
International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.1, Jan-Feb 2012 pp-403-407 ISSN: 2249-6645

 www.ijmer.com 403 | P a g e

Khaoula ADDAKIRI
Department of Mathematics and

Computer Science,

Université Hassan 1
er

, FSTS, LABO

LITEN

Settat, Morocco

Mohamed BAHAJ
Department of Mathematics and

Computer Science,

Université Hassan 1
er

, FSTS, LABO

LITEN

Settat, Morocco

Noreddine GHERABI
Department of Mathematics and

Computer Science,

Université Hassan 1
er

, FSTS, LABO

LITEN

Settat, Morocco

Abstract
Agent technology is emerging as a powerful approach for the

development of complex system. Mobile agent is a program

that can migrate as a whole around network and can

communicate with its environment and other agent. Among

application for mobile agent: manufacturing, electronic

commerce, network management, health care, and

entertainment. In this paper we present the design and

implementation of Mobile-C. The goal of the research is to

access an XML file in order to find some information and

guaranteed that the data of mobile agent is only accessed by

one agent on time by using the synchronization.

Keywords: Mobile agent; Agent communication; Agent

communication; synchronization.

I. INTRODUCTION
A distributed system is a set of autonomous machines

connected through a network and composed of distinct

software dedicated to the coordination of system activities,

and leverage the availability of several distributed resources

to provide better scalability.
Mobile agent is an autonomous software entity

responsible for executing a programmatic process, which is
able to migrate through a network. An agent migrates in a
distributed environment between agencies. When an agent
migrates, its execution is suspended at the original agency,
the agent is transported to another agency in the distributed
environment, and, after being re-instantiated at the new
agency, the agent resumes execution.

The majority of mobile agent platforms in use are Java-

oriented. Multiple mobile agent platforms supporting Java

mobile agent code include Mole [1], Aglets [2], Concordia

[3], JADE [4], and D’Agents [5]. Adopting a standard

language as the mobile agent code language that provides

both high-level and low-level functionalities is a good choice

to deal with the diversity of distributed applications.

C/C++is a proper choice for such a mobile agent code

language because it’s provides powerful functions in terms

of memory access. A several number of C/C++programs can

be used as mobile agent code. Furthermore, C is a language

wish can easily interface with a variety of low-level

hardware devices. Ara [6, 7] and TACOMA [8] are two

mobile agent platforms supporting C mobile agent code,

whereas Ara also supports C++ one. Mobile agent code is

compiled as byte code [9] and machine code [10] for

execution in Ara and TACOMA, respectively.

Mobile-C [11–14] was originally developed as a stand-

alone mobile agent platform to support C/C++ mobile agent

code. Mobile-C chose an embeddable C/C++ interpreter—

Ch [15–17] to run C/C++ mobile agent source code. The

interpretive approach can avoid some potential problems,

such as platform portability, secure execution, and system

implementation issues that could be induced by the

compiling approach. Mobile agent migration in Mobile-C is

achieved through Foundation for Intelligent Physical

Agents (FIPA) agent communication language (ACL)

messages. Using FIPA ACL messages for agent migration in

FIPA compliant agent systems simplifies agent platform,

reduces development effort and easily achieves inter-

platform migration through well-designed communication

mechanisms provided in the agent platform. Messages for

agent communication and migration are expressed in FIPA

ACL and encoded in XML.

In this paper, our approach is to access an XML file in

order to search some information. The remainder of the

article is structured as follows. Section 2 introduces the

architecture of Mobile-C. Section 3 shows two types of

messages in Mobile-C, agent communication messages and

mobile agent messages and presents how mobile agent

migrate from multiple hosts. Section 4 gives an example of

mobile agent that access to XML data and illustrates the

synchronization support in Mobile-C.

II. THE ARCHITECTURE OF MOBILE-C
 The system of mobile-C is shown in figure1. Agencies

are the major building blocks and reside in each node of a

network system, in wish agents reside end execute. They

also serve as ―home bases‖ for locating and messaging

agents, migrating mobile agents, collecting knowledge

about a group of agents, and providing an environment in

which a mobile agents executes. The core of an agency

provides local service for agents and proxies remote

agencies .An agent platform represents the minimal

functionality required by an agencies in order to support the

execution of agents. The main of an agency and their

functionalities can be summarized as follows [18]:

XML-based agent communication and migration for distributed

applications in Mobile-C

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.1, Jan-Feb 2012 pp-403-407 ISSN: 2249-6645

 www.ijmer.com 404 | P a g e

 Agent Management system (AMS): The AMS
manages the life cycle of agents in the system. It
controls the creation, registration, retirement,
migration and persistence of agents. AMS maintains
a directory of agents identifiers (AID).Each agent
must register with an AMS in order to get a valid
AID.

