
International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.1, Jan-Feb 2012 pp-479-483 ISSN: 2249-6645

 www.ijmer.com 479 | P a g e

*

1
Keerthana.P,

2
Narmadha.R.P

1
(Final ME (CSE), Sri Shakthi Institute Of Engineering and Technology, Coimbatore) India.

2
(Assistant Professor, Sri Shakthi Institute Of Engineering and Technology, Coimbatore) India

ABSTRACT:
A data distributer needs to secure the sensitive

data at the time of distributing to the different agents.

The sensitive data should be transferred in a secured

way and it should not be leaked to some other persons.

The existing system uses the technique called

Watermarking to prevent the leakage. In the other

techniques, the fake objects are attached with the real

objects to detect the leakage and the guilty agent who

leaking the data. The disadvantages of this system are

the originality of the data is lost and some data cannot

be transformed. In the proposed system, it concentrates

on preventing two agents to compare and extract the

fake objects. Symmetric Inference Model (SIM) is

introduced for cases where agents can collude and

identify fake tuples. In this technique it uses the

symmetric inference graph approach for the symmetric

inference model that represents the possible colluding

attacks from any agents to the different data allocation

strategies. SIM represents dependent and semantic

relationships among attributes of all the entities in the

information system. This prevents the agents from

comparing their data with one another to identify fake

objects.

Index terms- Allocation strategies, data leakage, data

privacy, fake records, leakage model, Symmetric inference

model.

I.INTRODUCTION

While doing business, sometimes we have to transfer the

sensitive data to trusted third parties. For example, a

company may have partnerships with many companies.

They need to share their sensitive data. We call the

customer as agents and the owner of data as distributor.

Our main aim is to detect when the data is leaked by

agents and also to find who had leaked out the data.

 In some cases the original sensitive data is

modified and handed over to the agents. The technique

used to modify the data and make “less sensitive” is

perturbation. But there are some cases like medical

researches and payroll in which the ranges of data should

not be modified as they need accurate data for treating

patients in case of medical and correct account number for

salary calculation in payroll case.

At first the leakage is controlled by the method

called watermarking. In that a unique code will be

embedded with the distributed copy. If the data is found in

unauthorized parties we can identify the leaker. The

disadvantage in this is the original copy need to be

modified. And also in some cases the watermarks can be

destroyed if the recipient is malicious.

After giving certain set of objects to agents, the

distributor may find some data in unauthorized place. For

example if it s found in some web site, we can identify the

leaker with the help of cookies. But with a single cookie

we can’t proof his leakage. So if we have strong

information like four or five cookies we can decide what to

do with that agent.

In this paper we develop a model to protect the

data if the agents decide to meet and find the fake objects

by comparing with their records. Here the algorithms are

designed to distribute the data. Then the fake objects are

attached with the original data and distributed. The fake

objects will look like the original to the agents. They will

act as watermark to find the leaker of data. It will turn up

and intimate the distributor, and then the distributor can be

confident that the agent is guilty agent.

Entities and Agents
The distributor wants to share some of the objects

with a set of agents U1, U2, . . . , Un, but does not wish the

objects to be leaked to other third parties. The objects in T

could be of any type and size, e.g., they could be tuples in

a relation, or relations in a database.

An agent Ui receives a subset of objects Ri in T,

determined either by a sample request or an explicit

request:

 Sample request Ri = SAMPLE(T,mi): Any subset

of mi records from T can be given to Ui.

 Explicit request Ri = EXPLICIT(T,condi): Agent

Ui receives all T objects that satisfy condition.

Fake Objects
The distributor may be able to add fake objects to

the distributed data in order to improve his effectiveness in

detecting guilty agents. Although we do not deal with the

implementation of CREATE FAKE OBJECT(), we note

that there are two main design options. The function can

either produce a fake object on demand every time it is

called or it can return an appropriate object from a pool of

objects created in advance.

An Improved Collude Attack Prevention for Data Leakage

ha.R.P

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.1, Jan-Feb 2012 pp-479-483 ISSN: 2249-6645

 www.ijmer.com 480 | P a g e

In section 2 we start by describing the relative

work whereas in section 3 discuss briefly about the

analysis of agent guilt model and the various data

allocation strategies respectively. The experimental results

and the technique to calculate the probability of agent

colluding attacks is explained in section 4.

