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ABSTRACT:-  
                        In this Chapter we discuss, peristaltic transport of Incompressible      Non-Newtonian second order fluid through 

a flexible cylindrical channel, making use of long wavelength approximation. The perturbation analysis is carried out to obtain 

the velocity field, the streamlines, and shear stress. The computational analysis has been carried out for drawing streamlines, 

velocity profiles, and the stress which are plotted for different sets of governing parameters. 
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1. INTRODUCTION:-  
                               Peristalsis is well known to physiologists to be one of the major mechanisms for fluid transport in many 

biological system. In particular peristaltic mechanism may be involved in urine transport form kidney to bladder through the 

ureter, movement of chime in the gastrointestinal tract, transport of spermatozoa in the ducts, Efferentes of the mole reproductive 

tracts and in the cervical canal, movement of ovum in the fall opian tubes, transport of lymph in the lymphatic vessel is and in 

the vasomotion of small blood vessels. In addition, peristaltic pumping occurs in many practical applications involving 

biomechanical systems. 

The study of the mechanism of peristalsis, in both mechanical and physiological situations, has become the object of 

scientific research. Since the first investigation of Latham (2), Several theoretical and experimental attempts have been made to 

understand peristaltic action in different situations. All such investigations seem to differ in various details. Taking muscle action 

in the tube wall, into in a book by Liron (3). The roller pump is an engineering example working on the principle of peristalsis 

with the tube being compressed by rotating rollers or by a series of mechanical fingers. All the important literature upto 1978 on 

peristaltic transport has been documented by Rath (4). Later, Srivastava and Srivastava (5) have presented an exhaustive list of 

theoretical contributions to this field, classifying them according to the geometry under consideration and the parameters 

describing the flow. Tackabatako et.al. (6) have studied numerically the influence of finite wave length and Reynolds number on 

the efficiency of peristaltic pumping. 

In a more recent paper, Srivastava investigated the problem of peristaltic transport of blood by assuming a single 

layered casson fluid, which ignores the presence of peripheral layer. 

 

2 .FORMULATION AND SOLUTION OF THE PROBLEM:- 
 Consider the peristaltic transport of an incompressible second order fluid through a co-axial cylinders with inner wall 

being rigid and outer wall flexible. The unsteady axisymmetric flow is generated by imposing peristaltic wave on the flexible 

outer cylinder. 

Following ‘Coleman & Noll (1) the constitutive equation for an impressible second order fluid is  

  ij = - Pij + 2 1 dij + 2 2 eij + 4 3 di


 dj                                                   (1. 1) 

where  dij = ½ (Vi,j + Vj,i)  

   eij = ½ (ai,j + aj,i + 2 V,j
m
 Vm,j )                                                     (1.2) 

ij   is the stress – tensor of the second order fluid. 

Pij  is the stress tensor in its hydrostatic state.  

Vi  and ai  indicate components of fluid velocity and acceleration and J indicates their derivatives in J
th

 direction.  

1, 2 and 3 are the co-efficients of viscosity, elastico – viscosity and cross-viscosity respectively and  is the density of the 

fluid.  

The governing equation of linear momentum in the tensor form is  

  JijJij
i VV
t

v
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The equation of continuity is 0, iiV                                          (1.4) 

Choosing cylindrical frame reference (r,, z) the equation of motion of the   axisymmetry flow of an incompressible second order 

fluid are  
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The equation of continuity is 
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r = z = 0                                     (1. 12) 

The inner rigid pipe is of radius ‘a’ and a wave of contraction and expansion is imposed on the outer flexible pipe r = b. The fluid 

motion is due to the peristaltic action of this wave. 

 r = b +  sin 2  






 



ctz

 

imposed on the outer cylinder. 

where   c  is the wave speed 

   is the wave length 

   is amplitude of the wave 

  b is the mean radius of the outer pipe 

The flow becomes steady with reference to the wave frame moving along with the wave and some speed ‘c’. 

