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Abstract
Interpolation by various types of splines is the standard procedure in many applications. In this paper shall discuss the
function, two and fourth derivatives of spline interpolation as an alternative to polynomial spline interpolation at the all intervals.

The method is appropriate and solving of initial and boundary value problems, the results revealing that method is very effective
and accurate.
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1. Introduction.
We consider the following initial and boundary values problem:

y'() = f(xy(x),y'(x)), xe[0,1], y@ =y, ,y(@ =y,

Y/ = (6, Y(9,Y'(0)  x [0, 1], y(@) =y, ,y'(b) = ¥, W

With the help of lacunary spline functions of type (0, 2, 4) see Faraidun (2010) [2], by using that f € C"*([0,1]x R?),
N > 2and that it satisfies the Lipschitz continuous

}g=0,1,..., n-1 @)

<L{y, - v,|+|y; - V3

T YY) = F O Y, Y5)

Also boundary value problems are satisfied, and for all X € [0,1] and for all real Y,, Y,, Y;, Y, . These conditions ensure the
existence of unique solution of the problem (1).

In [2] authors investigated the model (0, 2, 4) approximation by polynomial splines on box partitions in all intervals. The main
computational advantage of this technique is its simple applicability for solving boundary value problems. We develop a new
spline approximation method for solving the boundary value problems over the interval [a, b].

In section 2, we give a brief description of the method. The derivation of the difference schemes spline function has been
given in Section 3, and also, we have shown the second-order accuracy method and convergence analysis are studied. We have
solved two numerical examples to demonstrate the applicability of the methods in section 4. In the last section, the discussion
on the results is given in Section 5.

2. Construct of approximate values:

Let  w(h, y(”)=‘Ma}xh{]y“)(x)—y“)(x)‘} C r=01..6 And let Yy V2SR 2 LR AL

q=0,1 ....,6, be approximate to the exact values Y, ¥ : y{®, y@ y@  y@.q=0,1,....6.
Now from these approximate values we construct a spline function S (X) wich interpolates to the set Y on the mesh A

@
and approximate the solution y(x) of equation (1) as [4, 5]. The set Y ! is defined as:
Yo =Yo» Y= VYo, y(()2+q) = f(q)(xo’ Yo ¥Y'o)where q=01..,r.

Xk+1 t

Via =V +hy'+ [ [ £, yi(u), v @)]dudt,

X Xy
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Vea=Ye + [ It ve(®, v (©]dt,

Xk

VD = (X Vi Vi) 4=0,2,4.,,k=0,1,2,..,m-1

and for X, < X< X,

r+2 o)

Y (%) = }2(x xo'yk

r+1 g(i+1)

Vi'(x) = 2:0< xolyk

and YZA@=7wa&mey?®wt

Xk

Using these approximate values ?(kq) (9=0,2,4., k=0,1, 2, ....

construct the lacunary spline function S +(X) of the type

the class of six degree splines S (X) as the following:

S_A (Xk) = yk
G =
v {s‘:q«xk) =50

Where g =2, 4andk =0,1, 2,.

S_o :3_/0 +(X_Xo)?o (-

o) P C I (e X)
+ ao, +—
Yo 3Yo o

Let us examine now intervals [X;, X;,;] , i=1,2...., n-2., Defined S_I (X) as:

_ _ v\ _» _ —v )4 _ _ _
S_i(X)Zyi+(X—Xi)ai,1+(X 2X') Y, +(x—xi)3ai,3+(x 2:') v, (x=x) ais + (x—x;)ais
Here
a 5h73 ( )_—(2_”+13_”)—_h +_( _ 4y (4))_

03 = 3 - Y Yo Yo 216 yl Yo );

-3

_ I h
85 =h 5(yo_y1)+?(y +2Y, )+h™*

and

-6 -4

_ h™
A6 =_(y1 _yo)_E

3
Also

5

_ 4. 5, 5, =, h _ _
43 =_§h la-i,1 +§h Vi - Vi )__h 2(2y, +13yi')+_6(yi(fl) _4yi(4));

ai,5 = h_4§i+l,l - h_s(ym

h=> h®
a = _?ai,l + ?(ym

Similarly for the last interval [X .,

a 1 gl+11 = 2h (y.+1 y )+ (y|+1 )

_ h
V) +— (y,+1+2y9

_ h
_yi) (y|+1+2y,)+

—%(471(4) +11y5Y);

-5

h h=2
—"+2—” _ N 7V (4) 8—(4) :
(Y7 +2Y5) 3 Yot 1080( A Yo ')

—3 (7-“‘2 -y9);

-3

Dy vy);

i+1

-4

T34 +89).