II.AN OVERVIEW OF RELATED WORK
The guilt detection approach we present is related

to the data provenance problem: tracing the lineage of S

objects implies essentially the detection of the guilty

agents. Tutorial provides a good overview on the research

conducted in this field. Suggested solutions are domain

specific, such as lineage tracing for data warehouses and

assume some prior knowledge on the way a data view is

created out of data sources.

In the watermarking relational databases paper,

the watermark is inserted in the range of bits. The bits get

replaced to act as the watermark. It helps to prevent the

attack from the malicious attack and bit flipping attack and

so on. The disadvantage is the watermarking is not

developed for the non-numeric attributes.

The goal of watermarking is to insert the mark in

the object without destroy the value of the object and it is

difficult for the adversary to remove or alter the mark

beyond detection without destroying the original value.

Database semantics and structured data are the challenges

faced during this process.

The protection is also achieved through the

process of k-anonymity. In this k-anonymity provides

privacy protection by guaranteeing that each record relates

to at least k individuals even if the released records are

directly linked to external information. It provides a formal

presentation of achieving k-anonymity using

generalization and suppression. Generalization involves

replacing a value with a less specific but semantically

consistent value. Suppression involves not releasing a

value at all.

Finally, there are also lots of other works on

mechanisms that allow only authorized users to access

sensitive data through access control policies.

III. AGENT GUILT MODEL ANALYSIS
For finding the guilty agent, the probability is to

be calculated. For example if we are giving data to two

agents then the probability of the agent to be guilty is 0.5.

To estimate how likely it is that a system will be

operational throughout a given period, we need the

probabilities that individual components will or will not

fail. A component failure in our case is the event that the

target guesses an object of S. The component failure is

used to compute the overall system reliability, while we

use the probability of guessing to identify agents that have

leaked information. The component failure probabilities

are estimated based on experiments. Similarly, the

component probabilities are usually conservative

estimates, rather than exact numbers.

Data Allocation Strategies

The main problem is to allocate the data to the

agents with the high probability of finding the guilty agent.

For that four possibilities are found. As illustrated in Fig.

1, there are four instances of this problem we address,

depending on the type of data requests made by agents

whether it is explicit data request or sample data request

and whether the “fake objects” are allowed or not.

Fig. 1. Leakage problem instances.

 While allocating data to the agents, the constraint

is to satisfy the agent’s request by providing the entire

request that are available and the objective is to detect the

agent if he leaks the data.

A. Explicit data request
Explicit Data Request with e-random

In this model we present an approach of explicit

data request based on e-random. Here we combine the

allocation of the explicit data request with the agent

selection of e-random. We use e-random as our baseline in

our comparisons with other algorithms for explicit data

requests. Initially we the finds agents that are eligible to

receiving fake objects in O(n) time. Then, the algorithm

creates one fake object in every iteration and allocates it to

random agent. The main loop takes O(B) time. Hence, the

running time of the algorithm is O(n + B).

Algorithm 1. Allocation for Explicit Data Requests (EF)

Input: R1, . . .Rn, cond1, . . . , condn, b1, . . . , bn, B

Output: R1, . . .,Rn, F1,, Fn

1: R ф . Agents that can receive fake objects

2: for i = 1,. . . ,n do

3: if bi > 0 then

4: R RU{i}

5: Fi ф

6: while B > 0 do

7: i SELECTAGENT(R,R1, . . .,Rn)

8: f CREATEFAKEOBJECT(Ri, Fi, condi)

9: Ri Ri U {f}

10: Fi Fi U {f}

11: bi bi - 1

12: if bi = 0then

13: R R\{Ri}

14: BB – 1

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.1, Jan-Feb 2012 pp-479-483 ISSN: 2249-6645

 www.ijmer.com 481 | P a g e

Algorithm 2. Agent Selection for e-random

1: function SELECTAGENT (R,R1, . . .,Rn)

2: i select at random an agent from R

3: return i

Explicit Data Request with e-optimal
Still to improve the algorithm for allocation

explicit data request we are combining this algorithm with

the agent selection for e-optimal method. This algorithm

based on e-optimal makes a greedy choice by selecting the

agent that will yield the greatest improvement in the sum-

objective. The cost of this greedy choice is O(n
2)

 in every

iteration. The overall running time of e-optimal is O(n +

n
2
B) = O(n

2
B). Here the optimal value is calculated

between the different agents and that value is used to

attach the fake records in the agent. For calculating the

optimal value the co-occurrences between the agents is

calculated and the agent with high value is attached with

the fake record.

