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ABSTRACT 
Mathematical morphology with spatially variant 

structuring elements outperforms translation-invariant 

structuring elements in various applications. However, 

supporting a variable structuring element shape imposes 

an overwhelming computational complexity, 

dramatically increasing with the size of the structuring 

element. Dilation and erosion are often used in 

combination to implement image processing operations. 

The image content and the number of gray levels used 

does not influence the computing time required. The 

operator for each size and shape of the structuring 

element must be done separately, but here the filtering 

with multiple structuring elements is done in one 

operation and this reduces the computational 

requirements very much. The method finds applications 

in the areas like granulometrices, dilation-erosion scale 

spaces, and template matching using the hit-or-miss to 

transform. In this paper we are proposing about the 

computational performance advantage over existing 

methods where structuring elements are used that 

cannot be easily decomposed into linear structuring 

elements. 
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I. INTRODUCTION 
Mathematical Morphological have a most fundamental 

morphological operators [9] like dilation and erosion with 

structuring elements (S.E.). It has become common tools for 

both image filtering and analysis of binary and gray-scale 

images since the development of efficient algorithms [2]. It 

is based on the algebra of nonlinear operators operating on 

objects shape and in many respects to take place the liner 

algebra system of convolution. Morphological operations 

simplify images, and quantify and preserve the main shape 

characteristics of objects. Morphological operations are 

applied to image pre-processing, enhancing the object 

structure, segmenting objects from the background, 

quantitative description of objects. Algorithms are fixed to 

liner structuring element and shapes like rectangles that can 

be decomposed [4] in to a series of linear structuring 

elements. All methods based on decomposition of 2-D S.E.s 

[3] into linear S.E.s share the same limitation: many shapes 

they cannot be decomposed at all or either cannot be 

decomposed efficiently.  

One of the very interesting and effective algorithms for the 

speed calculation on established computers of the basic 

morphological operation for 2-D images is presented in [5]. 

Still, that algorithm cannot be extended directly to 3-D 

images, because chain coding has not an equivalent in three  

 

dimensions. In the binary case, efficient algorithms for 

some 2-D shapes like circles do exist, but these cannot 

efficiently be extended to the gray-scale case, for which 

polygonal approximations of circles usually are used 

instead. Because larger circles this estimation is given to be 

either too coarse or too computationally intensive, since the 

number or liner S.E.s required is proportional to the 

diameter of the circle. Van Droogenbroeck and Talbot [1] 

proposed an efficient algorithm for computing 

morphological operation with arbitrary 2-D shapes using a 

histogram, which makes the computing time of their 

algorithm dependent on the number of gray levels used. 

Efficient implementations for particularized hardware have 

also been analysed extensively, such as the decomposition 

of arbitrary shapes into 𝟑𝑿𝟑 blocks [6]. The important for 

those case where S.E. cannot be decomposed, where the 

algorithms that efficiently perform morphological 

operations with arbitrary S.E.s. but also where ever a 

generic algorithm is desired such as image processing 

libraries, which often have number of specialized routines 

for specific cases, and a direct implementation for arbitrary 

S.E. moreover, for many application the benefits of using 

the faster specialized algorithm available alternatively of 

using one a bit slightly less efficient generic algorithm does 

not outbalance the coast involved in adapting the methods 

used. S.E. shape decompositions require some design and 

programming efforts that can be avoided if a generic 

algorithm is used [7]. To calculate for one pixel p of the 

image the complete histogram based on the intensity of the 

pixels around p matching the element of the S.E. After 

erosion the value of p is the minimum intensity in the 

histogram which has a value >0. For all succeeding pixels 

of the image, the histogram is efficiently update and the 

position of its minimum intensity changes only if i) a new 

minimum value is shifted into the histogram, which can be 

kept track when the histogram is updated, or ii) when the 

current minimum is shifted out of the histogram, in which 

case the algorithm searches for the first following intensity 

which is now represented in the histogram. This paper [8], 

present a new technique for performing morphological 

operators with any 2-D structuring element that always 

outperforms existing algorithms for arbitrary structuring 

elements, and which has two advantages: i) it is 

independent of both image content and the number of gray 

levels used, and ii) application of a single operator using 

many different S.E.s can be computed somewhat more 

efficiently, which may be useful for granulometries [9, 2] 

and erosion dilation scale spaces [10]. Compared to Van 

Droogenbroeck and Talbot’s method, it has the further 

advantage that it also works on floating point data.  
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II. ALGORITHM 
Discussion here to discrete 2-D gray scale images 𝒇 and 

erosion with 2-D flat S.E.s 𝑨. Be noted that our method can 

be easily modified for 3-D images and other morphological 

operation. All images 𝒇 have their origin top-left and that 

images are processed in scan-line order. 

