
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.1, Jan-Feb 2012 pp-412-416 ISSN: 2249-6645

 www.ijmer.com 412 | P a g e

Akila.L
1
, Mrs.DeviSelvam

2

1
II M.E CSE,Sri shakthi Institute Of Engineering and Technology,Anna University,Coimbatore

2
Asst.prof CSE,Sri shakthi Institute Of Engineering and Technology,Anna University,Coimbatore

Abstract:
The intrusion response component of an

overall intrusion detection system is responsible for

issuing a suitable response to an anomalous request. In

the existing system, Intrusion Detection mechanism

consists of two main elements, specifically tailored to a

DBMS: anomaly detection (AD) system and an

anomaly response system. In anomaly response system

conservative actions, fine-grained actions, and

aggressive actions methods are used. The proposed

system mainly concentrates on response policies by

using policy matching and policy administration. For

the policy matching problem, we propose two

algorithms that efficiently search the policy database

for policies that match an anomalous request. We also

extend the PostgreSQL DBMS with our policy

matching mechanism, and report experimental results.

The other issue that we address is that of

administration of response policies to prevent malicious

modifications to policy objects from legitimate users.

We propose a novel Joint Threshold Administration

Model (JTAM) that is based on the principle of

separation of duty. The key idea in JTAM is that a

policy object is jointly administered by at least k

database administrator (DBAs), that is, any

modification made to a policy object will be invalid

unless it has been authorized by at least k DBAs out of

L. We present design details of JTAM which is based

on a cryptographic threshold signature scheme, and

show how JTAM prevents malicious modifications to

policy objects from authorized users.

Index Terms: PostgreSQL DBMS, Joint Threshold

Administration Model, Threshold signatures.

I. INTRODUCTION
Our approach to an ID mechanism consists of two

main elements, specifically tailored to a DBMS: an

anomalydetection (AD) system and an anomaly response

system.The first element is based on the construction of

databaseaccess profiles of roles and users, and on the use

of such profiles for theADtask.Auser-request that does not

conform to the normal access profiles is characterized as

anomalous. Profiles can record information of different

levels of details;we refer the reader to for additional

information and experimental results. The second element

of our approach—the focus of this paper—is in charge of

taking some actions once an anomaly is detected. There

are three main types of response actions that we refer to,

respectively, as conservative actions, fine-grained actions,

and aggressive actions. The conservative actions, such as

sending an alert, allow the anomalous request to go

through, whereas the aggressive actions can effectively

block the anomalous request. Fine-grained response

actions, on the other hand, are neither conservative nor

aggressive. Such actions may suspend or taint an

anomalous request. A suspended request is simply put on

hold, until some specific actions are executed by the user,

such as the execution of further authentication steps. A

tainted request is marked as a potential suspicious request

resulting in further monitoring of the user and possibly in

the suspension or dropping of subsequent requests by the

same user.

The two main issues that we address in the context of such

response policies are that of policy matching and policy

administration. Policy matching is the problem of

searching for policies applicable to an anomalous request.

When an anomaly is detected, the response system must

search through the policy database and find policies that

match the anomaly. Our ID mechanism is a real-time

intrusion detection and response system; thus efficiency of

the policy search procedure is crucial. In Section 4, we

present two efficient algorithms that take as input the

anomalous request details[4], and search through the

policy database to find the matching policies. We

implement our policy matching scheme in the PostgreSQL

DBMS [7], and discuss relevant implementation issues.

We also report experimental results that show that our

techniques are very efficient.

II.AN OVERVIEW OF RELATED WORK

 Administration model is based on the well

known security principle of separation of duties (SoD).

SoD is a principle whereby multiple users are required in

order to complete a given task. As a security principle, the

primary objective of SoD is prevention of fraud (insider

threats), and user generated errors. Such objective is

traditionally achieved by dividing the task and its

associated privileges among multiple users.

INTRUSION RESPONSE SYSTEM TO AVOID ANOMALOUS REQUEST IN

RDBMS

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.1, Jan-Feb 2012 pp-412-416 ISSN: 2249-6645

 www.ijmer.com 413 | P a g e

However, the approach of using privilege

dissemination is not applicable to our case as we assume

the DBAs to possess all possible privileges in the DBMS.

Our approach instead applies the technique of threshold

cryptography signatures to achieve SoD. A DBA

authorizes a policy operation, such as create or drop, by

submitting a signature share on the policy. At least k

signature shares are required to form a valid final signature

on a policy, where k is a threshold parameter defined for

each policy at the time of policy creation. The final

signature is then validated either periodically or upon

policy usage to detect any malicious modifications to the

policies.