Xn_l] , we can define approximate values of S, (X) .

WWW.ijmer.com

+(X=%,)° aos+(x Xy)° aos

m) and ¥, V., on the bases of [2, 3], we
0,2,4) (S,(X) = S, (X) if X, <X<X,,) and denote by S_nsl6

©)

..M, the existence and uniqueness of the above spline function have been shown in [2],

(4)

®)
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3. Convergence of a spline functions to a solution:
A key ingredient in the development of our estimates is the following theorem which gives a bound on the

size of a polynomial on a spline function S,(x) in terms of its values on a discrete subset which is
scattered in the values of y, (k =0,1,2,....,m) of a problem (1).

Theorem 1: Let y{* (q=0,2, 4,k =0,1,2..,m) be the approximate values defined above. Then the
following estimates of spline function S, (x) are valid:
(i) \sém (x)— S (x)\ <Cl h*® @, (h);for q=0,1....6, k=0,1,...m-2

where C denote the difference constants dependent of h.

_ N .
(ii) ‘yﬁq)(x)—sk(q)(x)‘SHQZH“(hj +h‘HDJ pr);for q=0,1,.....6, where y(x)is a solution of problem
=0

(1) and D, denote the difference constants dependent of h.

Proof: (i) From theorem 1 of [1] and equation (3), we have

So(X) = So(¥) =(X—%0)* (Bg.5 — g3) + (X—%)° (Bg5 —Fgs) + (X—X5)° (8g ¢ —Bgs) (6)
Where
s =B = 5 (= 1)~ o Y- V45D - 5]

’ ~ 3h 9h
implies that
ag5 - a03\< 5 (C+24C, +72C,) () = 16| w, (h)
where I, =C, +24 C,+72C, and C, ,C, andC, are constants dependent of h.
Similarly
s ~os] < oy — |+ syt - [ o -

h 6h 90h

1
< %(04 +15C; +90C, Jarg (h) = o o ()

where I, =C, +15C, +90C, and C, , C, and C, are constants dependent of h.
and

‘ao,s 506‘ Y1 _yl‘ y1 _)71”

3h6 ‘ 18h4 1080h2 ‘yw 71(4)‘
1

< % (7C7 + 60C8 + 360C9)606 (h) = ﬁ |3a)6 (h)

where 1, =7C, +60C,; +360C, and C, , C; and C, are constants dependent of h.
And hence
1Sy (%) = Sy (¥ <@ 5 — 8y |+ ¥y 5 — aos| + h°[ag s — |
<1 w4 (h)
Where | =1, + 1, + 1,, dependent of h.
By taking the first derivative of equation (5), we have
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2 . sh, )
8300 = So (| < Iy, = Wil + |yl - il - 360\y“” 7|

<3—(C +300C, +720C,) w, (h) = 6130 I, o0, ()
and by successive differentiations obtain
1862 () = S5 (x)| <1, h* @, () for q=0,1,..... 6.
This proves (i) for k=0 and x €[X,, X,]. Further more in the interval [x, ;, X,]
S, (X) =S, (X) = (x =, )@y s =)+ (X=%) (85 = 8a) + (X=%)" (85 —&s)°

+(x- Xk)e(akﬁ —84)

From [2, 6], it's clear that, to show

~ 2 _. h -
A1~ = h_z(yl - yl) + E(y yl,) [y(4) y1(4)]
implies that
= <—(2c +6C +C.) o, (h) _%| o, (h) ;
where 1, and C,,C, and C; be a constants dependent of h.
Similarly

3]
3 £y 2 2 ) _g®
‘ak,3 - ak,3‘ < %‘ak,l - ak,l‘ |Yk+1 Yk+1| ‘yk+1 ~ Y| T ‘qu — Yka

3h® oh? 216
< %(%oc; +360C, +24C, +C,) w,(h) = ﬁ I, ws(h)
where 1, and C,,C,, C, and C, be a constants dependent of h.
And also
‘ak’S —ﬁkls‘ <1, wy(h); ‘am —aklﬁ‘ <1, w,(h), where 1, and I, are dependent of h.
and by taking the successive differentiation, we obtain
‘Slﬁq)(x) —§k(q)(x)‘ <1, h*% @ (h);for q=0,1,.....6. Which is prove (i) for k=0,1...m-2.
We can repeat the same manner in above for k =m-1.