 

 

Like the previous method, our approach to enhance the 

computational efficiency of erosion is by reducing the 

number the repeated comparisons performed by the 

implementation of its definition.     

 𝑓 ⊖ 𝐴 = min𝑧∈𝐴 𝑓  𝑝 + 𝑧                (1)                         

Our algorithm disintegrates an arbitrary S.E. into a series of 

chords, i.e., runs of highlight pixels of maximum level as 

demonstrated in fig. for letter H. each chord is represented 

by a triplet containing.(i) its 𝒚-offset with respect to the 

origin of the S.E.,(ii) its minimal 𝒙-position, and (iii) its 

length 𝒍. For each S.E. the number chords the minimum and 

maximum 𝒚-offsets 𝒚𝒎𝒊𝒏 and 𝒚𝒎𝒂𝒙, and minimum and 

maximum and minimum and maximum 𝒙-values 𝒙𝒎𝒊𝒏  and 

 𝒙𝒎𝒂𝒙,and the maximum chord length 𝒍𝒎𝒂𝒙 occurring in𝑨. 
Obviously, for each shifted S.E. we can compute the 

minimum value within the each chord, and compute for all 

chords with minimum of all chord-minimum, and also we 

compared minimum of all pixels within the shifted S.E. 

Other way to do this when a image processing in row y, is 

by creating an auxiliary 2-D array 𝑾𝒗(𝒊, 𝒙) for each image 

row 𝒗 between 𝒚 − 𝒚𝒎𝒊𝒏 and 𝒚 − 𝒚𝒎𝒂𝒙. Each array start at 

index 𝒊 runs from 0 to 𝒍𝒎𝒂𝒙, inclusive, and 𝒙 from 𝒙𝒎𝒊𝒏 to 

𝑿 + 𝒙𝒎𝒂𝒙 − 𝟏, including , with 𝑿 the 𝑿 dimension of image 

𝒇. Each value 𝑾𝒗(𝒊, 𝒙) is defined asy 

𝑾𝒗 𝒊, 𝒙 = 𝒇 𝒖, 𝒗                   (𝟐)𝒖∈[𝒙,𝒙+𝒊]
𝒎𝒊𝒏                    

In each array cab be computed in 𝒍𝒎𝒂𝒙 comparisons per 

pixel.now compute the minimum over in 𝑵𝒄 − 𝟏 further 

comparisons per pixel. We compute for each value of 𝒙 is 
 𝒇 ⊖  𝑨  𝒙, 𝒚 = 𝒎𝒊𝒏 𝑾𝒚+𝒚𝒋𝒋∈{𝟎,𝟏,…𝑵𝒄−𝟏}

𝒎𝒊𝒏          (𝒍
𝒋

, 𝒙 + 𝒙𝒎𝒊𝒏,𝒋)                   (𝟑)  

In which𝒚𝒋, 𝒙𝒎𝒊𝒏,𝒋 and 𝒍𝒋 denote the 𝒚-offset, length 𝒍 of 

chord 𝒋 and minimum 𝒙 position. This version has a 

computational complexity per pixel of 𝑶(𝒍𝒎𝒂𝒙 + 𝑵𝒄). 