Algorithm 3. Agent Selection for e-optimal

1: function SELECTAGENT (R,R1, . . .,Rn)

2: return i

B. Sample data request

Sample Data Request with s-random

Here in this module we present the sample data

request with s-random. Here in this method we present the

object selection for s-random. In s-random, we introduce

vector a ∊ N
|T|

 that shows the object sharing distribution. In

particular, element a[k] shows the number of agents who

receive object tk. Algorithm s-random allocates objects to

agents in a round-robin fashion. After the initialization of

vectors d and a, the main loop is executed while there are

still data objects (remaining > 0) to be allocated to agents.

In each iteration of this loop, the algorithm uses function

SELECTOBJECT()to find a randomobject to allocate to

agent Ui. This loop iterates over all agents who have not

received the number of data objects they have requested.

The running time of the algorithm is

and depends on the running time τ of

the object selection function SELECTOBJECT(). In case

of random selection, we can have τ = O(1) by keeping in

memory a set for each agent Ui.

Algorithm 4. Allocation for Sample Data Requests (SF)

Input: m1, . . .,mn, |T| . Assuming mi≤ |T|

Output: R1,. . . .,Rn

1: a  O|T| . a[k]:number of agents who have

 received object tk

2: R1ф , . . .,Rn  ф,

3: remaining  ∑i=1mi

4: while remaining > 0 do

5: for all i = 1,. . ., n : |Ri| <mi do

6: k SELECTOBJECT(i,Ri) . May also use

additional parameters

7: Ri Ri U {tk}

8: a[k] a[k]+ 1

9: remaining remaining -1

Algorithm 5. Object Selection for s-random

1: function SELECTOBJECT(I,Ri)

2: k select at random an element from set

{k
1
|tk

1
¢Ri}

3: return k

Sample Data Request with s-overlap

In the previous section the distributor can

minimize both objectives by allocating distinct sets to all

three agents. Such an optimal allocation is possible, since

agents request in total fewer objects than the distributor

has. This is overcome by presenting an object selection

approach for s-overlap. Here in each iteration of allocating

sample data request algorithm, we provide agent Ui with

an object that has been given to the smallest number of

agents. So, if agents ask for fewer objects than jTj, agent

selection for s-optimal algorithm will return in every

iterations an object that no agent has received so far. Thus,

every agent will receive a data set with objects that no

other agent has. The running time of this algorithm is O(1).

Algorithm 6. Object Selection for s-overlap

1: function SELECTOBJECT (i,Ri, a)

2: K {k | k = argmin a[k
1
])

3: k select at random an element from set

{k
1
|k

1
€ K۸ tk¢Ri}

4: return k

Sample Data Request with s-max

In this module we present an improved algorithm

than s-overlap and s-random which we used in allocation

algorithm. This algorithm we present here is termed as

object selection for s-max. If we apply s-max to the

example above, after the first five main loop iterations in

algorithm of allocating data request, the Ri sets are:

R1 = {t1, t2}; R2 = {t2}; R3 = {t3}; and R4 = {t4}:

In the next iteration, function SELECTOBJECT() must

decide which object to allocate to agent U2. We see that

only objects t3 and t4 are good candidates, since allocating

t1 to U2 will yield a full overlap of R1 and R2. Function

SELECTOBJECT() of s-max returns indeed t3 or t4. The

running time of SELECTOBJECT() is O(|T|n).

