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ABSTRACT: 
A data distributer needs to secure the sensitive 

data at the time of distributing to the different agents. 

The sensitive data should be transferred in a secured 

way and it should not be leaked to some other persons. 

The existing system uses the technique called 

Watermarking to prevent the leakage. In the other 

techniques, the fake objects are attached with the real 

objects to detect the leakage and the guilty agent who 

leaking the data. The disadvantages of this system are 

the originality of the data is lost and some data cannot 

be transformed. In the proposed system, it concentrates 

on preventing two agents to compare and extract the 

fake objects. Symmetric Inference Model (SIM) is 

introduced for cases where agents can collude and 

identify fake tuples. In this technique it uses the 

symmetric inference graph approach for the symmetric 

inference model that represents the possible colluding 

attacks from any agents to the different data allocation 

strategies. SIM represents dependent and semantic 

relationships among attributes of all the entities in the 

information system. This prevents the agents from 

comparing their data with one another to identify fake 

objects.  

 

Index terms-  Allocation strategies, data leakage, data 

privacy, fake records, leakage model, Symmetric inference 

model. 

 

I.INTRODUCTION                           

While doing business, sometimes we have to transfer the 

sensitive data to trusted third parties. For example, a 

company may have partnerships with many companies. 

They need to share their sensitive data. We call the 

customer as agents and the owner of data as distributor. 

Our main aim is to detect when the data is leaked by 

agents and also to find who had leaked out the data. 

 In some cases the original sensitive data is 

modified and handed over to the agents. The technique 

used to modify the data and make “less sensitive” is 

perturbation. But there are some cases like medical 

researches and payroll in which the ranges of data should 

not be modified as they need accurate data for treating 

patients in case of medical and correct account number for 

salary calculation in payroll case. 

At first the leakage is controlled by the method 

called watermarking. In that a unique code will be 

embedded with the distributed copy. If the data is found in  

 

unauthorized parties we can identify the leaker. The 

disadvantage in this is the original copy need to be 

modified. And also in some cases the watermarks can be 

destroyed if the recipient is malicious. 

After giving certain set of objects to agents, the 

distributor may find some data in unauthorized place. For 

example if it s found in some web site, we can identify the 

leaker with the help of cookies. But with a single cookie 

we can’t proof his leakage. So if we have strong 

information like four or five cookies we can decide what to 

do with that agent. 

In this paper we develop a model to protect the 

data if the agents decide to meet and find the fake objects 

by comparing with their records. Here the algorithms are 

designed to distribute the data. Then the fake objects are 

attached with the original data and distributed. The fake 

objects will look like the original to the agents. They will 

act as watermark to find the leaker of data. It will turn up 

and intimate the distributor, and then the distributor can be 

confident that the agent is guilty agent. 

Entities and Agents 
The distributor wants to share some of the objects 

with a set of agents U1, U2, . . . , Un, but does not wish the 

objects to be leaked to other third parties. The objects in T 

could be of any type and size, e.g., they could be tuples in 

a relation, or relations in a database.  

 

An agent Ui receives a subset of objects Ri in T, 

determined either by a sample request or an explicit 

request: 

 

 Sample request Ri = SAMPLE(T,mi): Any subset 

of mi records from T can be given to Ui. 

 Explicit request Ri = EXPLICIT(T,condi): Agent 

Ui receives all T objects that satisfy condition. 

 

Fake Objects 
The distributor may be able to add fake objects to 

the distributed data in order to improve his effectiveness in 

detecting guilty agents. Although we do not deal with the 

implementation of CREATE FAKE OBJECT(), we note 

that there are two main design options. The function can 

either produce a fake object on demand every time it is 

called or it can return an appropriate object from a pool of 

objects created in advance. 

An Improved Collude Attack Prevention for Data Leakage 

ha.R.P 

 

 



International Journal of Modern Engineering Research (IJMER) 

  www.ijmer.com                Vol.2, Issue.1, Jan-Feb 2012 pp-479-483                ISSN: 2249-6645 

                       www.ijmer.com 480 | P a g e  

In section 2 we start by describing the relative 

work whereas in section 3 discuss briefly about the 

analysis of agent guilt model and the various data 

allocation strategies respectively. The experimental results 

and the technique to calculate the probability of agent 

colluding attacks is explained in section 4. 