The key idea in our approach is that a policy

operation is invalid unless it has been authorized by at

least k DBAs. We thus refer to our administration model as

the Joint Threshold Administration Model (JTAM) for

managing response policy objects. To the best of our

knowledge, ours is the only work proposing such

administration model in the context of management of

DBMS objects.

The three main advantages of JTAM are as

follows: First, it requires no changes to the existing access

control mechanisms of a DBMS for achieving SoD.

Second, the final signature on a policy is nonrepudiable,

thus making the DBAs accountable for authorizing a

policy operation. Third, and probably the most important,

JTAM allows an organization to utilize existing man-

power resources to address the problem of insider threats

since it is no longer required to employ additional users as

policy administrators.

III. CREATION OF INTRUSION RESPONSE

SYSTEM
The main contributions of this paper can be summarized

as follows:

Fig .1. Policy state transition diagram.

1. We present a framework for specifying

intrusion response policies in the context of a DBMS.

2. We present a novel administration model called

JTAM for administration of response policies.

3. We present algorithms to efficiently search the policy

database for policies that match an anomalous request.

4. We extend the PostgreSQL DBMS with our response

policy mechanism, and conduct an experimental

evaluation of our techniques.

In this section, we describe the signature share

generation, the signature share combining, and the final

signature verification operations, in the context of the

administrative lifecycle of a response policy object. The

steps in the lifecycle of a policy object are policy creation,

activation, suspension, alteration, and deletion. The

lifecycle is shown in Fig. 1 using a policy state transition

diagram. The initial state of a policy object after policy

creation is CREATED. After the policy has been

authorized by k _ 1 administrators, the policy state is

changed to ACTIVATED. A policy in an ACTIVATED

state is operational, that is, it is considered by the policy

matching procedure in its search for matching policies. If a

policy needs to be altered, dropped or made

nonoperational, it must be moved to the SUSPENDED

state. The transition from the ACTIVATED state to the

SUSPENDED state must also be authorized by k _ 1

administrators, before which the policy is in the

SUSPEND IN-PROGRESS state. Note that a policy in the

SUSPEND IN-PROGRESS state is also considered to be

operational. From the SUSPENDED state, a policy can be

either moved back to the CREATED state or it can be

moved to the DROPPED state. A single administrator can

move a policy to the CREATED state from the

SUSPENDED state, while a policy drop operation must be

authorized by k _ 1 administrators (before which the policy

is in the DROP IN-PROGRESS state). We begin our

detailed discussion of a policy object’s lifecycle with the

policy creation procedure.

OVERALL PROCESS OF INTRUSION

RESPONSE SYSTEM

Fig .2.Flow of process

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.1, Jan-Feb 2012 pp-412-416 ISSN: 2249-6645

 www.ijmer.com 414 | P a g e

Client requests to the server for performing their

operations in the database. For that, the server does the

following policy methods like policy administration,

policy authorization to find whether the client is intruder or

not. After performing the policy methods, the server

responds to the client. By the way the intruders are found.

The working principle of each components in the fig.2 are

explained below,

A.SERVER
We address in the context of such response

policies are that of policy matching and policy

Administration when an anomaly is detected, the response

system must search through the policy database and find

policies that match the anomaly. Our ID mechanism is a

real-time intrusion detection and response system; thus

efficiency of the policy search procedure is crucial.

The second issue that we address is that of

administration of response policies. Intuitively, a response

policy can be considered as a regular database object such

as a table or a view. Privileges, such as create policy and

drop policy that are specific to a policy object type can be

defined to administer policies. However, a response policy

object presents a different set of challenges than other

database object types.

Interactive response policy language makes it

very easy for the database administrators to specify

appropriate response actions for different circumstances

depending upon the nature of the anomalous request. The

two main issues that we address in context of such

response policies are that of policy matching, and policy

administration. An anomaly detection (AD) system and an

anomaly response system. The first element is based on the

construction of database access profiles of roles and users,

and on the use of such profiles for the AD task. A user

request that does not conform to the normal access profiles

is characterized as anomalous. Profiles can record

information of different levels of details; we refer the

reader to for additional information and experimental

results.

B.POLICY ADMINISTRATION
An administration model referred to as the JTAM.

The threat scenario that we assume is that a DBA has all

the privileges in the DBMS, and thus it is able to execute

arbitrary SQL insert, update, and delete commands to

make malicious modifications to the policies. Such actions

are possible even if the policies are stored in the system

catalogs.3 JTAM protects a response policy against

malicious modifications by maintaining a digital signature

on the policy definition. The signature is then validated

either periodically or upon policy usage to verify the

integrity of the policy definition.

