
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-788-791 ISSN: 2249-6645

 www.ijmer.com 788 | Page

V. Manikandan
1
, R. Ravichandran

1
, R. Suresh

1
, F. Sagayaraj Francis

2

*(Department of Information Technology, Sri Manakula Vinayagar Engineering College, Puducherry, India

** (Department of Computer Science and Engineering, Pondicherry Engineering College, Puducherry, India

ABSTRACT
The 2-phase commit protocol is a standard algorithm

for safeguarding the ACID properties of transaction in

the distributed system. In distributed database systems

(DDBSs), transaction blocks occurs during two-phase

commit (2PC) processing if the coordinator itself fails

and at the same time some client has declared itself

ready to commit the transaction. Thus the blocking

phenomena reduce the availability of the system, since

the blocked transactions keep all the resources until

they receive the final command from the coordinator

after its recovery. To remove the blocking problem in

2PC protocol, three phase commit (3PC) protocol was

proposed. Although 3PC protocol eliminates the

blocking problem, it involves extra overhead of one

more cycle and in turn increases the time taken for the

transaction to complete. In this paper we proposed a

new architecture for 2PC by employing a Backup

coordinator, which will reduce the transaction blocking

considerably. However in worst case, the blocking can

occur in the Backup coordinator also. In such a rare

case occurs, the client has to wait until the recovery of

either the coordinator or the backup coordinator. This

protocol suits best for DDBS environment in which

transaction fail frequently and messages take longer

time to deliver.

Keywords: availability, blocking, distributed database

system, two-phase commit

1. INTRODUCTION
The world of computing is moving towards a trend where

tasks are performed in a distributed manner. Distributed

database systems implements a transaction commit

protocol to ensure transaction atomicity. From last few

decades a variety of protocols has been proposed by

researchers. To achieve their functionality these commit

protocols typically require exchange of multiple messages,

in multiple phases, between client and coordinator where

distributed transaction is done. A concurrency control

mechanism is also applied to ensure synchronized access
to various databases by many concurrently running

transactions [1]. The performance factor of concurrency

control algorithms depends on system throughput and

transaction response time. Four cost factors influence the

performance: inter-site communication, local processing,

transaction restarts, and transaction blocking [3, 14].

 The two-phase commit protocol allows the

management of transactions in a distributed environment.

In addition to that several log record are generated, some

of which has to be forced write i.e. they are flushed to disk

synchronously. Since two phase protocol suffers from a
single point of failure, transaction blocking occurs. We are

trying to overcome it by employing a Backup coordinator.

Synchronization among the coordinator and Backup

coordinator is maintained by connection manager.

 In this fast world, transactions have to be committed

successfully and data consistency has to be maintained. In

2PC, due to coordinator crash, the resource held locked

and transactions are uncompleted till the recovery of

coordinator. So resources are not able to use until it is

being unlocked.

 The 3PC protocol has one extra phase, called the pre-

commit phase, compared to 2PC. It is this phase that

makes this protocol non-blocking but it comes with the

extra cost of message transfers [5].Even though 3PC

overcomes this problem, 2PC has its own advantages. So

we are trying to resolve the problem by using Backup

coordinator which performs the functions of coordinator,

when it crashes and so, resources are unlocked and

transactions are committed successfully.

 Here we have employed EJB to create modules and
implement what we have proposed in the paper. Since EJB

has its own transaction API’s, it’s easy to implement our

concept and to perform transactions in an efficient manner.

2. LITERATURE SURVEY
In this section of this paper we have discussed the earlier

defined protocols like presumption protocols, single phase

commit protocol, optimized commit protocol and non-

blocking commit protocol. The efficiency of a commit
protocol is associated with the number of communication

steps, the number of log writes and its execution time at

the coordinator and at each participant. The Blocking or

No blocking nature and difference in recovery procedures

are other important factors that have a vital impact on the

overall commit protocol performance. In this paper an

attempt has been made to achieve equally good

performance of protocol in the presence of failure.

2.1 Variants of 2PC

Both PA(presumed commit) and PC(presumed abort) seek

to reduce commit process overhead by reducing
acknowledge messages and forced log writes in the

decision phase, while the voting phase remains the same as

for 2PC. PrA is preferable where the number of aborted

transactions is more than the number of committed

transaction; PrC is preferred in systems where the number

of committed transactions is more than the number of

An Efficient Non Blocking Two Phase Commit Protocol for

Distributed Transactions

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-788-791 ISSN: 2249-6645

 www.ijmer.com 789 | Page

aborted transactions, a common situation considering

present system reliability. A detailed comparison between

PrA and PrC is given in [6].