II.AN OVERVIEW OF RELATED WORK 
The guilt detection approach we present is related 

to the data provenance problem: tracing the lineage of S 

objects implies essentially the detection of the guilty 

agents. Tutorial provides a good overview on the research 

conducted in this field. Suggested solutions are domain 

specific, such as lineage tracing for data warehouses and 

assume some prior knowledge on the way a data view is 

created out of data sources. 

In the watermarking relational databases paper, 

the watermark is inserted in the range of bits. The bits get 

replaced to act as the watermark. It helps to prevent the 

attack from the malicious attack and bit flipping attack and 

so on. The disadvantage is the watermarking is not 

developed for the non-numeric attributes. 

The goal of watermarking is to insert the mark in 

the object without destroy the value of the object and it is 

difficult for the adversary to remove or alter the mark 

beyond detection without destroying the original value. 

Database semantics and structured data are the challenges 

faced during this process. 

The protection is also achieved through the 

process of k-anonymity. In this k-anonymity provides 

privacy protection by guaranteeing that each record relates 

to at least k individuals even if the released records are 

directly linked to external information. It provides a formal 

presentation of achieving k-anonymity using 

generalization and suppression. Generalization involves 

replacing a value with a less specific but semantically 

consistent value. Suppression involves not releasing a 

value at all. 

Finally, there are also lots of other works on 

mechanisms that allow only authorized users to access 

sensitive data through access control policies. 

III. AGENT GUILT MODEL ANALYSIS 
For finding the guilty agent, the probability is to 

be calculated. For example if we are giving data to two 

agents then the probability of the agent to be guilty is 0.5. 

To estimate how likely it is that a system will be 

operational throughout a given period, we need the 

probabilities that individual components will or will not 

fail. A component failure in our case is the event that the 

target guesses an object of S. The component failure is 

used to compute the overall system reliability, while we 

use the probability of guessing to identify agents that have 

leaked information. The component failure probabilities 

are estimated based on experiments. Similarly, the 

component probabilities are usually conservative 

estimates, rather than exact numbers.  

Data Allocation Strategies 

The main problem is to allocate the data to the 

agents with the high probability of finding the guilty agent. 

For that four possibilities are found. As illustrated in Fig. 

1, there are four instances of this problem we address, 

depending on the type of data requests made by agents 

whether it is explicit data request or sample data request 

and whether the “fake objects” are allowed or not. 

 
Fig. 1. Leakage problem instances. 

 

 While allocating data to the agents, the constraint 

is to satisfy the agent’s request by providing the entire 

request that are available and the objective is to detect the 

agent if he leaks the data. 

 

A. Explicit data request 
Explicit Data Request with e-random  

In this model we present an approach of explicit 

data request based on e-random. Here we combine the 

allocation of the explicit data request with the agent 

selection of e-random. We use e-random as our baseline in 

our comparisons with other algorithms for explicit data 

requests. Initially we the finds agents that are eligible to 

receiving fake objects in O(n) time. Then, the algorithm 

creates one fake object in every iteration and allocates it to 

random agent. The main loop takes O(B) time. Hence, the 

running time of the algorithm is O(n + B). 