JTAM is that we do not assume the DBMS to be

in possession of a secret key for verifying the integrity of

policies. If the DBMS had possessed such key, it could

simply create a HMAC (Hashed Message Authentication

Code) of each policy using its secret key, and later use the

same key to verify the integrity of the policy.

C.POLICY AUTHORIZATION
The detection of an anomaly by the detection

engine can be considered as a system event. The attributes

of the anomaly, such as user, role, SQL command, then

correspond to the environment surrounding such an event.

Intuitively, a policy can be specified taking into account

the anomaly attributes to guide the response engine in

taking a suitable action. Keeping this in mind, we propose

an Event- Condition-Action (ECA) language for

specifying response policies[1].

A DBA authorizes a policy operation, such as

create or drop, by submitting a signature share on the

policy. At least k signature shares are required to form a

valid final signature on a policy, where k is a threshold

parameter defined for each policy at the time of policy

creation.

The final signature is then validated either

periodically or upon policy usage to detect any malicious

modifications to the policies. The key idea in our approach

is that a policy operation is invalid unless it has been

authorized by at least k DBAs. We thus refer to our

administration model as the Joint Threshold

Administration Model (JTAM) for managing response

policy objects[3].

It requires no changes to the existing access

control mechanisms of a DBMS for achieving SoD.

Second, the final signature on a policy is non reputable,

thus making the DBAs accountable for authorizing a

policy operation. Third, and probably the most important,

JTAM allows an organization to utilize existing man-

power resources to address the problem of insider threats

since it is no longer required to employ additional users as

policy administrators.

Once a database request has been flagged off as

anomalous, an action is executed by the response system to

address the anomaly. The response action to be executed is

specified as part of a response policy. Such actions may

log the anomaly details or send an alert, but they do not

proactively prevent an intrusion. Aggressive actions, on

the other hand, are high severity responses. Such actions

are capable of preventing an intrusion proactively by

dropping the request, disconnecting the user or

revoking/denying the necessary privileges.

Signature
We describe the signature share generation, the

signature share combining, and the final signature

verification operations, in the context of the administrative

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.1, Jan-Feb 2012 pp-412-416 ISSN: 2249-6645

 www.ijmer.com 415 | P a g e

lifecycle of a response policy object. The steps in the

lifecycle of a policy object are policy creation, activation,

suspension, alteration, and deletion[8].

It is possible for a malicious administrator to

replace a valid signature share with some other signature

share that is generated on a different policy definition.

However, such attack will fail as the final signature that is

produced by the signature share combining algorithm will

not be valid. Note that by submitting an invalid signature

share, a malicious administrator can block the creation of a

valid policy. We do not see this as a major problem since

the threat scenario that we address is malicious

modifications to existing policies, and not generation of

policies themselves.

D.CLIENT

Often clients and servers communicate over a

computer network on separate hardware, but both client

and server may reside in the same system. A server

machine is a host that is running one or more server

programs which share their resources with clients. A client

does not share any of its resources, but requests a server's

content or service function. Clients therefore initiate

communication sessions with servers which await

incoming requests.Note that implementing the

confirmation actions such as a re authentication or a

second factor of authentication require changes to the

communication protocol between the database client and

the server. The scenarios in which such confirmation

actions may be useful are when a malicious subject

(user/process) is able to bypass the initial authentication

mechanism of the DBMS due to software vulnerabilities

(such as buffer overflow) or due to social engineering

attacks (such as using someone else’s unlocked unattended

terminal).

 Interactive response with the user is not required; the

confirmation/resolution/failure actions may be omitted

from the policy.

IV. PERFORMANCE EVALUATION
We perform three sets of experiments. The first two

experiments report and compare the overhead of the policy

matching algorithms. The third experiment reportsresults

on the overhead of the signature verification mechanism in

JTAM.
In the first experiment, the anomaly assessment is

set such that the number of matching policies for an

anomaly is kept constant at four. The number of

predicates, and correspondingly the number of policies, are

varied in order to assess the policy matching overhead

time. Fig. 1 shows the policy matching overhead for the

two algorithms as a function of the number of predicates.

Fig. 2 reports the number of predicates skipped as a

function of the number of predicates. As expected, the

policy matching overhead time increases linearly with the

increase in the number of predicates in the policy database.

Interestingly, the number of predicates skipped in both the

algorithms is almost same.