 Agent Communication Channel (ACC): The ACC
routes messages between local and remote entities
and realizing using an agent communication
language (ACL).

 Agent Security Manager (ASM): The ASM is
responsible for maintaining security policies for
platform and infrastructure.

 Directory Facilitator: DF serves yellow page
services. Agents in the system can register their
services with DF for providing to the community.
They can also look up required services with DF.

 Agent Execution Engine (AEE): AEE serves as the
execution environment for the mobile agents. Mobile
agents must reside inside an engine to execute. AEE
has to be platform independent in order to support a
mobile agent executing in a heterogeneous network.

SA

Agent Communication Channel(ACC)

Agent Security

Manager

(ASM)

Agent Management

System

(AMS)

Directory

Facilitator

(DF)

Agent Execution

Engine(AEE)

MA

Figure1.The system architecture of agencies in Mobile-C.

III. MESSAGES AND MIGRATION OF MOBILE

AGENT IN MOBILE-C
III.1. Messages in Mobile-C

In Mobile-C there are two types of messages, agent

communication messages, and mobile agent messages. A

sample agent communication message is from agent-a to

agent-b as shown in Figure 2. The message is encoded in

XML. In Figure 2, the sender and intended recipient of

the message are identified by their agent-identifiers. For

the sample message, the sender and receiver agent

names are X and Y, respectively. The sender and

receiver agent addresses are http://1.fsts.ac.ma:5120 and

http://2.fsts.ac.ma: 5120, respectively.

<?xml version="1.0" ?>

<sender>

 <agent_identifier>

 <name>X </name>

 <adresse>

 <url> http://1.fsts.ac.ma:5120</url>

 </adresse>

 </agent_identifier>

</sender>

<receiver>

 <agent_identifier>

 <name>Y</name>

 <adresse>

 <url> http://2.fsts.ac.ma:5120</url>

 </adresse>

 </agent_identifier>

</receiver>

Figure2.An ACL message represented in XML

A mobile agent message contains general information about

the mobile agent and the tasks performed by the agent in a

remote host. The general information of mobile agent

includes the name, the owner and the home agent where the

mobile agent is created. The task information contains

number of tasks, description of tasks and code of each task.

During the migration, the task performed by the mobile

agent will be encapsulated into agent messages. At the end of

the migration, all results of tasks must be sending back to the

home agency.

III.2 The migration of mobile agent in Mobile-C

Mobile agent is a software agent who is able to migrate from

one host to another in a network and resume the execution in

the new host. The migration and the execution of mobile

agents are supported by a mobile agent system. In previous

studies, Chen et al have developed a mobile agent system

called Mobile-C. The Mobile-C supports weak migration.

The task of a mobile agent can be divided into several

subtasks which can be executed in different hosts and listed

in a list of tasks as shown in figure 3. The task list can be

modified by adding new subtasks and new conditions.

Changing dynamically the task list improves the flexibility of

a mobile agent. Thus, once we start the execution of a

subtask in a host, the mobile agent cannot move until the end

of execution.

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.1, Jan-Feb 2012 pp-403-407 ISSN: 2249-6645

 www.ijmer.com 405 | P a g e

Figure3. Agent migration based on a task list and a task progress

pointer.

Mobile agent migration is achieved through ACL mobile

agent messages encoded to XML, which convey mobile

agents as the content of a message. Mobile agent message

contains the data state and the code of an agent. The data

state of mobile agent include general information about

mobile agent as agent name, agent owner and agent home ,

also the tasks that mobile agent will performed in certain

host. The data state and code will be wrapping up into an

ACL message and transmitted to a remote host trough Agent

Communication Channel. Mobile agent migration based on

ACL messages is simple and effective for agent migration in

FIPA compliant systems because these systems have

mandatory mechanisms for message communication,

transmission and procession.

