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I. INTRODUCTION 
The understanding of information processing has been revolutionized by quantum mechanics, with 

quantum entanglement being at its core. Entanglement, where the states of two or more quantum particles 

become interdependent regardless of distance, is essential for quantum computing, communication, and 

cryptography [1]. There are different ways to study the evolution of quantum systems. The Quantum Baker's 

Transformation (QBT) is an invaluable implement. QBT is a non-linear, chaotic map that emulates the behavior 

of quantum systems with characteristics analogous to classical chaotic dynamics [2]. The way it does this is by 

introducing complexity into the evolution of quantum states. It also provides a method for analyzing how 

entanglement behaves under chaotic conditions. 

The study of QBT's impact on quantum entanglement has profound implications for the development of 

quantum technologies. In quantum computing, QBT can be leveraged to explore the chaotic dynamics within 

quantum systems, optimizing algorithms by exploring higher-dimensional state spaces [3]. Similarly, QBT can 

enhance quantum cryptography by using the unpredictable nature of chaotic systems to improve security 

protocols [4]. Additionally, the chaotic properties associated with QBT can improve Quantum Error Correction 

(QEC) techniques by identifying robust entangled states that are resistant to decoherence, which is one of the 

major challenges in maintaining quantum coherence over time [5]. 

Thus, QBT not only deepens the understanding of quantum chaos but also paves the way for practical 

applications in quantum technologies. 

 

1.1The importance of the classical Baker's Map in classical physics 

The Classical Baker's Map is a well-known concept in the study of dynamical systems and chaos 

theory. It is a specific example of a piecewise-linear map, where the dynamics exhibit chaotic behavior, and is 

often used as a simple model for studying chaotic transformations in one-dimensional systems. As part of a 
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broader study of dynamic systems, particularly in the context of iterated maps and their behavior under 

successive applications, first introduced the map[6]. 

People often visualize the Classical Baker's Map as a transformation that stretches and then "folds" an 

interval, resembling the action of kneading dough. The map is defined as follows: it divides the unit interval 

(typically [0, 1]) into two equal parts. Subsequently, the function elongates one segment of the interval by a 

factor of two and shortens the other, followed by a reorganization of the two segments. This pattern of behavior, 

which is the result of this change, can become complicated. These behaviors can range from regular orbits to 

chaotic, irregular trajectories. 

Mathematically, the Baker's Map 𝐵 is defined on the interval [0,1] as follows:  

𝐵(𝑥) = {
2𝑥          𝑖𝑓 0 ≤ 𝑥 < 0.5
2𝑥 − 1 𝑖𝑓 0.5 ≤ 𝑥 < 1

                                                                                                                                         (1) 

This map can be understood as a discrete dynamical system. Iterating the map can result in a seemingly 

random distribution of points. One of the key properties of the Classical Baker's Map is its ergodicity, meaning 

that it has the property of "mixing" the points in such a way that the long-term behavior of the system becomes 

uniform [7]. 

What's more, the Classical Baker's Map is a hyperbolic system. Both expanding and contracting 

orientations are possessed by it. In the case of the Baker's Map, the expansion occurs in one direction (the 

stretching part), while the compression occurs in the other direction (the folding part). This combination of 

expansion and contraction contributes to the map’s chaotic nature, where small changes in the initial conditions 

can lead to drastically different outcomes. 

The Baker's Map has been a central topic of study for researchers in chaos theory, with implications for 

a wide range of scientific fields including physics, biology, and economics [8]. It provides insight into how 

deterministic systems can generate apparently random behaviors and has led to the development of more 

sophisticated models of chaos and turbulence. 

 

1.2The Quantum Baker's Transformation 

The QBT is a quantum mechanical version of the classical Baker's Map, which serves as a model for 

exploring the connection between classical chaos and quantum systems. The classical version of the Baker's 

Map works in a deterministic, continuous space, but the quantum version uses quantum mechanical principles 

like wave function evolution and superposition, which makes it a useful tool for studying quantum chaos. 

As previously mentioned, the system evolves through a discrete-time process that stretches and folds 

the phase space in the classical Baker's Map. This process is often referred to as Quantum Baker's Map, or QBT 

in quantum terms. In the quantum case, the transformation involves the evolution of a wave function. This is 

treated as a superposition of states, where interference effects and uncertainty play crucial roles. Rather than 

being represented as points in space, the wave function evolves. 