 

Algorithm 1. Allocation for Explicit Data Requests (EF) 

Input: R1, . . .Rn, cond1, . . . , condn, b1, . . . , bn, B 

Output: R1, . . .,Rn, F1, . . . ., Fn 

1: R ф . Agents that can receive fake objects 

2: for i = 1,. . . ,n do 

3: if bi > 0 then 

4: R RU{i} 

5: Fi ф 

6: while B > 0 do 

7: i SELECTAGENT(R,R1, . . .,Rn) 

8: f CREATEFAKEOBJECT(Ri, Fi, condi) 

9: Ri  Ri U {f} 

10: Fi Fi U {f} 

11: bi bi - 1 

12: if bi = 0then 

13: R R\{Ri} 

14: BB – 1 
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Algorithm 2. Agent Selection for e-random 

1: function SELECTAGENT (R,R1, . . .,Rn) 

2: i select at random an agent from R 

3: return i 

 

Explicit Data Request with e-optimal 
Still to improve the algorithm for allocation 

explicit data request we are combining this algorithm with 

the agent selection for e-optimal method. This algorithm 

based on e-optimal makes a greedy choice by selecting the 

agent that will yield the greatest improvement in the sum-

objective. The cost of this greedy choice is O(n
2)

 in every 

iteration. The overall running time of e-optimal is O(n + 

n
2
B) = O(n

2
B). Here the optimal value is calculated 

between the different agents and that value is used to 

attach the fake records in the agent. For calculating the 

optimal value the co-occurrences between the agents is 

calculated and the agent with high value is attached with 

the fake record. 

 

Algorithm 3. Agent Selection for e-optimal 

1: function SELECTAGENT (R,R1, . . .,Rn) 

 
2: return i 

 

B. Sample data request 

Sample Data Request with s-random 

Here in this module we present the sample data 

request with s-random. Here in this method we present the 

object selection for s-random. In s-random, we introduce 

vector a ∊ N
|T|

 that shows the object sharing distribution. In 

particular, element a[k] shows the number of agents who 

receive object tk. Algorithm s-random allocates objects to 

agents in a round-robin fashion. After the initialization of 

vectors d and a, the main loop is executed while there are 

still data objects (remaining > 0) to be allocated to agents. 

In each iteration of this loop, the algorithm uses function 

SELECTOBJECT()to find a randomobject to allocate to 

agent Ui. This loop iterates over all agents who have not 

received the number of data objects they have requested. 

  

The running time of the algorithm is 

and depends on the running time τ of 

the object selection function SELECTOBJECT(). In case 

of random selection, we can have τ = O(1) by keeping in 

memory a set for each agent Ui. 

Algorithm 4. Allocation for Sample Data Requests (SF) 

Input: m1, . . .,mn, |T| . Assuming mi≤ |T| 

Output: R1,. . . .,Rn 

1: a  O|T| . a[k]:number of agents who have 

  received object tk 

2: R1ф , . . .,Rn  ф, 

3: remaining  ∑i=1mi
  
 

4: while remaining > 0 do 

5: for all i = 1,. . ., n : |Ri| <mi do 

6: k SELECTOBJECT(i,Ri) . May also use 

additional parameters 

7: Ri Ri U {tk} 

8: a[k] a[k]+ 1 

9: remaining remaining -1 

 

Algorithm 5. Object Selection for s-random 

1: function SELECTOBJECT(I,Ri) 

2: k select at random an element from set 

{k
1
|tk

1
¢Ri} 

3: return k 

 

Sample Data Request with s-overlap 

In the previous section the distributor can 

minimize both objectives by allocating distinct sets to all 

three agents. Such an optimal allocation is possible, since 

agents request in total fewer objects than the distributor 

has. This is overcome by presenting an object selection 

approach for s-overlap. Here in each iteration of allocating 

sample data request algorithm, we provide agent Ui with 

an object that has been given to the smallest number of 

agents. So, if agents ask for fewer objects than jTj, agent 

selection for s-optimal algorithm will return in every 

iterations an object that no agent has received so far. Thus, 

every agent will receive a data set with objects that no 

other agent has. The running time of this algorithm is O(1). 

