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Abstract 

Modern models have significantly improved in quality in recent years; however, this has resulted in models 

losing some of their interpretability. An overview of Explainable AI (XAI) as it is currently understood within 

the field of Natural Language Processing (NLP) is provided by this survey. We discuss how explanations are 

categorized, how they can be arrived at, and how they might be visualized. As a service to the community of 

model developers, we describe in detail the operations and explainability strategies that are currently available 

for producing explanations for NLP model predictions. In conclusion, we highlight the existing deficiencies and 

propose future paths for this significant research field. 
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I. Introduction 

Traditionally, Natural Language Processing (NLP) systems have been mostly based on techniques that are 

inherently explainable. Examples of such ap- proaches, often referred to as white box techniques, include rules, 

decision trees, hidden Markov mod- els, logistic regressions, and others. Recent years, though, have brought the 

advent and popularity of black box techniques, such as deep learning mod- els and the use of language 

embeddings as features. While these methods in many cases substantially advance model quality, they come at 

the expense of models becoming less interpretable. This ob- fuscation of the process by which a model arrives 

at its results can be problematic, as it may erode trust in the many AI systems humans interact with daily (e.g., 

chatbots, recommendation systems, in- formation retrieval algorithms, and many others). In the broader AI 

community, this growing under- standing of the importance of explainability has cre- ated an emerging field called 

Explainable AI (XAI). However, just as tasks in different fields are more amenable to particular approaches, 

explainability must also be considered within the context of each discipline. We therefore focus this survey on 

XAI works in the domain of NLP, as represented in the main NLP conferences in the last seven years. This is, to 

the best of our knowledge, the first XAI sur- vey focusing on the NLP domain. 

As will become clear in this survey, explainabil- ity is in itself a term that requires an explanation. While 

explainability may generally serve many purposes (see, e.g., Lertvittayakumjorn and Toni, 2019), our focus is 

on explainability from the per- spective of an end user whose goal is to understand how a model arrives at its 

result, also referred to as the outcome explanation problem (Guidotti et al., 2018). In this regard, explanations 

can help users of NLP-based AI systems build trust in these sys- tems’ predictions. Additionally, understanding 

the model’s operation may also allow users to provide useful feedback, which in turn can help developers improve 

model quality (Adadi and Berrada, 2018). 

Explanations of model predictions have previ- ously been categorized in a fairly simple way that 

differentiates between (1) whether the explanation is for each prediction individually or the model’s prediction 

process as a whole, and (2) determin- ing whether generating the explanation requires post-processing or not 

(see Section 3). However, although rarely studied, there are many additional characterizations of explanations, 

the most impor- tant being the techniques used to either generate or visualize explanations. In this survey, we 

ana- lyze the NLP literature with respect to both these dimensions and identify the most commonly used 

explainability and visualization techniques, in ad- dition to operations used to generate explanations (Sections 
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4.1-Section 4.3). We briefly describe each technique and point to representative papers adopting it. Finally, we 

discuss the common evalu- ation techniques used to measure the quality of ex- planations (Section 5), and 

conclude with a discus- sion of gaps and challenges in developing successful explainability approaches in the 

NLP domain (Section 6). 

 

Related Surveys: Earlier surveys on XAI in- clude Adadi and Berrada (2018) and Guidotti et al. (2018). While 

Adadi and Berrada provide a com- prehensive review of basic terminology and fun- damental concepts relevant 

to XAI in general, our goal is to survey more recent works in NLP in an effort to understand how these achieve 

XAI and how well they achieve it. Guidotti et al. adopt a four-dimensional classification scheme to rate var- ious 

approaches. Crucially, they differentiate be- tween the “explanator” and the black-box model it explains. This 

makes most sense when a surrogate model is used to explain a black-box model. As we shall subsequently see, 

such a distinction applies less well to the majority of NLP works published in the past few years where the same 

neural network (NN) can be used not only to make predictions but also to derive explanations. In a series of 

tutorials, Lecue et al. (2020) discuss fairness and trust in ma- chine learning (ML) that are clearly related to XAI 

but not the focus of this survey. Finally, we adapt some nomenclature from Arya et al. (2019) which presents a 

software toolkit that can help users lend explainability to their models and ML pipelines. 

Our goal for this survey is to: (1) provide the reader with a better understanding of the state of XAI in 

NLP, (2) point developers interested in building explainable NLP models to currently avail- able techniques, and 

(3) bring to the attention of the research community the gaps that exist; mainly a lack of formal definitions and 

evaluation for ex- plainability. We have also built an interactive web- site providing interested readers with all 

relevant aspects for every paper covered in this survey. 1 

 

II. Methodology 

We identified relevant papers (see Appendix A) and classified them based on the aspects defined in Sections 3 

and 4. To ensure a consistent classification, each paper was individually analyzed by at least two reviewers, 

consulting additional reviewers in the case of disagreement. For simplicity of presentation, we label each paper 

with its main applicable category for each aspect, though some papers may span multiple categories (usually with 

varying degrees of emphasis.) All relevant aspects for every paper covered in this survey can be found at the 

aforementioned website; to enable readers of this survey to discover interesting explainability techniques and 

ideas, even if they have not been fully developed in the respective publications. 

