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Abstract: Flexible Task Scheduling in a multiprocessor environment   is NP complete problem. In literature, several heuristic 

methods have been developed that obtain suboptimal solutions in less than the polynomial time.  Recently,  Genetic  algorithms  
have  received  much awareness  as  they  are  robust  and  guarantee  for  an effective solution.  Genetic algorithm is wildly used 

to solve Flexible Task Scheduling Problem. The genetic algorithm we proposed uses many different strategies to get a better 

result. During the phase of create initial population, the genetic algorithm takes into account the number of operations in each 

job. And the intelligent mutation strategy is used which makes every individual and gene have different probability to mutate. In 

this paper, the object of scheduling algorithm is to get a sequence of the operations on machines to minimize the make span. 

During the experiments the performance of the   genetic algorithm is compared with other heuristic   algorithm.  In our project 

we comprises of three parts: Quality of solutions, robustness of genetic algorithm, and effect of mutation probability on 

performance of genetic algorithm. 

 

I. INTRODUCTION 
   The general problem of multiprocessor scheduling can be 

stated as scheduling a task graph onto a multiprocessor 

system  so  that  schedule  length  can  be  optimized.  Task 

scheduling in multiprocessor system is a NP-complete 

problem. Task scheduling  algorithms can be broadly 

classified  into  two  main  groups:  heuristic  based  [5]  

and guided random search based algorithm [5]. Heuristic 

based algorithm searches a path in the solution space based 

on the heuristic used while ignoring other possible paths. 

Due to this reason, they give good results for some inputs 

while bad for others. List scheduling algorithms [5], 
clustering [5] and duplication  based  algorithms  [2]  fall  

under  this  category. Guided  random  search  techniques  

use  random  choices  to guide  them  selves  through  the  

problem  space.  Genetic algorithms [1, 3 and 8] are the 

most popular random search techniques for different kind of 

task scheduling problems. 

   In the Multitasking environment  considered here, an 

application task can be decomposed into subtasks, where 

each subtask is computationally homogeneous well suited 

to a single machine  and different subtasks may have 

different machine architectural requirements. These 
subtasks can have data dependences among them. Once the 

application task is decomposed into subtasks, the following 

decisions have to be made: matching, i.e., assigning 

subtasks to machines, and scheduling, i.e., ordering subtask 

execution for each machine and ordering inter machine data 

transfers. In this context, the goal of Heterogeneous 

Computing  is to achieve the minimal com-pletion time, 

i.e., the minimal overall execution time of the application 

task in the machine suite. 

   In general genetic algorithm, works on three operators 

natural selection, crossover and mutation [3, 6]. A genetic 

algorithm continuously tries to improve the average fitness 
of a population by construction of new populations. Quality 

of solution depends heavily on the selection of some key 

parameters like fitness function, population size, crossover 

probability and mutation probability. In this paper, we first 

introduce task scheduling problem having  some  specified  

characteristics,  after  that  genetic approach is discussed in 

detail and the last section presents experiments and results. 

   Many parallel applications consist of multiple functional 

units. While the execution of some of the tasks depends on 

the  output  of  the  other  tasks,  others  can  be  executed 

independently at the same time, which increases parallelism 
of the problem. The task scheduling problem is the problem 

of  assigning  the  tasks  in  the  multiprocessor  system  in  

a manner that will optimize the overall performance of the 

application,  while  guarantee  the  correctness  of  the  

result. Multiprocessor scheduling problems can be 

classified into many  different  categories  based  on  

characteristics  of  the program  and  tasks  to  be  

scheduled,  the  multiprocessor system, and the availability 

of information Multiprocessor scheduling  problems  may  

be divided  in  two  categories: Static and dynamic task 

scheduling. A static or deterministic task scheduling is one 
in which precedence constraints and the relationships 

among the task are known well in advance while  non-

deterministic  or  dynamic  scheduling  is  one  in  which 

these information is not known in advance or not known till 

run time. 
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II. PROBLEM DESCRIPTION 
  A  static  scheduling  problem  consists  of  three  main 

components: A multiprocessor system, an application and 

an objective for scheduling.  The multiprocessor system 

consists of a limited number of  fully  connected  processors  

(P1,  P2...  Pm).All  the processors are heterogeneous 

meaning thereby a task may take  different  execution  time  

on  each  processor.  An application comprises tasks and 

their dependencies on each other.  It  can  be  represented  

as  a  directed  acyclic  graph (DAG)  [7,  9],  G=  (V,  E,  

W),  where  the  vertices  set  V consists of v non 
preemptive tasks, and vi denotes the ith task. The  edge  set  

E  represents  the  precedence  relationships among tasks. A 

directed edge eij in E indicated that vj can not begin its 

execution before receiving data from vi. W is a matrix  of 

vxm,  and  wij  in  W  represents  the  estimated execution 

time of vi   on jth processor. Here we assume that 

communication costs do not exist.  The main objective of 

the task scheduling is to determine the assignment of tasks 

of a given application to a given parallel system such that 

the execution time (or schedule length)  of  this  application  

is  minimized  satisfying  all precedence constraints. 