IV. SYNCHRONIZATION SUPPORT IN MOBILE-C
One of the advantages of mobile agents is able to migrate to

different hosts to perform tasks based on resources available

in remote hosts. The purpose of the mobile agent in this

simulation example is to access XML system book and to

use a synchronization function as mutex in order to protect a

resource that may be shared between two agents. The XML

data files store information about the book, the borrower of

this book and time of keeping it.

A mobile agent dispatched by an agency in the host fsts1

visits remote host fsts2 and fsts3. Figure 5 shows part of the

mobile agent message sent from host fsts1 to host fsts2. The

agent transports three kinds of information. First,

information about itself including the name, the owner and

the home address. Second, global information about the task

it has to do. The statement <TASK task=―2‖ num=―0‖>

shows that this mobile agent has two tasks to perform and

no task has been finished yet. Third, overall information

about the task including the name of the task’s return

variable, the persistence of the agent, the completeness of

the task, the host to perform the task, and most importantly,

the mobile agent code is C/C++ source code that

implements the task. Since the persistent is set to 1, the

agent will not be removed from an agency once its code has

been executed.

<NAME> mobagent </NAME>

<OWNER> IEL </OWNER>

<HOME> fsts1fsts.ac.ma:5125 </HOME>

<TASKS task= "2" num= "0">

 <DATA num ="0"

 name = "results_fsts2"

 persistent="1"

 complete = "0"

 server = "fsts2.fsts.ac.ma.5138">

<AGENT_CODE>

Mobile agent code on fsts2

</AGENT_CODE>

</DATA>

 <DATA num ="0"

 name = "results_fsts3"

 persistent="1"

 complete = "0"

 server = " fsts3.fsts.ac.ma.5135">

<AGENT_CODE>

Mobile agent code on fsts3

</AGENT_CODE>

 </DATA>

</TASK>

Figure 5: the content of the mobile agent message from the host

bird1 to iel2

The task of the mobile agent on fsts2 machine is to access an

XML system book information file listed in figure 6, and

find the date of borrowing the book and returning it.

Function parseNode () is a typical C XML processing

program. It can be executed interpretively without the need

of compilation in our system. The function searches each

node of the XML file and retrieves the date of sortie and

return of the book. Also using a variable synchronization in

order to guaranteed that data of mobileagent1vis only

accessed by one agent on time.

<?xml version="1.0" ?>

<!DOCTYPE SYSTEM BOOK "Book.dtd">

<Book>

<Title>Les réseaux </Title>

<Author> A.Tanebaum </Author>

<Price>250 </Price>

<LoanList>

<Loan>

<borrower>Tarek Amine </borrower>

<Sortie>25/09/2011</Sortie>

<Return>02/11/2011</ Return >

</Loan>

</LoanList>

</Book>

Figure 6. The content of an XML system book file.

As shown in Program 1, the mobile agent mobileagent1

performs a ParseNode operation, it’s includes locking the

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.1, Jan-Feb 2012 pp-403-407 ISSN: 2249-6645

 www.ijmer.com 406 | P a g e

mutex via the function mc_MutexLock() to guaranteed that

the desired service and the agent providing the service on the

local agency are protected and the simultaneous access of

the desired service be avoided .After that , finding the date

of borrowing the book by calling parseNode () through the

function mc_CallAgentFunc(), and unlocking the mutex via

the function mc_MutexUnlock(). .

<?xml version="1.0"?>

<MESSAGE message="MOBILE_AGENT">

 <MOBILE_AGENT>

 <AGENT_DATA>

 <NAME>mobileagent1</NAME>

 <OWNER>fsts</OWNER>

 <HOME>fsts1.fsts.ac.ma:5050</HOME>

 <TASKS task="1" num="0">

 <TASK num="0"

 persistent="1"

 name="no-return"

 complete="0"

 server="fsts2.fsts.ac.ma:5130">

 </TASK>

 <AGENT_CODE>

 <![CDATA[

#include <stdlib.h>

#include <string.h>

int main() {

 int i, numService = 1, mutex_id = 55, *agentID,

numResult;

 char *funcname = "ParseNode", **service, **agentName,

**serviceName;

 MCAgent_t agent;

 service = (char **)malloc(sizeof(char *)*numService);

 for(i=0; i<numService; i++) {

 service[i] = (char

)malloc(sizeof(char)(strlen(funcname)+1));