Mathematically, the QBT can be described as an operator acting on the quantum wave function. It can 

be thought of as a unitary operator U, where the wave function evolves in a discrete manner, typically over two 

subspaces—position and momentum space. In quantum mechanics, this evolution has the following general 

form a state |ψ⟩: 

𝑈|𝜓(𝑥)⟩ = ∑𝐴𝑛|

𝑛

𝑥𝑛⟩                                                                                                                                                            (2) 

where 𝐴𝑛 are complex coefficients that encode the stretching and folding properties of the Baker's Map. 

The challenge in the quantum context is that due to quantum interference, the evolution does not merely 

resemble classical trajectories; rather, the system evolves through superpositions of multiple states 

simultaneously. 

In the quantum realm, the Baker’s Transformation typically involves the use of quantum gates or 

unitary operations that replicate the chaotic dynamics of the classical Baker’s Map. These quantum operations 

operate on a quantum register and produce results that exhibit quantum features, such as quantum entanglement 

and quantum coherence. A quantum version of the Baker’s Map was first developed by Schack and Caves[1] 

and has since been employed as a model for studying the interplay between quantum and classical chaos. 

One of the key features of QBT is its ability to exhibit quantum chaos, which explores the subtle 

distinctions between classical and quantum chaotic systems. While classical chaos is governed by deterministic 

laws, quantum chaos is a statistical phenomenon that reflects the behavior of quantum systems whose classical 

counterparts exhibit chaotic behavior. Research in this area has shown that the quantum dynamics of the Baker's 

Transformation can display both regular and chaotic behavior, depending on factors such as the quantum 

coherence and the nature of the quantum system’s evolution [9]. 

The study of quantum chaos, specifically through models like the QBT, helps to provide a deeper 

understanding of quantum ergodicity, quantumlocalization, and quantum thermalization. These topics have 
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significant implications in areas such as quantum information processing and the design of quantum computers, 

where controlling and understanding chaos is crucial for reliable operations [10]. 

 

1.3Mathematical description of Quantum Baker's Transformation 

The QBT is a quantum mechanical analog of the classical Baker's Map, and its mathematical 

description relies on the formalism of quantum mechanics, particularly unitary operators. The classical Baker's 

Map operates in phase space (position and momentum), but the quantum version involves evolution in a Hilbert 

space and affects a quantum state, which is described by a wave function or a quantum state vector. The key 

challenge in the quantum case lies in incorporating the inherent principles of quantum mechanics such as 

superposition, entanglement, and quantum coherence, which fundamentally differentiate the QBT from its 

classical counterpart. 

Mathematically, QBTcan be represented as a unitary operator U acting on a quantum state ∣ψ⟩ in a 

discrete phase space. The transformation can be described in terms of two main operations: position translation 

and momentum scaling, which are analogous to the stretching and folding operations of the classical map. In 

quantum mechanics, the state evolution under the QBT can be modeled in the following form: 
|ψ′(x)⟩ =  𝑈|𝜓(𝑥)⟩                                                                                                                                                                  (3) 

In the position basis, the action of the unitary operator U on a wave function ψ(x) can be written as a 

superposition of states. Specifically, the quantum map acts by stretching the region of phase space and then 

folding it, leading to a transformation that is unitary and respects the principles of quantum mechanics. 

The operator U can be expressed as a composition of two distinct operations: a position operator 𝑇𝑥 

which shifts the position of the state, and a momentum operator𝑇𝑝 , which acts on the momentum components. 

The position translation operator 𝑇𝑥 and the momentum scaling operator 𝑇𝑝  are given by: 

𝑇𝑥|𝑥⟩ = |𝑥 + 𝛿𝑥⟩                                                                                                                                                                    (4𝑎) 

𝑇𝑝|𝑝⟩ = |𝑝 + 𝛿𝑝⟩                                                                                                                                                                    (4𝑏) 

where 𝛿𝑥 and 𝛿𝑝 correspond to the shifts in the position and momentum, respectively, which mimic the 

stretching and folding mechanics of the classical Baker’s Map [9]. 