/* Copy image data into  Wv(0, :)*/ 

for (x = 0; x < X; x++) 

Wv(0, x) = f(x,v ); 

/* Pad copied data on either side of copied row */ 

for (x = xmin; x < 0; x++) 

Wv(0, x) = f(0,v); 

for (x = X; x < X + xmax − 1; x++) 

Wv(0, x) = f(X − 1, v); 

/* Compute minima of runs of length 2n, starting at each x 

*/ 

for (i = 1; i ≤ _log2(lmax − 1)_; i++) 

for (x = xmin; x < X + xmax − 1 − 2i−1; x++) 

Wv(i, x) = min(Wv (i−1, x),Wv (i−1, x+2i−1)) 

 
Fig. 2. Pseudo code for computing 𝑾𝒗 in time proportional to 𝒍𝒐𝒈(𝒍𝒎𝒂𝒙) 

We can reduce both complexities using the following 

observation. We can compute the minimum of any chord 

length 𝒍𝒋 from the minima of two run length of 𝟐𝒏𝒋 

with𝒏𝒋 = [𝒍𝒐𝒈𝟐 𝒍𝒋 − 𝟏 ]. If we modify our chord 

description to contain n, and two 𝒙 values 𝒙𝟏,𝒋 =𝒙𝒎𝒊𝒏,𝒋
, and 

𝒙𝟐 = 𝒙𝒎𝒊𝒏,𝒋 + 𝒍𝒋 − 𝟐𝒏𝒋, we can compute the minimum of 

each chord by just one additional comparison per chord. 

We only need to store [𝒍𝒐𝒈𝟐 𝒍𝒎𝒂𝒙 − 𝟏 ] minimum values 

per pixel, which can be computed in  𝒍𝒐𝒈𝟐 𝒍𝒎𝒂𝒙 − 𝟏  − 𝟏 

comparisons per pixel, as shown in figure 2. Our 

computation for the erosion now becomes 

 𝒇 ⊖ 𝑨  𝒙, 𝒚 

= (𝒎𝒊𝒏(𝑾𝒚+𝒚𝒋(𝒏𝒋, 𝒙 + 𝒙𝟏,𝒋)𝒋∈ 𝟎,𝟏,.,𝑵𝒄−𝟏 
𝒎𝒊𝒏 ,  𝑾𝒚+𝒚𝒋 𝒏𝒋, 𝒙

+ 𝒙𝟐,𝒋                                                                                     (𝟒) 

In which 𝒙𝟏,𝒋𝒂𝒏𝒅 𝒙𝟐,𝒋 are the 𝒙𝟏 and 𝒙𝟐 values of chord 

j. This means we can compute any erosion for any 

structuring element in time and memory complexity 

𝑶(𝑵𝒄 + 𝒍𝒐𝒈𝒍𝒎𝒂𝒙) per pixel. Figure 3 shows the pseudo 

code for computing the erosion on a single line.The 

algorithm mention above regarding image content is 

independent in its time complexity, unlike the method of 

Van Droogenbroek and Talbot [1]. Both their method and 

our method extend readily to 3-D. In our case we need to 

augment the S.E. with a𝒛𝒎𝒊𝒏 and 𝒛𝒎𝒂𝒙, each chord with a 𝒛-

offset, and the arrays 𝑾𝒗, need to be replaced by 𝑾𝒗,𝒛.. 

/* Compute the minima for the first chord */  

for (x = 0; x < X; x++) 

g(x, y) = min(Wy+y0 (n0, x + x1,0), 

Wy+y0 (n0, x + x2,0)); 

/* Compute for all other chords */ 

for (j = 1; j ≤ Nc; j ++) 

for (x = 0; x < X; x++) 

g(x, y) = min(g(x, y),Wy+y0 (n0, x + x1,j), 

Wy+y0 (n0, x + x2,j )); 

Fig.3. Pseudo code for performing the erosion on one image 

line, in which the output image line is given by g(x, y). 