 }

 strcpy(service[0], funcname);

 mc_SearchForService(service[0], &agentName,

&serviceName, &agentID, &numResult);

 if(numResults < 1) {

 /* No agent is found to have provided such a service. */

 mc_RegisterService(mc_current_agent, service,

numService);

 }

 else {

 /* An existing agent is found to have provided such a

service. */

 mc_MutexLock(mutex_id);

 mc_DeregisterService(agentID[0], service[0]);

 mc_RegisterService(mc_current_agent, service,

numService);

 mc_MutexUnlock(mutex_id);

 mc_DestroyServiceSearchResult(agentName,

serviceName, agentID, numResult);

 }

 for(i=0; i<numService; i++) {

 free(service[i]);

 }

 free(service);

 return 0;

}

void ParseNode (xmlDocPtr doc,xmlNodePtr cur) {

static int i;

i++;

while(cur!=NULL);{

 if(cur->type==XML_ELEMENT_NODE){

 if(!(xmlStrcmp(cur-name,(const xmlChar*)"Sortie"))){

 results-iel2[1]=atof(xmlNodeListGestring(doc,

 cur->xmlChildrenNode,1));

 printf(" the date of sortie of the book is

 %f\n",results_fsts2[1];

 }

 parsenode(doc,cur->xmlchildrenNode)

 }

cur = cur->next;

}

i--;

return 0;

}

]]>

 </AGENT_CODE>

 </TASKS>

 </AGENT_DATA>

 </MOBILE_AGENT>

 </MESSAGE>

Program1.A mobile agent that contains a global variable and defines

fonctions

Likewise, as shown in Program3, the mobile agent

mobileagent3 locks the mutex, finding the date of returning

the book by calling parseNode (), and unlocks the mutex

afterwards.

<?xml version="1.0"?>

<MESSAGE message="MOBILE_AGENT">

 <MOBILE_AGENT>

 <AGENT_DATA>

 <NAME>mobileagent2</NAME>

 <OWNER>fsts</OWNER>

 <HOME>fsts1.fsts.ac.ma:5050</HOME>

 <TASKS task="1" num="0">

 <TASK num="0"

 persistent="1"

 name="no-return"

 complete="0"

 server="fsts2.fsts.ac.ma:5130">

 </TASK>

 <AGENT_CODE>

 <![CDATA[

#include <stdlib.h>

#include <string.h>

int main() {

 int i, numService = 1, mutex_id = 55, *agentID,

numResult;

 char *funcname = "matrix_operate", **service,

**agentName, **serviceName;

 MCAgent_t agent;

 service = (char **)malloc(sizeof(char *)*numService);

 for(i=0; i<numService; i++) {

 service[i] = (char

)malloc(sizeof(char)(strlen(funcname)+1));

 }

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.1, Jan-Feb 2012 pp-403-407 ISSN: 2249-6645

 www.ijmer.com 407 | P a g e

 strcpy(service[0], funcname);

 mc_SearchForService(service[0], &agentName,

&serviceName, &agentID, &numResult);

 if(numResults < 1) {

 /* No agent is found to have provided such a service. */

 mc_RegisterService(mc_current_agent, service,

numService);

 }

 else {

 /* An existing agent is found to have provided such a

service. */

 mc_MutexLock(mutex_id);

 mc_DeregisterService(agentID[0], service[0]);

 mc_RegisterService(mc_current_agent, service,

numService);

 mc_MutexUnlock(mutex_id);

 mc_DestroyServiceSearchResult(agentName,

serviceName, agentID, numResult);

 }

 for(i=0; i<numService; i++) {

 free(service[i]);

 }

 free(service);

 return 0;

}

void ParseNode (xmlDocPtr doc,xmlNodePtr cur) {

static int i;

i++;

while(cur!=NULL);{

 if(cur->type==XML_ELEMENT_NODE){

 if(!(xmlStrcmp(cur-name,(const xmlChar*)"return"))){

 results-fsts2[1]=atof(xmlNodeListGestring(doc,

 cur->xmlChildrenNode,1));

 printf("The date of retour of the book is

 %f\n", results_fsts2 [1];

 }

 parseNode(doc,cur-> xmlchildrenNode)

 }

cur = cur->next;

}

i--;

return 0;

}

]]>

 </AGENT_CODE>

 </TASKS>

 </AGENT_DATA>

 </MOBILE_AGENT>

 </MESSAGE>

Program2.A code of mobile agent performing the second task in the fsts2

After visiting the host fsts2 , the mobile agents visit the

host fsts3 .Likewise, as shown in Program 1 and 2, the task

of the mobile agent on fsts3 is locks the mutex, reads the

xml file, and unlocks the mutex afterwards.