In the momentum representation, the transformation can be written as a Fourier transform, which 

converts between the position and momentum space. The mapping of the quantum state then becomes: 

|ψ′(p)⟩ = ∫ 𝑒𝑖
𝑝𝑥

ℏ 𝜓(𝑥)𝑑𝑥                                                                                                                                                    (5)
∞

−∞

 

The core of the QBT is that it provides a coherent mapping of the quantum state across these different 

representations. Each iteration of the QBT typically results in interference effects due to the wave-like nature of 

quantum particles, and the transformation can lead to complex behavior such as quantum localization and 

quantum chaos [1]. 

A discretized version of the QBT is frequently used for practical purposes, especially in quantum 

computing contexts. In this case, the state space is discretized into finite-dimensional vectors, and the unitary 

operator U can be represented by a matrix. This discretization allows the system to be simulated on a quantum 

computer, where the state evolution follows the pattern of quantum chaos. The discretized QBT has been shown 

to exhibit ergodic properties, which means that the quantum system explores all available states within its space 

as the number of iterations increases, mimicking the chaotic behavior of its classical counterpart [10]. 

One of the most interesting aspects of QBT is its relationship with quantum ergodicity. In classical 

chaos, phase space mixing leads to a uniform distribution of points over time. In quantum systems, the concept 

of ergodicity manifests as quantum mixing of the wave function, and the QBT provides a model to study how 

quantum systems approach equilibrium states over time. This is crucial for understanding quantum 

thermalization and the emergence of classical behavior from quantum systems. 

The QBT is a powerful tool in the study of quantum chaos, providing a way to explore how classical 

chaos manifests in quantum systems. Through the stretchingand foldingof the quantum state, it highlights 

unique quantum effects such as scarring, non-ergodic behavior, and quantum interference. The QBT is a 

particularly useful model for studying the intricate relationship between quantum mechanics and classical 

chaotic systems and has applications in quantum computing,quantum information, andchaos theory. 

 

1.4Mathematical description of Quantum Baker's Transformation 

In recent years, the study of quantum information and entanglement has become a central topic in 

quantum mechanics, particularly in the fields of quantum computing, quantum communication, and quantum 

cryptography. These concepts are fundamentally different from their classical counterparts, as they involve 

phenomena that are not only counterintuitive but also offer the potential for revolutionary advancements in 

computation and information processing. 
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At the core of quantum information theory is the quantum bit or qubit, which represents the 

fundamental unit of quantum information. Unlike a classical bit, which can exist in one of two states (0 or 1), a 

qubit can exist in a superposition of both states simultaneously. This ability to exist in multiple states at once 

allows quantum systems to perform certain computations much more efficiently than classical systems. The 

state of a qubit is represented by a vector in a two-dimensional Hilbert space, and its general form is given by: 
|ψ⟩ = 𝛼|0⟩ + 𝛽|1⟩                                                                                                                                                                    (6) 

where 𝛼 and 𝛽 are complex coefficients that satisfy the normalization condition  |𝛼|2 + |𝛽|2 = 1. This 

superposition principle enables quantum systems to explore many possible solutions simultaneously, which is a 

key feature that distinguishes quantum computers from classical computers [11]. 

A crucial feature of quantum information theory is quantum entanglement, a phenomenon where two or 

more qubits become correlated in such a way that the state of one qubit is intrinsically linked to the state of 

another, even when they are separated by large distances. Entanglement plays a fundamental role in many 

quantum algorithms and protocols, such as quantum teleportation, superdense coding, and Quantum Key 

Distribution (QKD). The simplest form of entanglement is represented by the Bell state, which is a maximally 

entangled two-qubit state: 

|Φ+⟩ =
1

√2
(|00⟩ + |11⟩)                                                                                                                                                       (7) 

In this state, the measurement outcome of one qubit instantaneously determines the state of the other, 

regardless of the distance between them. This non-local correlation leads to what Einstein famously referred to 

as "spooky action at a distance" [12]. Despite its strange nature, entanglement has been experimentally verified 

and forms the backbone of many quantum technologies [13]. 

The ability to manipulate and measure entanglement is crucial for quantum information processing. 