The relevant boundary conditions are 

 w = 0  on  r = r1 

 w =0  on  r = r2 + b  (= f )                                                    (1. 13) 

 u = 0   on  r = r1 
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Introduce the following non-dimensional variables as 
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and making use of the long wavelength approximation )1( , 

The expression for the stream function is 
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 3. STRESS ON THE WALL:- 

 The stress on the flexible wall of the pipe in the non-dimensional form is 
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Substituting w and u;  and then  has been evaluated for different values of the governing parameters for the first order 

approximation. The stresses on the boundaries are evaluated and tabulated in tables 1-3. We observe that the stress  increases (& 

decreases ) with an increase in S1 (& S2) for fixed values of other parameters  while an increase in R increases the stress for 

variation in all other parameters. 

      

 

Table - 1 
    

    

Stress () on the flexible boundary with S1 Variation 
 

            
            

 

  I II III IV V VI VII VIII IX X 

 

S1=0.1 21.6156 11.8361 8.57624 6.94633 6.94633 11.0482 5.8447 4.11019 3.24293 2.72258 

 

S1=0.2 20.1432 10.3637 7.10384 5.47392 5.47392 10.2745 5.07092 3.3364 2.46915 1.94879 

 

S1=0.3 19.6524 9.87286 6.61303 4.98312 4.98312 10.0165 4.81299 3.07848 2.21122 1.69086 

 

S1=0.4 19.407 8.62746 6.36763 4.73772 4.73772 9.88757 4.68403 2.94951 2.08225 1.5619 

 

S1=0.5 19.2597 9.48022 6.22039 4.59048 4.59048 9.81019 4.60665 2.87213 2.00488 1.48452 

            

 

  I II III IV V VI VII VIII IX X 

 

 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 

 

R 20 20 20 20 20 20 20 20 20 20 

 

Z 1/.8 1/.8 1/.8 1/.8 1/.8 1/.8 1/.8 1/.8 1/.8 1/.8 

 

S 1.01414 1.01414 1.01414 1.01414 1.01414 1.00701 1.00701 1.00701 1.00701 1.00701 

 

S2 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 

 

 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

            4 . DISCUSSION:- 
 The streamlines are plotted for different variations in the governing parameters in a unit distance along axial direction. 

We observe from streamline pattern for all variations in R, S1, S2 &  clearly exhibit the flow separation in the vicinity of the 

inner cylinder. An increase in R the trapping of the fluid with formation of bolus (closed stream lines) may be observed from 

(Fig 1). A further increase in R, (Fig 2) give rise to an interesting pattern with fluid near by bolus circulating around the bolus 

and the flow on either sides being separated by this trapped fluid. When S1 is increased this formation of bolus is weakened with 

only one bolus appearing near the flexible cylinder(Fig 3). However the trapping once again flowing when the amplitude of the 

boundary wave is increased (Fig 4).When R is sufficiently large irrespective of the values of S1 & S2 or similar interesting   

pattern of  bell  shaped   streamlines  are  observed  (Fig 5). 

           Fixing R and S1, S2  greater  than  0.3  whether  S1 S<
>

2,the  streamline  pattern  shows  two bolus formation. But S1 < S2  

these  two  bolus  are  not  separated from the lower region near the rigid cylinder while for S1 > S2 this trapped fluid is separated 

from the lower region (Figs 6 & 7). This phenomenon of appearance of single bolus may also be observed even for higher and 

almost equal values of   S1 & S2 (Figs 8 & 9). An increase in S1, retards w in the lower region and enhances near the outer 

cylinder  (Figs 10&11). For a fixed S1 the behaviour of w with increase in S2 is similar to that of variation in S1 (Fig 12&13), 

although the retardation near the flexible  cylinder  is comparably  faster. The magnitude of w at  lower  values  of S2 ( 0.5) is 

higher compared to its values at S2 (> 0.5). Fixing S1 and S2 and other parameters an increase in R enhances  w   in the lower 

region and retards the same in the upper region adjacent to the flexible boundary (Figs 14&15).  
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