Algorithm 6. Object Selection for s-overlap 

1: function SELECTOBJECT (i,Ri, a) 

2: K {k | k = argmin a[k
1
]) 

3: k select at random an element from set 

{k
1
|k

1
€ K۸ tk¢Ri} 

4: return k 

 

Sample Data Request with s-max 

In this module we present an improved algorithm 

than s-overlap and s-random which we used in allocation 

algorithm. This algorithm we present here is termed as 

object selection for s-max. If we apply s-max to the 

example above, after the first five main loop iterations in 

algorithm of allocating data request, the Ri sets are: 

R1 = {t1, t2}; R2 = {t2}; R3 = {t3}; and R4 = {t4}: 

In the next iteration, function SELECTOBJECT() must 

decide which object to allocate to agent U2. We see that 

only objects t3 and t4 are good candidates, since allocating 

t1 to U2 will yield a full overlap of R1 and R2. Function 

SELECTOBJECT() of s-max returns indeed t3 or t4. The 

running time of SELECTOBJECT() is O(|T|n). 

Algorithm 7. Object Selection for s-max 

1: function SELECTOBJECT (i,R1, . . .,Rn;m1, . . .,mn) 

2: min_overlap 1 . the minimum out of the 

    maximum relative overlaps that the allocations of 



International Journal of Modern Engineering Research (IJMER) 

  www.ijmer.com                Vol.2, Issue.1, Jan-Feb 2012 pp-479-483                ISSN: 2249-6645 

                       www.ijmer.com 482 | P a g e  

   different objects to Ui yield 

3: for k € {k
1
 | tk

1  
¢ Ri} do 

4: max_rel_ov 0 . the maximum relative overlap 

    between Ri and any set Rj that the allocation of tk to Ui 

    yields 

5: for all j =1; . . . ; n : j ≠ i and tk € Rj do 

6: abs_ov |Ri ∩Rj |+ 1 

7: rel_ov abs_ov/min (mi,mj) 

8: max_rel_ov Max (max_rel_ov, rel_ov) 

9: if max_rel_ov ≤min_overlap then 

10: min_overlapmax_rel_ov 

11: ret_k k 

12: return ret _k 

 

 In this three overlap values are calculated. The 

values are absolute overlap value, relative overlap value 

and minimum overlap value. The minimum overlap value 

is nothing but the columns allocated to them. The absolute 

overlap value is the unique column between the agents and 

the relative overlap value is calculated by dividing the 

absolute value with the minimum value. According to this 

value the fake objects will be attached. The agents having 

the minimum overlap value is attached with the fake 

records. 

 Finally with the help of these algorithms the 

probability is calculated and the guilty agent can be 

identified. The agent having the highest probability to leak 

the data is considered as the guilty agent. 

 

Symmetric Inference Model 

To represent the possible colluding attacks from 

any agents to the different data allocation strategies, Here 

we use the semantic inference model. SIM represents 

dependent and semantic relationships among attributes of 

all the entities in the information system. The related 

attributes (nodes) are connected by three types of relation 

links: dependency link, schema link, and semantic link.. 

To evaluate the inference introduced by semantic links, we 

need to compute the CPT for nodes connected by semantic 

links. 

Symmetric Inference Graph 

In order to perform inference at the instance level, 

we instantiate the SIM with specific entity instances and 

generate a SIG. Each node in the SIG represents an 

attribute for a specific instance. The attribute nodes in the 

SIG have the same CPT as in the SIM because they are 

just instantiated versions of the attributes in entities. As a 

result, the SIG represents all the instance-level inference 

channels. 

Instance level dependency link 

When a SIM is instantiated, the dependency 

within- entity is transformed into dependency-within-

instance in the SIG. Similarly, the dependency-between-

related-entities in the SIM is transformed into a 

dependency between two attributes in the related instances. 

This type of dependency is preserved only if two instances 

are related by the instantiated schema link. That is, if 

attribute B in instance e2 depends on attribute A in 

instance e1, and instances e1 and e2 are related by R. 

Instance level schema link 

The schema links between entities in the SIM 

represent “key, foreign-key” pairs. At instance level, if the 

value of the primary key of an instance e1 is equal to the 

value of the corresponding foreign key in the other 

instance e2 which can be represented as R(e1, e2), then 

connecting these two attributes will represent the schema 

link at the instance level. Otherwise, these two attributes 

are not connected. 

