝑦/𝜃) is the likelihood 

that the observation signal y was generated by the 

parameter vector θ and the second term is the prior 

probability of the parameter vector having a value of θ.  

Conceptually Bayesian Estimator combines 

 

1. The likelihood, i.e., the data, with 

 

2. The prior 
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3.1 DYNAMIC AND PROBABILITY MODELS IN 

ESTIMATION 

Optimal estimation algorithms utilize dynamic and 

statistical models of the observation signals. A dynamic 

predictive model captures the correlation structure of a 

signal, and models the dependence of the present and 

future values of the signal on its past trajectory and the 

input stimulus. A statistical probability model 

characterizes the random fluctuations of a signal in terms 

of its statistics, such as the mean and the covariance, and 

most completely in terms of a probability model. As an 

illustration consider the estimation of a P-dimensional 

parameter vector θ = [θ0, θ1, … θp-1] from a noisy 

observation vector y=[y(0), y(1), ..., y(N–1)] modeled as 

y = h (θ, x, e) + n        (5) 

In Fig 9, the distributions of the random noise n, the 

random input e and the parameter vector θ are modeled by 

probability density functions, f (n), f (e), and f (θ) 

respectively. The pdf model most often used is the 

Gaussian model. Predictive and statistical models of a 

process guide the estimator towards the set of values of the 

unknown parameters that are most consistent with both the 

prior distribution of the model parameters and the noisy 

observation. In general, the more modeling information 

used in an estimation process, the better the results, 

provided that the models are an accurate characterization 

of the observation and the parameter process. 

 

 

 

 

 

 

 

Fig 9. A random process y is described in terms of a predictive 

model h (·), and statistical models f (e), f (θ) and f (n) 

3.2 PARAMETER ESTIMATION AND SIGNAL 

RESTORATION 

Parameter estimation and signal restoration are closely 

related problems. The main difference is due to the rapid 

fluctuations of most signals in comparison with the 

relatively slow variations of most parameters. For 

example, speech sounds fluctuate at speeds of up to 20 

kHz, whereas the underlying vocal tract and pitch 

parameters vary at a relatively lower rate of less than 100 

Hz. This observation implies that normally more averaging 

can be done in parameter estimation than in signal 

restoration. As a further example, consider the 

interpolation of a sequence of lost samples of signal given 

N recorded samples, as shown in Fig 10.  

y = X θ + e + n    (6) 

 
Where y is the observation signal, X is the signal matrix, θ 

is the AR parameter vector, e is the random input of the 

AR model and n is the random noise. Using Equation 6, 

the signal restoration process involves the estimation of 

both the model parameter vector θ and the random input e 

for the lost samples. Assuming the parameter vector θ is 

time-invariant, the estimate of θ can be averaged over the 

entire N observation samples, and as N becomes infinitely 

large, a consistent estimate should approach the true 

parameter value. 

 

Input Signal with                                   Restored 

Samples 

 Lost Samples (y)                                        (x)   

θ 

 

 

Fig 10 : Signal restoration using a parametric model of the 

signal process. 

The difficulty in signal interpolation is that the underlying 

excitation e of the signal x is purely random and, unlike θ, 

it cannot be estimated through an averaging operation. 

4. SNR: 
Signal to Noise Ratio is probably the most well-known 

measure of them all. It is defined as the quotient between 

the signal and noise energy. If a signal is a scalar function 

f(x), the energy is usually defined as: 

    E (f (x)) = ∫ (f (x))
 2
 dx        (7) 

 
Consider an observed signal X = S + N, where S is the 

interesting part of the signal and N is the noise. SNR for X 

is usually defined as: 

 

SNR(X) = 20 log10   E (S)   dB           (8)   1.2) 

             E (N) 
The list of problems with SNR can be made long. The 

most obvious problem is, however, that it can usually not 

be directly measured. If S and N are known, measuring 

SNR is no problem, but then noise reduction will not be 

Signal 

Estimator 

(Interpolator

) 

Parameter 

Estimator 

Parameter 

Process 

f (θ) 

Excitation 

Process  

 f (e) 

Predictive 

Model 

h (θ, x, e) 

Noise 

process 

f (n) 

+ 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com                Vol.2, Issue.1, Jan-Feb 2012 pp-265-270                ISSN: 2249-6645 

                 www.ijmer.com 270 | P a g e  

 

needed. The noise free signal is already known. Various 

schemes of estimating SNR can be considered, but in 

doing so, we always need to decide what parts of the 

observed signal are interesting and what parts are noises.  

 

5. RMSE 
Another error measure of great importance is the Root 

Mean Square Error. RMSE is defined as: 

RMSE =  
∑ 𝑖  (𝑥𝑖  – 𝑠𝑖)2

𝑁
         (9) 

where xi is the sampled signal value at position i and si is 

the noise free value at the same position. It is obvious that 

if x = s + n, that is, if we add some uncorrelated noise n 

with zero mean to s and observe the resulting sum, RMSE 

will be equal to the standard deviation of the noise. RMSE 

is, in other words, an absolute measure of the noise 

amplitude. As with SNR, RMSE requires knowledge of the 

true noise free signal, which limits its use significantly. 

6. RESULTS: 
Comparison of SNR (Signal to Noise ratio) using Baye’s 

Estimator (σ= 0.5): 

 Gaussian 

Noise 

Salt and 

Pepper Noise 

Speckle 

Noise 

Poisson 

Noise 

SNR 22.2760 22.6158 24.8829 42.3882 

 

Comparison of MSE (Mean Square Error) using Baye’s 

Estimator (σ= 0.5): 

 Gaussian 

Noise 

Salt and 

Pepper Noise 

Speckle 

Noise 

Poisson 

Noise 

MSE 0.2183 0.2061 0.1733 0.0327 

 

 
Fig 11: Removal of Poisson Noise by Bayesian estimator 

7. CONCLUSION 
The paper emphasizes on the SNR and MSE for various 

noises using Bayesian Estimator. The Results shows that 

Bayesian Estimator Optimizes the Poisson Noise removal 

as its Signal to Noise ratio (SNR) is maximum and least 

Mean square error (MSE). The SNR for Gaussian noise is 

minimum and also the MSE is maximum. Even if level of 

decomposition is increased the results becomes better. 
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