Algorithm 7. Object Selection for s-max

1: function SELECTOBJECT (i,R1, . . .,Rn;m1, . . .,mn)

2: min_overlap 1 . the minimum out of the

 maximum relative overlaps that the allocations of

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.1, Jan-Feb 2012 pp-479-483 ISSN: 2249-6645

 www.ijmer.com 482 | P a g e

 different objects to Ui yield

3: for k € {k
1
 | tk

1
¢ Ri} do

4: max_rel_ov 0 . the maximum relative overlap

 between Ri and any set Rj that the allocation of tk to Ui

 yields

5: for all j =1; . . . ; n : j ≠ i and tk € Rj do

6: abs_ov |Ri ∩Rj |+ 1

7: rel_ov abs_ov/min (mi,mj)

8: max_rel_ov Max (max_rel_ov, rel_ov)

9: if max_rel_ov ≤min_overlap then

10: min_overlapmax_rel_ov

11: ret_k k

12: return ret _k

 In this three overlap values are calculated. The

values are absolute overlap value, relative overlap value

and minimum overlap value. The minimum overlap value

is nothing but the columns allocated to them. The absolute

overlap value is the unique column between the agents and

the relative overlap value is calculated by dividing the

absolute value with the minimum value. According to this

value the fake objects will be attached. The agents having

the minimum overlap value is attached with the fake

records.

 Finally with the help of these algorithms the

probability is calculated and the guilty agent can be

identified. The agent having the highest probability to leak

the data is considered as the guilty agent.

Symmetric Inference Model

To represent the possible colluding attacks from

any agents to the different data allocation strategies, Here

we use the semantic inference model. SIM represents

dependent and semantic relationships among attributes of

all the entities in the information system. The related

attributes (nodes) are connected by three types of relation

links: dependency link, schema link, and semantic link..

To evaluate the inference introduced by semantic links, we

need to compute the CPT for nodes connected by semantic

links.

Symmetric Inference Graph

In order to perform inference at the instance level,

we instantiate the SIM with specific entity instances and

generate a SIG. Each node in the SIG represents an

attribute for a specific instance. The attribute nodes in the

SIG have the same CPT as in the SIM because they are

just instantiated versions of the attributes in entities. As a

result, the SIG represents all the instance-level inference

channels.

Instance level dependency link

When a SIM is instantiated, the dependency

within- entity is transformed into dependency-within-

instance in the SIG. Similarly, the dependency-between-

related-entities in the SIM is transformed into a

dependency between two attributes in the related instances.

This type of dependency is preserved only if two instances

are related by the instantiated schema link. That is, if

attribute B in instance e2 depends on attribute A in

instance e1, and instances e1 and e2 are related by R.

Instance level schema link

The schema links between entities in the SIM

represent “key, foreign-key” pairs. At instance level, if the

value of the primary key of an instance e1 is equal to the

value of the corresponding foreign key in the other

instance e2 which can be represented as R(e1, e2), then

connecting these two attributes will represent the schema

link at the instance level. Otherwise, these two attributes

are not connected.

Instance level semantic link
At the instance level, assigning the value of the source

node to “unknown” disconnects the semantic link between

the attributes of two instances. On the other hand, if two

instances have a specific semantic relation, then the

inference probability of the target node will be computed

based on its CPT and the value of the source node.

IV. EXPERIMENTAL RESULTS EXPLICIT

REQUESTS
The goal of these experiments was to see whether

fake objects in the distributed data sets yield significant

improvement in our chances of detecting a guilty agent.

Next, we wanted to evaluate our e-optimal algorithm

realative to a random allocation.

It focuses on the scenarios with a few objects that

are shared among multiple agents. These are the most

interesting scenarios, since object sharing makes it difficult

to distinguish a guilty from non-guilty agents. Scenarios

with more objects to distribute or scenarios with objects

shared among fewer agents are obviously easier to handle.

In our scenarios we have a set of |T|= 10 objects

for which there are requests by n= 10 different agents. We

assume that each agent request 8 particular objects out

these 10. Such scenarios yield very similar agent guilt

probabilities and it is important to add fake objects. We

generated a random scenario that yielded = 0.073 and

min = 0.35 and we applied the algorithms e-random

and e-optimal to distribute fake objects to the agents. We

varied the number B of distributed fake objects from 2 to

20 and for each value of B we ran both algorithms to

allocate the fake objects to agents. We ran e-optimal once

for each value of B, since it is a deterministic algorithm.

Algorithm e-random is randomized and we ran it 10 times

for each value of B. The results we present are the average

over the 10 runs.

In Figure 2(a) it shows how fake object allocation

can affect negotiation of . Three curves are plotted in

the figure. The solid curve is constant and it shows the

negotiation of value for an allocation without fake

objects.The other two curves look at algorithms e-optimal

and e-random. The y-axis shows negotiation of and

the x-axis shows the ratio of the number of distributed fake

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.1, Jan-Feb 2012 pp-479-483 ISSN: 2249-6645

 www.ijmer.com 483 | P a g e

objects to the total number of objects that the agents

explicitly request.