2.2 Non-Blocking commit protocol

A number of commit protocols have been designed to

attack the fundamental blocking problem. Three-phase

commit (3PC) [7, 8, 9] was among the first no blocking

protocols. 3PC introduces a new “buffered phase” between

the voting phase and the decision phase. In the buffered

phase, a preliminary decision is reached about the result of

a transaction. Cohorts can reach a global decision from this

preliminary decision even in face of a subsequent master

failure. However, 3PC achieves the non-blocking property

at the expense of increased communication overhead by an
extra round of message exchanges. Moreover, both master

and cohorts must perform forced writes of additional log

records in the buffered phase.

2.3 Single Phase Commit

The One-Phase Commit (1PC) protocol has been first

suggested in [6] and several variations have been

proposed. The Early Prepare (EP) protocol [10] forces

each cohort to enter a prepare state after the execution of

each operation. It makes cohort’s vote implicitly YES and

this protocol exploits the Presumed Commit as well [11].
But a coordinator may have to force multiple membership

records, because the transaction membership may grow as

transaction execution progresses. Above all, the main

drawback comes from the fact that the log of each

operation has to be written in the cohort’s log disk per

operation, it leads to a serious disk blocking time. Only if

every sever has a stable storage so that log forces are free,

EP can be considered to be used.

2.4 Optimistic commit protocol

Optimistic commit protocol [15] concentrates on reducing

the lock waiting time by lending the locks the committing
transactions hold. Since the lock lending is done in a

controlled manner, there is no possibility of cascading

aborts even if the committing transaction is aborted. This

protocol has a good performance due to its reduction of the

blocking arising out of locks held on prepared data.

 The circumstances under which distributed transactions

are committed or rolled back under the 2-PC protocol are

[12].

 When application instructs the transaction to rollback,
then the transaction will be roll backed.

 When process failure occurs before all participant votes,

then transaction will be roll backed.

 If any participant votes no, then transaction will be roll

backed.

 If all participant yes, transaction will be committed.

 If Process failure occurs after all participant have voted

and the transaction coordinator has received all voters as

yes, then transaction will be committed but is

unresolved.

2.5 Comparison of 2PC and 3PC
Comparison between 2PC and 3PC regarding message

exchanges, log writes and degree of blocking where n is

the number of participants [2].

 In case of 2PC message exchange is 4(n-1), log write is

2n and degree of blocking is high. Whereas in 3PC

message exchange is 5(n-1), log write is 2n and degree of

blocking is low.

 It is the extra phase in 3PC can gives the extra n-1

message exchanges compared to 2PC. If the distributed

system has a lot of transactions to be executed, this will

become a significant performance loss [16].

3. NON-BLOCKING TWO PHASE COMMIT

PROTOCOL
This section is going to deals with how 2PC can be

implemented as a non-blocking protocol with the help of

Backup coordinator. In normal case clients request will be

processed by the coordinator and the transaction will be

either committed or aborted.

Fig 1: System Architecture with Backup coordinator

 If suppose the coordinator fails means the transactions

will be in a blocked state and resource is also said to be

locked, clients has to wait infinite amount of time so this

will affect the performance of the distributed system. In

our model we included a new thing called as connection

manager, will keeps on monitoring the coordinator and
Backup coordinator, whenever the coordinator fails the

transactions will be automatically transfer to the Backup

coordinator with the help of connection manager and in

vice verse. In turn connection manager will have a

common log file for both coordinator and Backup

coordinator. Synchronization between them will be

achieved with the help of connection manager.

 The components involved in the architecture are

discussed below.

1. Transaction Coordinator: Coordinates and executes
atomic transactions and manages data transfer between its

replica and other database.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-788-791 ISSN: 2249-6645

 www.ijmer.com 790 | Page

2. Transaction manager: A transaction manager provides

the services and management functions required to support

transaction demarcation, transactional resource

management, synchronization, and transaction context
propagation.

3. Database: A database consists of a resource manager

provides the application access to resources. The resource

manager implements a transaction resource interface that

is used by the transaction coordinator to communicate

transaction association, transaction completion, and

recovery work.