 

III. GENETIC BASED APPROACH 
      Genetic Algorithms or evolutionary algorithms are 

developed by John Holland in 60s. They are random search 

based algorithm premised on  the  evolutionary  ideas  of 

natural selection and genetic. The basic concept of GA is 

designed to simulate processes in natural system necessary 

for evolution. They use three operators known as natural 

selection, crossover and mutation.  Natural Selection [3] 

process forms a new population of strings by selecting 
strings in the old population based on their  fitness  values.  

Crossover  [3] produces  new chromosomes that have some 

parts of both parent's genetic material. Mutation [3] is a 

genetic operator that alters one ore more gene values in a 

chromosome from its initial state to produce new 

chromosomes. 

 

A. Structure  of Genetic Algorithm 

   Typically,  a  genetic  algorithm  consists  of  the  

following steps:  

GA1: Initialization – initialize the population.   
GA2: Evaluation – evaluate each chromosome using fitness 

function.  

GA3:  Genetic  operations  –Select  the  parent  and apply  

genetic  operators  on  them  to  produce  new 

chromosomes.   

 GA4: Repeat steps GA2 and GA3 until termination 

condition reached.  

From the above steps, we can see that genetic algorithms 

utilize the concept of survival of the fittest; passing “good” 

chromosomes  to  the  next  generation,  and  combining 

different strings to explore new search points.  

  

 

 

B. Initial population (Structure of the chromosome) 

   Designing  of  chromosome  structure  is  crucial  for 
devising  GA.  We  define  our  chromosome  structure  as  

a combination of two strings SQ and SP, whose length 

equal to the  number  of  tasks.  SQ  (scheduling  queue)  

maintains precedence constraints between tasks, and an 

entry in SQ represents a task to be scheduled. An entry in 

SP (scheduling processor) represents the processor the 

corresponding task is scheduled onto.   

   The details to generate a chromosome can be seen in 

following steps:  

IP1: Select randomly a task from the entire entry tasks. Set 

this task as the first task in SQ.  

IP2: Repeat step IP3 for (v-1) times.  
IP3: Randomly select a task who is not in SQ and whose 

predecessors all have been in SQ, and add this task to SQ.  

 IP4:  For  SP  part,  randomly  generate  an  integer number 

between 1 and m for each task in SQ and   add it to SP. 

 

C. Evaluation and Selection:  

   Roulette Wheel Mechanism  In  order  to  select  good  

chromosomes,  we  define  the fitness function as: F (i) = 

(maxFT-FT (i) +1/ (maxFT-minFT+1)           (1) Where:  

maxFT  and  minFT  is  the  maximum  and minimum  

finishing  time  of  chromosomes  in  current generation, 
respectively. FT (i) is the finishing time of the ith 

chromosome. Once the fitness values of all the 

chromosomes have been evaluated,  we  can  select  the  

higher  fitness  value chromosomes using the roulette wheel 

mechanism. 

 

D. Reproduction: Crossover and Mutation  Crossover  

   As our chromosome comprises two separate parts SP and 

SQ having different characteristics, for each part we 

employ different crossover policies. We randomly select 

one or the second part and apply two different crossover 

operators for these two parts.  Details about crossover are 
given in following steps:  CR1: Input the Crossover 

probability Pc.  

 CR2: Randomly select pairs of chromosomes and generate 

a float number (FLC) between 0 and 1 for each pair.   

 CR3: If FLC <= Pc, then repeat step CR4 to step CR5 Else 

directly reproduce those two chromosomes to the next 

generation.  

CR4:  Randomly  generate  two  crossover  points,  p and  

q,  between  1  and  v  and  crossover  flag  CF between 0 

and 1.  

 CR5: If CF=0 then rearrange the order of tasks in SQ 
between p and q of one chromosome according to the order 

of tasks of another chromosome, the rest of the two 

chromosomes are remained. Else exchange the part in SP 

between p and q of two chromosomes and the rest of the 

two chromosomes are remained. 
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Mutation  

   Mutation can be considered as a random alternation of the  
individual.  We  employ  two  policies  to  mute  the 

chromosome as given in following steps:  

MT1: Input the Mutation probability Pm.  

 MT2:  For  each  chromosome,  generate  a  float number 

(FLM) between 0 and 1.  

MT3: If FLM <= Pm, then repeat step MT4 to step MT5 

Else directly reproduce this chromosome to the next 

generation.  

MT4:  Randomly generate a mutation point p between 1 

and v and mutation flag MF between 0 and 1.  

 MT5:  If  MF=0  then  select  randomly  a  location 

between  location  of  the  nearest  immediate predecessor 
and that of successor of sqp. Then move sqp  to  this  

location.  Else  change  randomly  the processor of sqp 

between 1 and m as spp.  

  

IV. EXPERIMENTS AND RESULTS 
   In our work, we implemented Genetic algorithm for 

solution of multiprocessor flexible task scheduling problem. 