 

III. Categorization of Explanations 

Explanations are often categorized along two main aspects (Guidotti et al., 2018; Adadi and Berrada, 

2018). The first distinguishes whether the expla- nation is for an individual prediction (local) or the model’s 

prediction process as a whole (global). The second differentiates between the explanation emerging directly from 

the prediction process (self- explaining) versus requiring post-processing (post- hoc). We next describe both of 

these aspects in de- tail, and provide a summary of the four categories they induce in Table 1. 

 

3.1 Local vs Global 

A local explanation provides information or justifi- cation for the model’s prediction on a specific in- put; 46 of 

the 50 papers fall into this category. 

A global explanation provides similar justifica- tion by revealing how the model’s predictive pro- cess works, 

independently of any particular input. This category holds the remaining 4 papers cov- ered by this survey. This 

low number is not surprising given the focus of this survey being on explana- tions that justify predictions, as 

opposed to explanations that help understand a model’s behavior in general (which lie outside the scope of this 

survey). 

 

3.2 Self-Explaining vs post-hoc 

Regardless of whether the explanation is local or global, explanations differ on whether they arise as part of the 

prediction process, or whether their generation requires post-processing following the model making a 

prediction. A self-explaining approach, which may also be referred to as directly interpretable (Arya et al., 

2019), generates the ex- planation at the same time as the prediction, us- ing information emitted by the model 

as a result of the process of making that prediction. Decision trees and rule-based models are examples of global 

self-explaining models, while feature saliency ap- proaches such as attention are examples of local self-

explaining models. 

 

In contrast, a post-hoc approach requires that an additional operation is performed after the pre- 

dictions are made. LIME (Ribeiro et al., 2016) is an example of producing a local explanation us- ing a 
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surrogate model applied following the predic- tor’s operation. A paper might also be considered to span both 

categories – for example, (Sydorova et al., 2019) actually presents both self-explaining and post-hoc explanation 

techniques. 

 

 
Table 1: Overview of the high-level categories of expla- nations (Section 3). 

 

IV. Aspects of Explanations 

While the previous categorization serves as a con- venient high-level classification of explanations, it does not 

cover other important characteristics. We now introduce two additional aspects of explana- tions: (1) techniques 

for deriving the explanation and (2) presentation to the end user. We discuss the most commonly used 

explainability techniques, along with basic operations that enable explainabil- ity, as well as the visualization 

techniques com- monly used to present the output of associated ex- plainability techniques. We identify the most 

com- mon combinations of explainability techniques, op- erations, and visualization techniques for each of the 

four high-level categories of explanations pre- sented above, and summarize them, together with representative 

papers, in Table 2. 

Although explainability techniques and visual- izations are often intermixed, there are fundamental 

differences between them that motivated us to treat them separately. Concretely, explanation derivation - typically 

done by AI scientists and engineers - fo- cuses on mathematically motivated justifications of models’ output, 

leveraging various explainabil- ity techniques to produce “raw explanations” (such as attention scores). On the 

other hand, explana- tion presentation - ideally done by UX engineers - focuses on how these “raw explanations” 

are best presented to the end users using suitable visualiza- tion techniques (such as saliency heatmaps). 

 

4.1 Explainability Techniques 
In the papers surveyed, we identified five major explainability techniques that differ in the mecha- 

nisms they adopt to generate the raw mathematical justifications that lead to the final explanation pre- sented to 

the end users. 

Feature importance. The main idea is to derive explanation by investigating the importance scores of 

different features used to output the final pre- diction. Such approaches can be built on differ- ent types of 

features, such as manual features ob- tained from feature engineering (e.g., Voskarides et al., 2015), lexical 

features including word/tokens and n-gram (e.g., Godin et al., 2018; Mullenbach et al., 2018), or latent features 

learned by NNs (e.g., Xie et al., 2017). Attention mechanism (Bahdanau et al., 2015) and first-derivative 

saliency (Li et al., 2015) are two widely used operations to enable feature importance-based explanations. Text-

based features are inherently more interpretable by hu- mans than general features, which may explain the 

widespread use of attention-based approaches in the NLP domain. 