Thus, counter-intuitively, the ordered policy

matching algorithm does not lead to a decrease in the

number of predicate evaluations. In fact, for larger number

of predicates, the policy matching overhead of the ordered

predicate algorithm is higher than that of the base policy

matching algorithm.

Fig 1. Experiment 1: Number of predicates versus policy

matching overhead.

Such increase in matching overhead may be

explained by the fact that the predicates evaluated by the

ordered policy matching are more computationally

expensive than the ones evaluated by the base policy

matching algorithm. The key observation from this

experiment, however, is that predicate ordering based on

the policy-count parameter has no benefits in terms of

decreasing the overhead of the policy matching procedure.

Fig. 2. Experiment 1: Number of predicates versus number

of predicates skipped.

 In the second experiment, we keep the number of

predicates in the policy database constant at 60. The

number of policies is also kept constant at 20. The number

of matching policies is varied in order to assess the policy

matching overhead. Fig. 3 shows the policy matching

overhead for the two algorithms as a function of the

number of matching policies. As expected, the

policymatching overhead increases with the increase in the

number of matching policies.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.1, Jan-Feb 2012 pp-412-416 ISSN: 2249-6645

 www.ijmer.com 416 | P a g e

Fig 3. Experiment 2: Number of matching policies versus

policy matching overhead

 Moreover, in this experiment as well, the

overhead of the ordered policy matching algorithm is

higher than that of the base policy matching algorithm.

Fig. 4 Experiment 2: Number of matching policies versus

number of predicates skipped

Fig. 4 reports the variation in the number of predicates

skipped by varying the number of matching policies. For

both the algorithms, the number of predicates skipped by

the search procedure decreases for increasing numbers of

matching policies. Such result is expected since an

increase in the number of matching policies leads to an

increasing number of predicate evaluations.

Overall, the fist two experiments confirm the low

overhead associated with our policy matching algorithms.

 They also show that predicate ordering based on

the descending policy-count parameter has no significant

impact on reducing the overhead of the policy matching

procedure.

 Therefore, a better strategy is to create a

dedicated DBMS process that periodically polls the policy

tables, and verifies the signature on all the policies.

V. CONCLUSION
 In this paper, we have described the response

component of our intrusion detection system for a DBMS.

We presented an interactive Event-Condition-Action type

response policy language that makes it very easy for the

database security administrator to specify appropriate

response actions for different circumstances depending

upon the nature of the anomalous request. The two main

issues that we addressed in the context of such response

policies are policy matching, and policy administration.

Specifically, we added support for new system catalogs to

hold policy related data, implemented new SQL

commands for the policy administration tasks, and

integrated the policy matching code with the query

processing subsystem of PostgreSQL. The other issue that

we addressed is the administration of response policies to

prevent malicious modifications to policy objects from

legitimate users. We proposed a JTAM, a novel

administration model, based on Shoup’s threshold

cryptographic signature scheme we are currently in the

process of implementing the intrusion detection algorithms

in the PostgreSQL DBMS as part of our overall intrusion

detection and response system in a DBMS.

REFERENCES

[1] M .K. Aguilera, R. E. Strom, D. C. Sturman, M.

Astley, and T. D. Chandra, “Matching Events in a

Content-Based Subscription System, ” Proc. Symp.

Principles of Distributed Computing (PODC), pp. 53-

61, 1999.

[2] Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith,

“EfficientFiltering in Publish-Subscribe Systems

Using Binary Decision Diagrams,” roc. Int’l Conf.

Software Eng. (ICSE), pp. 443-452, 2001.

[3] V. Ganapathy, T. Jaeger, and S. Jha, “Retrofitting

Legacy Code for Authorization Policy Enforcement,”

Proc. IEEE Symp. Security and Privacy, pp. 214-229,

2006.

[4] R. Gennaro, T. Rabin, S. Jarecki, and H. Krawczyk,

“Robust andEfficient Sharing of RSA Functions,” J.

Cryptology, vol. 20, no. 3, pp. 393-400, 2007.

[5] H.-S. Lim, J.-G. Lee, M.-J. Lee, K.-Y. Whang, and I.-

Y. Song,“Continuous Query Processing in Data

Streams Using Duality of Data and Queries,” Proc.

ACM SIGMOD, pp. 313-324, 2006.

[6] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone,

Handbook of Applied Cryptography. CRC Press,

2001.

[7] “ Postgresql 8 . 3. The Postgresql Global Development

Group ” http://www.postgresql.org/, July 2008.

[8] V. Shoup, “Practical Threshold Signatures,” Proc.

Int’l Conf. Theory and Application of Cryptographic

Techniques (EURO1RYPT), pp. 207- 220, 2000.