4. Connection Manager: Connection Manager provides a

fast and transparent way of making connection. Here the
connection manager will keeps on monitoring the

coordinator and Backup coordinator, whenever the

coordinator fails the transactions will be automatically

transfer to the Backup coordinator with the help of

connection manager and in vice verse. Users do not have

to know which connection path is chosen.

5. Timeout checker: This is a thread whose responsibility

is to watch for currently active transaction that have been

inactive for too long, and abort them if so. Upon request

by the TM, the checker records the current clock and
associated it with the specified transaction. The thread

constantly checks whether any transaction’s time-to-live

has expired, by looking at the difference between the

current clock time and the transaction’s “clock stamp”. If

this is greater than a large, fixed value, the timeout thread

itself initiates abortion of the transaction.

 We have implemented this model and these will be

more reliable than the previous model, and so will increase

the efficiency of the transaction processing.

 We created log files which are used to lists actions that
have occurred. Log files in turn said to contain the

complete detail of the transaction that is being taken place.

In 2PC log files are categorized into two types, they are

transaction manager log file and coordinator log file.

These files are maintained by connection manager in order

to make synchronization among coordinator & backup

coordinator and to survive from transaction failure.

4. PERFORMANCE DISCUSSION

4.1 Failure probability of backup coordinator while

coordinator is down

Reliability of a module is statistically quantified as mean-

time-to-failure (MTTF). The service interruption of a

module is statistically quantified as mean-time-to-repair

(MTTR). The module availability is statistically quantified

from [5, 13] as:

MTTF

MTTF MTTR

 Let MTTFc and MTTRc represent MTTF and MTTR of

the coordinator respectively. Also, MTTFb represents

MTTF of corresponding backup coordinator. Since the

backup coordinator and the coordinator are failure

independent, the probability that backup coordinator fails

when the corresponding coordinator is down is calculated
as below.

 The probability that the coordinator site is unavailable

is:

c
c

c c

MTTR
P

MTTF MTTR




c

since
c

c c
MTTR

MTTR MTTF
MTTF

 

 The probability that the backup coordinator fails is:

1
b

b

P
MTTF



 The probability that backup coordinator fails and the

corresponding coordinator is down is:

1 c c
b c

b c c c

MTTR MTTR
P P

MTTF MTTF MTTF MTTR
  



 From above equation, it can be observed that the

probability that backup site fails while corresponding

coordinator is down is reduced significantly. Thus, in case

of coordinator site failure, with the introduction of the

backup coordinator, blocking probability is considerably

reduced as compared to 2PC protocol. Further, it can be

observed that the purpose of the backup coordinator is to

terminate the blocked transactions at the participant sites

when the corresponding coordinator is down. After the

termination of the blocked transactions, even though the

backup coordinator fails, it does not affect the consistency
of the database. Let term_time be the time duration

required to terminate the blocked transactions by

contacting the backup coordinator when the coordinator is

down. The above equation denotes the probability that the

backup coordinator fails during the entire period (MTTRc)

when the coordinator is down. However, in the worst case

the blocked transactions are consistently terminated even if

the backup coordinator is up only during term_time and

then fails. As term_time (few minutes) is much less than

the down time (few hours) of the coordinator, the

probability that the backup coordinator fails during the

term_time while the coordinator is down is further
reduced.

5. CONCLUSION
Typically, only the coordinator node has all the

information necessary to determine whether a transaction

should commit or rollback. Therefore, if the coordinator

node fails during a distributed transaction, all the

participants in the transaction must wait for the coordinator

to recover before completing the transaction. Thus,

http://www.webopedia.com/TERM/F/file.html

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-788-791 ISSN: 2249-6645

 www.ijmer.com 791 | Page

significant delays may be caused when the coordinator

fails. To minimize the delay caused by the failed

coordinator, some conversional transaction systems use

clustering and / or group communication protocols to
provide standby coordinators. However, Clustering

protocols and group communication protocols add

complexity to distributed transactions, and require a

change to underlying distributed transaction protocol. In

this paper we proposed a new architecture for 2PC relate to

distributed transactions, and more specifically to

improving reliability of Distributed Transactions.

 Transaction processing must ensure transaction

integrity for transactions that involve databases.