 

Surrogate model. Model predictions are ex- plained by learning a second, usually more explain- able model, as a 

proxy. One well-known example is LIME (Ribeiro et al., 2016), which learns sur- rogate models using an 

operation called input per- turbation. Surrogate model-based approaches are model-agnostic and can be used to 

achieve either local (e.g., Alvarez-Melis and Jaakkola, 2017) or global (e.g., Liu et al., 2018) explanations. 

How- ever, the learned surrogate models and the original models may have completely different mechanisms to 

make predictions, leading to concerns about the fidelity of surrogate model-based approaches. 

 

Example-driven. Such approaches explain the prediction of an input instance by identifying and presenting other 

instances, usually from available labeled data, that are semantically similar to the input instance. They are similar 
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in spirit to nearest neighbor-based approaches (Dudani, 1976), and have been applied to different NLP tasks such 

as text classification (Croce et al., 2019) and question answering (Abujabal et al., 2017). 

 

Provenance-based. Explanations are provided by illustrating some or all of the prediction deriva- tion process, 

which is an intuitive and effective ex- plainability technique when the final prediction is the result of a series of 

reasoning steps. We observe several question answering papers adopt such approaches (Abujabal et al., 2017; 

Zhou et al., 2018; Amini et al., 2019). 

Declarative induction. Human-readable repre- sentations, such as rules (Pro¨ llochs et al., 2019), trees 

(Voskarides et al., 2015), and programs (Ling et al., 2017) are induced as explanations. 

As shown in Table 2, feature importance-based and surrogate model-based approaches have been in frequent use 

(accounting for 29 and 8, respec- tively, of the 50 papers reviewed). This should not come as a surprise, as 

features serve as building blocks for machine learning models (explaining the proliferation of feature 

importance-based ap- proaches) and most recent NLP papers employ NN- based models, which are generally black-

box mod- els (explaining the popularity of surrogate model- based approaches). Finally note that a complex 

NLP approach consisting of different 

 Component say employ more than one of these explainabil- ity techniques. A representative example is the QA 

system QUINT (Abujabal et al., 2017), which dis- plays the query template that best matches the user input query 

(example-driven) as well as the instan- tiated knowledge-base entities (provenance). 

 

4.2 Operations to Enable Explainability 

We now present the most common set of operations encountered in our literature review that are used to enable 

explainability, in conjunction with relevant work employing each one. 

 

First-derivative saliency. Gradient-based ex- planations estimate the contribution of input i to- wards output o 

by computing the partial derivative of o with respect to i. This is closely related to older concepts such as 

sensitivity (Saltelli et al., 2008). First-derivative saliency is particularly convenient for NN-based models because 

these can be computed for any layer using a single call to auto-differentiation, which most deep learning en- 

gines provide out-of-the-box. Recent work has also proposed improvements to first-derivative saliency 

(Sundararajan et al., 2017). As suggested by its name and definition, first-derivative saliency can be used to enable 

feature importance explainability, es- pecially on word/token-level features (Aubakirova and Bansal, 2016; 

Karlekar et al., 2018). 

Layer-wise relevance propagation. This is an- other way to attribute relevance to features com- puted in any 

intermediate layer of an NN. Defini- tions are available for most common NN layers in- cluding fully connected 

layers, convolution layers and recurrent layers. Layer-wise relevance propa- gation has been used to, for example, 

enable feature importance explainability (Poerner et al., 2018) and example-driven explainability (Croce et al., 

2018). 

Input perturbations. Pioneered by LIME (Ribeiro et al., 2016), input perturbations can ex- plain the output for 

input x by generating ran- dom perturbations of x and training an explainable model (usually a linear model). 

They are mainly used to enable surrogate models (e.g., Ribeiro et al., 2016; Alvarez-Melis and Jaakkola, 2017). 

Attention (Bahdanau et al., 2015; Vaswani et al., 2017). Less an operation and more of a strategy to enable the NN 

to explain predictions, attention lay- ers can be added to most NN architectures and, be- cause they appeal to human 

intuition, can help indi- cate where the NN model is “focusing”. While pre- vious work has widely used attention 

layers (Luo et al., 2018; Xie et al., 2017; Mullenbach et al., 2018) to enable feature importance explainability, 

the jury is still out as to how much explainability at- tention provides (Jain and Wallace, 2019; Serrano and Smith, 

2019; Wiegreffe and Pinter, 2019). 

LSTM gating signals. Given the sequential na- ture of language, recurrent layers, in particular LSTMs 

(Hochreiter and Schmidhuber, 1997), are commonplace. While it is common to mine the out- puts of LSTM cells 

to explain outputs, there may also be information present in the outputs of the gates produced within the cells. It is 

possible to uti- lize (and even combine) other operations presented here to interpret gating signals to aid feature 

impor- tance explainability (Ghaeini et al., 2018). 