This shows that one comparison per pixel for the first chord 

of the S.E. is needed, and two per pixel for each next one. 
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II. ARCHITECTURE DIAGRAM 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Architecture diagram 

 

V. EXPERIMENTS 
In our method we can optimise the computation time with 

direct implementation, here we only consider foreground 

pixels of the S.E. and the algorithm of Van Droogenbroeck 

and Talbot’s [1] method using circular, H-shaped, 

checkerboard, rectangular, and octagon structuring elements 

to applied on two bit  2160 x 1440 gray scale images. For 

the comparison of the computation time of the native 

program and the program developed, we consider the 

foreground pixels of the image, with the usage of Van 

Droogenbroeck and Talbot’s using the circular, check board, 

octagon, rectangular and H-shaped structuring elements are 

applied to two bit 2160 x 1440 gray scale. In this process the 

noise distribution in the original and the generated image are 

uniform. Further in order to measure the affect of gray scale 

numbers on the computation time of the process the original 

image is converted to the 16 bit version and then varying the 

gray scale value of the image. The Fig. 5&6 shows the 

computation time for the system configuration of 2.26 GHZ 

Intel core i3 processor based on PC, with 3 GB of RAM. A 

thin letter of H S.E and the circular S.E of increasing width 

were taken as the shapes of S.E. As discussed previously, 

the computation time required for the operators shape and 

size of the image with our method is much more reduced 

compared to all the other methods taken individually.

 

         CRICLE S.E             RECTANGLE S.E                   H-SHAPED S.E 

Fig. 5 required computing time for erosions with strutting element  circle(left) ,rectangular(middle), H-shaped(left) using naive method, the 
Van Droogenbroek- Talbot(DT8 and DT16),and our proposed (GI) algorithm on a natural image. 

 

   CRICLE S.E          RECTANGLE S.E                    H-SHAPED S.E 

Fig.6 required computing time for erosions with strutting element  circle(left) ,rectangular(middle), H-shaped(left) using naive method, the 

Van Droogenbroek- Talbot(DT8 and DT16),and our proposed (GI) algorithm on a noise image. 

To estimate the speed gain of this method called “New multi 

erode”, the process was compared with the computation 

time of the existing method referred to as “DT many erode” 

and our method. From the fig it is very much evident that 

the method proposed has more execution speed compared to 

the existing method. For the 8-bit original image, the 

computation times are as follows: single erosion with a 

circle of diameter 49 – 2.03 sec for DT method, the 

computation time for the same diameter in the native 

method is 1.15 sec and for our method is 0.99s. A  the 
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computation time for our methods is not dependent on the 

number of gray levels in the image, 16 bit and 8 bit images 

gives almost the same computation time. Even on the 

floating data only 30% speed had to be compromised. The 

existing method is not so dense when a very small S.Es are 

used with a 16-bit image, The fig refers to the same and give 

the reason for the long computing time for the smallest 

circular S.E. when the low perimeter area ratio such as 

circular and square are considered our method and the 

existing DT method gives the highest speed gain compared 

to the native method. The fig also shows the computation 

time for the thin letter shaped S.E instead of circle. The 

computation time for the single erosion using the letter H of 

width 49 on the 8-bit natural image are 3.96s, 5.51s and 2.31 

for the DT method, native method and our method 

respectively. While the DT method needed 10.90s, for the 

16-bit image. Finally our method offers a small 

improvement of 10 % over the existing methods called as 

“many-erode” version, as expected. It should be noted that 

the equal sized S.E with different shapes gives a reduction in 

the computation time instead of using the increasingly sized 

S.Es. the algorithm shows no change in the computing time 

between different images with the same size. The main 

difference in the computation time for the image is due to 

the difference in the scales being used due the difference in 

the computing tine for the Van Droogenbroeck and Talbot 

algorithm [1]. 

V. CONCLUSION  
An advanced method was proposed with arbitrary 2-D 

flat structuring elements to compute morphological 

operations. The method which was proposed is independent 

of the number of grey levels in the image called 

computational complexity. This method has good 

computational performance compared to other existing 

methods, when S.E.s are used that cannot be easily 

decomposed into linear structuring elements. A single 

operator like the computation of the granulometries and 

dilation or erosion scale spaces are used on multiple S.E.s, 

better improvement is achieved. Afterwards the results are 

compared and computed once were stored in an auxiliary 

array, and reused for filtering of all succeeding S.E.s i.e; 

existing DT method arbitrary S.E.s can be used. Our 

advanced method performs very well compared to the 

existing method; mainly the applications which have the 

images with higher bit depth as common like medical 

imaging are used. Other than this improvement our 

advanced method can handle floating point images easily 

which is not possible in the DT method.  
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