Transactions often involve multiple steps, all of which
must be completed before a database commit can be

executed. Transaction Based Middleware is critical,

because without them, it would be a very difficult job to

write the programs necessary to track transactions across

multiple platforms and databases. Some of the services

provided by Transaction Based Middleware include the

following: Transaction integrity, two-phase commits,

failure/recovery, and load balancing.

 Load Balancing is a feature of Transaction Based

Middleware in which, the server component manages the

workload presented by the clients by fully utilizing the
resources available. Load balancing and thread

management services are important because Transaction

Based Middleware need to process many transactions on

many different systems in a very short time period. The

Middleware can change traffic patterns, processing

parameters, or increase the pool of processors. This

enables the middleware to dynamically adjust to the

workload [4]. Transaction Based Middleware, generally

utilize transaction priorities and multiple database sessions

and/or threads to optimize throughput.

ACKNOWLEDGEMENT

V Premanand, Department of Information Technology, Sri

Manakula Vinayagar Engineering College, Puducherry.

REFERENCES

Journal Papers:

 [1] Toufik Taibi, Abdelouahab Abid, Wei Jiann Lim,

Yeong Fei Chiam, and Chong Ting Ng, “Design and

Implementation of a Two-Phase Commit Protocol

Simulator”, The International Arab Journal of

Information Technology, Vol. 3, No. 1, January

2006.

[2] Byun T, Moon S, “Nonblocking two-phase commit

protocol to avoid unnecessary transaction abort for

distributed systems”, Cheongryang 130-012 Seoul
South Korea, Journal of Systems Architecture.

Volume 43, Issues 1-5, March 1997, Pages 245-254.

[3] Arun Kumar Yadav and Ajay Agarwal,“A

Distributed Architecture for Transactions

Synchronization in Distributed Database Systems”,

International Journal on Computer Science and

Engineering Vol. 02, No. 06, 2010.

[4] Tarek Helmy and Fahd S. Al-Otaibi,” Dynamic

Load-Balancing Based on a Coordinator and Backup

Automatic Election in Distributed Systems”,

International Journal of Computing & Information

Sciences Vol. 9, No. 1, April 2011.

[5] Tabassum k, Taranum F, Damodaram A“A
Simulation of Performance of Commit Protocols in

Distributed Environment”, in PDCTA, CCIS 203, pp.

665–681, Springer, 2011.

Thesis:

[6] Gray J. N, “Notes on database operating systems”.

Operating Systems: an Advanced Course, 60:397–

405, 1991.

[7] Skeen D, “Crash Recovery in a Distributed Database

Systems”, PhD thesis, Department of Electrical

Engineering and Computer Science, University of
California at Berkeley, 1982.

Proceedings Papers:

[8] Skeen D, “A quorum-based commit protocol”, in

Proc. Of Berkeley Workshop, pages 69–80, 1982.

[9] Skeen D, "Nonblocking commit protocols " in

Proceedings of the 1981 ACM SIGMOD

international conference on Management of data,

Ann Arbor, Michigan, pp. 133-142 .

[10] Stamos J.W and Cristian F, “A low-cost atomic

commit protocol”,in 9th IEEE Symposium on
Reliable Distributed Systems (SRDS’90), pages 66–

75, 1990.

[11] Houmaily Y. J. Al and Chrysanthis P. K, "The

Implicit-Yes Vote Commit Protocol with Delegation

of Commitment," in Proceedings of 9th International

Conference on Parallel and Distributed Computing

Systems, pp. 804-810, 1996.

[12] Boutros B. S. and Desai B. C., “A Two-Phase

Commit Protocol and its Performance,” in

Proceedings of the 7th International Workshop on

Database and Expert Systems Applications, pp.100-

105, 1996.
[13] Reddy K, Kitsuregawa M, “Reducing the blocking in

two-phase commit protocol employing backup sites”,

IFCIS Conference on Cooperative Information

Systems, 1998.

[14] Meng Qingyuan, Wang Haiyang, Xu Chunyang,“A

New Model for Maintaining Distributed Data

Consistence”, International Conference on Computer

Science and Software Engineering, IEEE 2008.

[15] Lampson B and Lomet D “A new presumed commit

optimization for two phase commit”, in 19th

International Conference on Very Large Data Bases,
Doublin, Ireland, 1993.

Books:

[16] Silberschatz, Korth, Sudarshan, “Database System

Concepts, Fourth Edition, volume 1”, (The

McGraw−Hill Companies, 2001).