Explainability-aware architecture design. One way to exploit the flexibility of deep learning is to devise an NN 

architecture that mimics the process humans employ to arrive at a solution. This makes the learned model 

(partially) interpretable since the architecture contains human-recognizable compo- nents. Implementing such a 

model architecture can be used to enable the induction of human-readable programs for solving math problems 

(Amini et al., 2019; Ling et al., 2017) or sentence simplification problems (Dong et al., 2019). This design may 

also be applied to surrogate models that generate expla- nations for predictions (Rajani et al., 2019a; Liu et al., 

2019). 

Previous works have also attempted to compare these operations in terms of efficacy with respect to specific 

NLP tasks (Poerner et al., 2018). Oper- ations outside of this list exist and are popular for particular categories of 
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explanations. Table 2 men- tions some of these. For instance, Pro¨ llochs et al. (2019) use reinforcement learning 

to learn simple negation rules, Liu et al. (2018) learns a taxonomy post-hoc to better interpret network 

embeddings, and Pryzant et al. (2018b) uses gradient reversal (Ganin et al., 2016) to deconfound lexicons. 

 

4.3 Visualization Techniques 

An explanation may be presented in different ways to the end user, and making the appropriate choice is crucial 

for the overall success of an XAI ap- proach. For example, the widely used attention mechanism, which learns 

the importance scores of a set of features, can be visualized as raw at- tention scores or as a saliency heatmap 

(see Fig- ure 1a). Although the former is acceptable, the lat- ter is more user-friendly and has become the stan- 

dard way to visualize attention-based approaches. We now present the major visualization techniques identified in 

our literature review. 

 

Saliency. This has been primarily used to visu- alize the importance scores of different types of elements in XAI 

learning systems, such as show- ing input-output word alignment (Bahdanau et al., 2015) (Figure 1a), 

highlighting words in input text (Mullenbach et al., 2018) (Figure 1b) or displaying extracted relations (Xie et al., 

2017). We observe a strong correspondence between feature importance- based explainability and saliency-based 

visualiza- tions; namely, all papers using feature importance to generate explanations also chose saliency-based 

visualization techniques. Saliency-based visualiza- tions are popular because they present visually per- ceptive 

explanations and can be easily understood by different types of end users. They are there- 

 

   

 
(a)Saliency heatmap (Bahdanau et al., 2015) (b)Saliency highlighting (Mullenbach et al., 2018)        (c)Raw declarative

 rules (Pezeshkpour et al., 2019b) 

 

 
(d)Raw declarative program (Amini et al., 2019) (e) Raw examples (Croce et al., 2019) 

 

Figure 1: Examples of different visualization techniques 

 

fore frequently seen across different AI domains (e.g., computer vision (Simonyan et al., 2013) and speech 

(Aldeneh and Provost, 2017)). As shown in Table 2, saliency is the most dominant visualization technique among 

the papers covered by this survey. 

 

Raw declarative representations. As suggested by its name, this visualization technique directly presents the 

learned declarative representations, such as logic rules, trees, and programs (Figure 1c and 1d). Such techniques 

assume that end users can understand specific representations, such as first- order logic rules (Pezeshkpour et al., 

2019a) and reasoning trees (Liang et al., 2016), and therefore may implicitly target more advanced users. 

Natural language explanation. The explanation is verbalized in human-comprehensible natural lan- guage (Figure 

2). The natural language can be generated using sophisticated deep learning mod- els, e.g., by training a 

language model with human natural language explanations and coupling with a deep generative model (Rajani 

et al., 2019a). It can also be generated by using simple template- based approaches (Abujabal et al., 2017). In 

fact, many declarative induction-based techniques can use template-based natural language generation (Reiter 

and Dale, 1997) to turn rules and programs into human-comprehensible language, and this mi- nor extension can 
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potentially make the explanation more accessible to lay users. 

 

 

 

Table 2 references some additional visualiza- 

 
Figure 2: Template-based natural language explanation for a QA system (Abujabal et al., 2017). 

 

tion techniques, such as using raw examples to present example-driven approaches (Jiang et al., 2019; Croce et 

al., 2019) (e.g., Figure 1e), and de- pendency parse trees to represent input questions (Abujabal et al., 2017). 

 

V. CONCLUSION 

Finally, it is interesting to note that we found only four papers that fall into the global explana- tions 

category. This might seem surprising given that white box models, which have been fundamen- tal in NLP, are 

explainable in the global sense. We believe this stems from the fact that because white box models are clearly 

explainable, the focus of the explicit XAI field is in explaining black box models, which comprise mostly local 

explanations. White box models, like rule based models and de- cision trees, while still in use, are less frequently 

framed as explainable or interpretable, and are hence not the main thrust of where the field is going. We think that 

this may be an oversight of the field since white box models can be a great test bed for studying techniques for 

evaluating explanations. 
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