Instance level semantic link 
At the instance level, assigning the value of the source 

node to “unknown” disconnects the semantic link between 

the attributes of two instances. On the other hand, if two 

instances have a specific semantic relation, then the 

inference probability of the target node will be computed 

based on its CPT and the value of the source node. 

 

IV. EXPERIMENTAL RESULTS EXPLICIT 

REQUESTS 
The goal of these experiments was to see whether 

fake objects in the distributed data sets yield significant 

improvement in our chances of detecting a guilty agent. 

Next, we wanted to evaluate our e-optimal algorithm 

realative to a random allocation. 

It focuses on the scenarios with a few objects that 

are shared among multiple agents. These are the most 

interesting scenarios, since object sharing makes it difficult 

to distinguish a guilty from non-guilty agents. Scenarios 

with more objects to distribute or scenarios with objects 

shared among fewer agents are obviously easier to handle. 

In our scenarios we have a set of |T|= 10 objects 

for which there are requests by n= 10 different agents. We 

assume that each agent request 8 particular objects out 

these 10. Such scenarios yield very similar agent guilt 

probabilities and it is important to add fake objects. We 

generated a random scenario that yielded = 0.073 and 

min  = 0.35 and we applied the algorithms e-random 

and e-optimal to distribute fake objects to the agents. We 

varied the number B of distributed fake objects from 2 to 

20 and for each value of B we ran both algorithms to 

allocate the fake objects to agents. We ran e-optimal once 

for each value of B, since it is a deterministic algorithm. 

Algorithm e-random is randomized and we ran it 10 times 

for each value of B. The results we present are the average 

over the 10 runs. 

In Figure 2(a) it shows how fake object allocation 

can affect negotiation of .  Three curves are plotted in 

the figure. The solid curve is constant and it  shows the 

negotiation of   value for an allocation without fake 

objects.The other two curves look at algorithms e-optimal 

and e-random. The y-axis shows negotiation of   and 

the x-axis shows the ratio of the number of distributed fake 
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objects to the total number of objects that the agents 

explicitly request. 

 We observe that distributing fake objects can 

significantly improve on average the chances of detecting 

a 

guilty agent. Even the random allocation of approximately 

10% to 15% fake objects yields negotiation of   > 0.3. 

The use of e-optimal improves   further, since the e-

optimal curve is consistently over the 95% confidence 

intervals of e-random. The performance difference 

between the two algorithms would be greater if the agents 

did not request the same number of objects, since this 

symmetry allows non-smart fake object allocations to be 

more effective than in asymmetirc scenarios. 

 

 
 Fig 2 . Evaluation of Explicit Data Request Algorithm 

 

  Figure 2(b) shows the value of min , as a 

function of e-optimal the fraction of fake objects. The plot 

shows that random allocation will yield an insignificant 

improvement in our chances of detecting a guilty agent in 

the worst case scenarios. This was expected, since e-

random does not take into consideration which agents must 

receive a fake object to differentiate their requests from 

other agents. 

Incidentally, the two jumps in the e-optimal curve 

are due to the symmetry of our scenario. Algorithm e-

optimal allocates almost one fake object  before  allocating 

a second fake object to one of them. 

The result confirms that fake objects can have a 

significant impact on our chances of detecting a guilty 

agent. Hence, the performance of e-optimal indicates that 

our apporximation is effective. 

 

V. CONCLUSION 
        While transforming the data to the distributors the 

senders apply perturbation and watermarking techniques to 

secure them. The approaches used now in the data 

transformation are not able to detect the data leakage in an 

efficient way and also they were all restricted or made 

impossible to satisfy agent’s request. They also not help 

much in finding the guilty agent who leaked the data. The 

originality of the data and the quality is mainly 

concentrated here. The techniques cannot be used to some 

of the sensitive data too as it is impossible to transfer or 

modify some of the data. So, to find the data leakage and 

to protect the data from the guilty agents who trying to find 

the original data, a Semantic Inference Model is going to 

be introduced. This model is proposed in such a way that it 

prevents the problem of leakage of data and helps in 

finding the guilty agent. 
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