Proof of theorem 1 (ii):
Y900 -5 00 <c{ly? 0 -sP ), +[s(9-5 ) )
From theorem 2 [4], and after some derivations the following estimates are valid

_ -1
Hy(“)(x)—SA(“)(x)HLw <C,h*“w,(h) ,where h=0Acand w,(f;h), <CY 67 (h, +h’
j=0

()

Using equation (7) and estimate in (i), we have
Y@ (x) = S (x)| <C,h* g (h) + 1,h* e, ()

Q-1 ) )
= (Cq +I)h" 05 (f:h)= H "o (f;h) <H 3 67 (h; +h'[Df] )
i—0

Which is proves (ii).
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Theorem 2: If the function f in Cauchy's problem (1) satisfies conditions (2) and (3), then the following inequalities
are hold:

‘S_g’(x)— f[x,S, (X),S, (x)]HLp <l, , ws(h) where I, is constants dependent of h and x [x,, X,].

Xe [Xm—l’ Xm] .
Proof: Using condition (1), (2) and (3), we have
[D(f (%) - y(x))HLp < C,o,(f ;b-a) and Hqu(x)HLp <C, w,(f;1)

A

A

S/(x) - f[x,S, (x),S, (x)]HLp <l , ws(h) where 1, ,is constants dependent of h and x e[, , X, ],

S_,{;fl(x)—f[x,S_mfl(x),S_,;fl(x)]HLpgl;flyza)s(h) where 1., ,is constants dependent of h and

bythe Taylorexpanssionof y aboutzero,then

DU(y(x) - S, () shDM(y—i)(u)\du p*(y-s,)],

< 25”quum <Cym,(f;1)

[D(S, (%) - f(x))HLp <|Dpe(s, - y)HLp +|Doy - fHLp <15 ,0,(f;1) ;where q=2.

Similarly for each the intervals can be proving it.
4. Numerical results:

In this section, the method discussed in section 2 and 3 were tested on two problems, and the absolute
errors in the analytical solution were calculated. Our results confirm the theoretical analysis of the methods
with the initial and boundary value problems. For different starting points observed same convergence
point with or less iterations, see [7].

Problem (1): we consider that the second order boundary value problem y”+y=0where xe[0,1] and
y(0)=1 y'(0)=1.
Problem (2): Let y" —y"=2cos(x) wherey(0)=3,y'(0)=2,y'() =2.

It turns out that the six degree spline which presented in this paper, yield approximate solution that is
O(h®) as stated in Theorem 1. The results are shown in the Table 1 and Table 2 for different step sizes h.

Table 1 Absolute maximum error for the derivatives S (X) .

=y, | 5" =y" O, | 5900 -y, | 5@ 00—y,
0.1 67.67x107%° 26.06x107" 73x107 11.33x107?
001 | 64.71x107" 22.41x10™" 72.05x10°° 11.1x10°°
0.001| 44.04x10™ 22.2x1077 26.64x10° 53.2x10°
Table 2 Absolute maximum error for the derivatives S (X) .
0=y, | 7=y ", [ [s© -y, | @ -yO X
0.1 69x10°® 25.32x107° 50.33x107° 82.005x10*
001 | 7262x107% 25.38x10°® 53.4x10°° 87.01x10™*
0.001 | 66.61x107" 22.2x107% 5x107° 79%x107
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5. Conclusion:

An efficient and accurate numerical scheme based on the Interpolation method proposed for solving initial and boundary
value problems. The Lacunary interpolation method was employed to reduce the problem to the solution of differential
equations. Illustrative examples are presented in Table 1 and 2, were given to demonstrate the validity and applicability of the
method with the less errors bounded.
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