V. CONCLUSION
This article presents an XML-based approach for agent

communication, and migration in mobile-C. Mobile-C

conforms to the IEEE FIPA standards, it’s integrates an

embeddable C/C++ interpreter into the platform as a mobile

agent execution engine in order to support mobile agents.

Mobile agents, including its data state and code, are carries

to a remote agent platform via ACL messages wich will be

encoded in XML, and the execution of mobile agents is

resumed by a task progress pointer. Our work shows that

using XML to encode different types of messages is simple,

and easy to change .Thus, the synchronization functions

guaranteed the protection of shared resources by using the

mutex in multiplt hosts.

REFERENCES
[1] J. Baumann, F. Hohl, K. Rothermel, M. Strasser, W. M

.Theilmann: A mobile agent system. Software—Practice and
Experience 2002; 32(6):575–603.

[2] D. Lange, M.Oshima. Programming and Deploying Java
Mobile Agents with Aglets. Addison-Wesley: MA, 1998.

[3] D.Wong, N.Paciorek, T.Walsh, J.DiCelie, M.Young, B.Peet.
Concordia: An infrastructure for collaborating mobile agents.
Proceedings of the First International Workshop on Mobile
Agents (MA’97) (Lecture Notes in Computer Science, vol.
1219). Springer: Berlin, 1997; 86–97.

[4] F.Bellifemine, G.Caire, A.Poggi, G.Rimassa.JADE: A
software framework for developing multi-agent
applications.Lessons learned. Information and Software
Technology 2008; 50(1–2):10–21.

[5] R.Gray, G.Cybenko, D.Kotz,R.Peterson, D.Rus. D’Agents:
Applications and performance of a mobile-agent system.
Software—Practice and Experience 2002; 32(6):543–573.

[6] H.Peine. Run-time support for mobile code. PhD Dissertation,
Department of Computer Science, University of
Kaiserslautern, Germany, 2002.

[7] H.Peine .Application and programming experience with the
Ara mobile agent system. Software—Practice and Experience
2002; 32(6):515–541.

[8] D.ohnansen, K.Lauvset, R.V.Renesse, F.B. Schneider, N.P.
Sudmann, K. Jacobsen. A TACOMA
retrospective.Software—Practice and Experience 2002;
32(6):605–619.

[9] MACE—Mobile agent code environment. Available at:
http://wwwagss.informatik.uni-kl.de/Projekte/Ara/mace.html
[last modified 10 August 2004].

[10] N.P.Sudmann,D.Johansen. Adding mobility to non-mobile
web robots. Proceedings of the IEEE ICDCS00 Workshop on
Knowledge Discovery and Data Mining in the World-wide
Web, Taipei, Taiwan, 2000; 73–79.

[11] B.Chen, H.H.Cheng. A run-time support environment for
mobile agents. Proceedings of ASME/IEEE International
Conference on Mechatronic and Embedded Systems and
Applications, No. DETC2005-85389, Long Beach, CA,
September 2005.

[12] B.Chen,H.H.Cheng,J.Palen. Mobile-C: A mobile agent
platform for mobile C/C++ agents. Software—Practice and
Experience 2006; 36(15):1711–1733.

[13] B.Chen, D.Linz, H.H.Cheng. XML-based agent
communication, migration and computation in mobile agent
systems. Journal of Systems and Software 2008; 81(8):1364–
1376.

[14] Mobile-C: A multi-agent platform for mobile C/C++ code.
Available at: http://www.mobilec.org [last modified 12 May
2009].

[15] H.H.Cheng. Scientific computing in the Ch programming
language. Scientific Programming 1993; 2(3):49–75.

[16] H.H.Cheng.Ch: A C/C++ interpreter for script computing.
C/C++ User’s Journal 2006; 24(1):6–12.

[17] Ch—An embeddable C/C++ interpreter. Available at:
http://www.softintegration.com [last modified 15 April 2009].

[18] B.Chen, H.H.Cheng, J.Palen. Integrating mobile agent
technology with multi-agent systems for distributed traffic
detection and management systems, Transportation Research
Part C 17 (2009) 1–10.