Detail block diagram(Fig.1) represents the sequence of 

operations to get the desired results.We have compared our 
results with heuristic algorithm.  For performance 

evaluation of our algorithm we generated some problems of 

varying sizes and solved them by both the algorithms. We 

assume that size of problem ranges from 10 to 50 with an 

interval of 5, there is no limit on the number of successors 

of each task except the exit task which does not have any 

successor, the execution time for each task is a random 

number between 5 and 25 and number of processors varies 

from 4 to 8 according to the size of problems. As we did not 

put any restriction over the number of  successor  a  task  

may  have,  task  graph  may  be  much complicated.  So,  
the  problems  we  have  chosen  may  be considered 

difficult in comparison to the kind of problems we  

normally  see  in  literature,  where  a  restriction  on 

maximum number of successor tasks has been put. 

   The  proposed  genetic  algorithm  discussed  in  previous 

sections was implemented and evaluated on an application 

of  college campus . In college campus application we 

considered various tasks relates to entities like Student , 

Teacher , Employee, Books etc. Results obtained are re 

shown  in  Table  I.    We  set  parameters  for  our  Genetic 

Algorithm as: Population Size=25, Maximum Generations= 

5000, Crossover Probability= .6 and Mutation Probability 
=.2.  

 

Comparison of GA and Heuristic Algorithm. 

   Results obtained from our experiments are analyzed for 

following factors:  

1) Quality of solution: Results of average schedule length of 

the GA is given in Table I . Results demonstrate that our 

proposed Genetic Algorithm is able to compete with 

heuristic based algorithms as far as quality of solution is 

concerned. As heuristics are biased towards certain 

characteristics of solution so they tend to search solution 

only in a small part of whole search space. It is also 

possible that they never explore a particular region of 
search space. Thus for some problems heuristics may 

give bad results also if they are not chosen carefully. On 

the other hand GA is a more powerful method as it 

searches simultaneously in many parts of search space. 

Because of mutation operator, change in region being 

searched, gives potential to GA to search in any part of 

the search space. Thus it is more likely to find a better or 

best solution. 

2) Robustness and guarantee for good solution: During our 

experiments on GA we noted Average schedule lengths 

of populations emerging generations after generation 

Though we have shown results  for problem size 10 to 50  
in Table. 1, for each problem irrespective of its size we 

observe  that  average  schedule  length  is  continuously 

decreasing as more and more generations are evolving. 

This shows that Genetic Algorithm is robust and 

ultimately it will give us a good quality solution as 

quality of solution set is  continuously  improved.  It  also  

reveals  that  more generations we evolve; it is likely to 

have better quality in solution.   

3) Effect of mutation probability on the performance of GA: 

As mutation is the key to change the region of search 

space, mutation probability may have dominating role in 
finding solutions of good quality. Thus, we repeated our 

experiments by fixing crossover probability and changing 

mutation probabilities from 0.05 to .40 and noted average 

schedule lengths. We done our experiments on the 

problem having  size  25.  we  can  observe  the  similar  

trend  in  the problems of all sizes. Table. 1 shows the 

further average of results, mixing the effect of all 

crossover probabilities which clearly  shows  that  up  till 

mutation  probability  is  .20, increase in mutation 

probability leading to better results. After  .20  results  are  

fluctuating  in  a  small  range  but normally are not better 

than that we obtained for .20. So, we have found best 
mutation probability for our set of problems as .20.So, we 

have found best mutation probability for our set of 

problems as .20. During the experiments, we have seen 

that for 28.8% problems  GA  gives  lower  schedule  

length,  for  4.44% problems GA gives slightly higher 

schedule length while for 66.67%  problems  GA  gives  

equal  schedule  length  in comparison with HEFT. On an 

average, we analyzed that GA gives better results than the 

heuristic based algorithm and  it  is  robust  also  as  the  

average  schedule  length  is continuously  decreases  as  

more  and  more  generations evolve. 
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IV. CONCLUSION 

   A genetic algorithm based on principles of evolution 

found in nature for  finding an optimal solution. Genetic 

Algorithm  use random choices to guide themselves to the 

problem space and they are used for different kind of task 

scheduling problems. It continuously tries to improve the 

average fitness of a population by construction of new 

population .Quality of solution depends heavily on the 

selection of some key parameters like fitness function 

,population size , crossover probability and mutation 

probability. 
   Task scheduling in multiprocessor system using genetic 

algorithm is an efficient way due to the characteristics of 

Genetic Algorithm as : quality of solution ,robustness and 

guarantee for good solution effect of mutation probability 

on the performance on Genetic Algorithm. 
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TABLE I 

RESULTS OF GENETIC ALGORITHM 
 

Problem 

size 

                         PIN(0-4) Average  

Schedule 

Length 
0 1 2 3 4 

10 80 90 107 101 93 94.2 

15 111 96 98 107 104 103.2 

20 130 132 118 115 117 122.4 

25 116 118 135 145 167 136.2 

30 165 145 187 125 160 156.4 

35 172 190 165 169 180 175.2 

40 190 187 175 169 180 180.2 

45 225 230 190 185 199 205.8 

50 222 220 232 218 217 221.8 

  

 

 
FIGURE I 

BLOCK DIAGRAM OF PROPOSED SYSTEM 

 

 

 

 

 

 

 
 