 We observe that distributing fake objects can

significantly improve on average the chances of detecting

a

guilty agent. Even the random allocation of approximately

10% to 15% fake objects yields negotiation of > 0.3.

The use of e-optimal improves further, since the e-

optimal curve is consistently over the 95% confidence

intervals of e-random. The performance difference

between the two algorithms would be greater if the agents

did not request the same number of objects, since this

symmetry allows non-smart fake object allocations to be

more effective than in asymmetirc scenarios.

 Fig 2 . Evaluation of Explicit Data Request Algorithm

 Figure 2(b) shows the value of min , as a

function of e-optimal the fraction of fake objects. The plot

shows that random allocation will yield an insignificant

improvement in our chances of detecting a guilty agent in

the worst case scenarios. This was expected, since e-

random does not take into consideration which agents must

receive a fake object to differentiate their requests from

other agents.

Incidentally, the two jumps in the e-optimal curve

are due to the symmetry of our scenario. Algorithm e-

optimal allocates almost one fake object before allocating

a second fake object to one of them.

The result confirms that fake objects can have a

significant impact on our chances of detecting a guilty

agent. Hence, the performance of e-optimal indicates that

our apporximation is effective.

V. CONCLUSION
 While transforming the data to the distributors the

senders apply perturbation and watermarking techniques to

secure them. The approaches used now in the data

transformation are not able to detect the data leakage in an

efficient way and also they were all restricted or made

impossible to satisfy agent’s request. They also not help

much in finding the guilty agent who leaked the data. The

originality of the data and the quality is mainly

concentrated here. The techniques cannot be used to some

of the sensitive data too as it is impossible to transfer or

modify some of the data. So, to find the data leakage and

to protect the data from the guilty agents who trying to find

the original data, a Semantic Inference Model is going to

be introduced. This model is proposed in such a way that it

prevents the problem of leakage of data and helps in

finding the guilty agent.

REFERENCES
[1] R. Agrawal and J. Kiernan. Watermarking relational databases. In

VLDB ’02: Proceedings of the 28th international conference on

Very Large Data Bases, pages 155–166. VLDB Endowment, 2002.

[2] P. Bonatti, S. D. C. di Vimercati, and P. Samarati. An algebra for
composing access control policies. ACM Trans. Inf. Syst. Secur.,

5(1):1–35, 2002.

[3] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A
characterization of data provenance. In J. V. den Bussche and V.

Vianu, editors, Database Theory - ICDT 2001, 8th International

[4] Conference, London, UK, January 4-6, 2001, Proceedings, volume
1973 of Lecture Notes in Computer Science, pages 316–330.

Springer, 2001.
[5] P. Buneman and W.-C. Tan. Provenance in databases. In SIGMOD

’07: Proceedings of the 2007 ACM SIGMOD international

conference on Management of data, pages 1171–1173, New York,
NY, USA, 2007. ACM.

[6] Y. Cui and J. Widom. Lineage tracing for general data warehouse

transformations. In The VLDB Journal, pages 471–480, 2001.

[7] S. Czerwinski, R. Fromm, and T. Hodes. Digital music distribution

and audio watermarking.

[8] F. Guo, J. Wang, Z. Zhang, X. Ye, and D. Li. Information Security
Applications, pages 138–149. Springer, Berlin / Heidelberg, 2006.

An Improved Algorithm to Watermark Numeric Relational Data.

[9] F. Hartung and B. Girod. Watermarking of uncompressed and
compressed video. Signal Processing, 66(3):283–301, 1998.

[10] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian.

Flexible support for multiple access control policies. ACM Trans.
Database Syst., 26(2):214–260, 2001.

[11] Y. Li, V. Swarup, and S. Jajodia. Fingerprinting relational

databases: Schemes and specialties. IEEE Transactions on
Dependableand Secure Computing, 02(1):34–45, 2005.

[12] B. Mungamuru and H. Garcia-Molina. Privacy, preservation and

performance: The 3 p’s of distributed data management.
Technicalreport, Stanford University, 2008.