One of the key measures of entanglement is the entanglement entropy, which quantifies the degree of 

entanglement between two subsystems of a quantum system. For a pure state, the von Neumann entropy is given 

by: 

𝑆𝑝 = −𝑇𝑟(𝜌 ∙ log (𝜌))                                                                                                                                                             (8) 

where 𝜌 is the density matrix representing the quantum state. Entanglement is said to be present when 

the system cannot be factored into independent subsystems, meaning that the quantum state cannot be written as 

a product of individual states for each qubit. This property makes entanglement a valuable resource for quantum 

information protocols [14]. 

In the context of quantum computing, entanglement enables certain computational tasks that are 

infeasible for classical computers. For example, in Shor's algorithm for factoring large numbers, quantum 

entanglement is used to achieve an exponential speedup compared to the best-known classical algorithms [13]. 

Similarly, quantum entanglement allows for QEC, a technique that helps mitigate errors in quantum computers 

by using entangled qubits to protect the integrity of information over time [15]. 

Entanglement is also a subject of active research in the context of quantum decoherence. While 

entanglement is a crucial resource for quantum information processing, its fragile nature makes it susceptible to 

the effects of noise and environmental interactions. As a quantum system interacts with its environment, it may 

lose coherence and entanglement, a process known as decoherence. Understanding and mitigating decoherence 

is essential for the practical realization of quantum computers and other quantum technologies. 

 

II. MATERIAL AND METHODS 
Entanglementis one of the most fundamental and intriguing phenomena in quantum mechanics, and it 

plays a crucial role in quantum information theory, quantumcomputing,and quantum communication. In the 

context of quantum chaos and specifically QBT, entanglement becomes a powerful tool for understanding how 

chaotic dynamics affect quantum systems at a deep level.Let's break down the role of entanglementin quantum 

chaotic systems like QBT and explore how it is influenced by chaotic behavior. 

 

2.1 The mathematical formalism of entanglement in chaotic systems 

The study of quantum entanglement in chaotic systems bridges the gap between two seemingly 

unrelated domains: quantum mechanics and classical chaos theory. In classical systems, chaos refers to 

deterministic systems that exhibit sensitive dependence on initial conditions, leading to unpredictable, complex 

behavior. Quantum chaos, on the other hand, refers to the study of systems whose classical counterparts are 

chaotic, but whose dynamics are governed by quantum mechanical principles. When entanglement is introduced 

into chaotic systems, it offers unique insights into how quantum coherence behaves under chaotic conditions. 

Mathematically, quantum entanglement is typically described by thedensity matrix formalism, which 

provides a complete description of the quantum state of a system, especially when we do not have complete 

information about the system’s state (i.e., it is in a mixed state). The state of a composite quantum system 
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consisting of subsystems 𝐴 and 𝐵 is described by a density matrix 𝜌. If the system is entangled, the density 

matrix of the entire system cannot be factored into a product of the density matrices of its subsystems. This non-

factorization is one of the key characteristics of entanglement. 

 

2.2 Pure and mixed states 

For pure states, the entanglement between two subsystems A and B can be quantified by the Schmidt 

descomposition. The state of a two-party quantum system can be written as:  

|ψ⟩ = ∑ λi|ai⟩A|bi⟩B                                                                                                                                                              (9)

i

 

where λi are the Schmidt coefficients, |ai⟩A, |bi⟩B are orthonormal bases for subsystems A and B. The degree 

entanglement is related to the Schmidt coefficients, and the entanglement entropy (often the Von Neumann 

entropy) is given by: 

Sp = −Tr(ρ ∙ log (ρ))                                                                                                                                                           (10) 

where ρ is the reduced density matrix of one subsystem (after tracing out the other subsystem).  

In mixed states, the entanglement of formation is typically used as a measure of entanglement. It is 

defined as the minimum average entanglement of an ensemble of pure states that describes the mixed state. The 

entropy of entanglement quantifies how much entanglement is "spread" across a system and can be computed 

from the density matrix of the system. For a system in a mixed state, the entanglement can be computed by: 

𝐸(𝜌) = 𝑚𝑖𝑛 ∑ 𝑝𝑖𝑆(𝜌𝑖)

𝑖

                                                                                                                                                      (11) 

where 𝑝𝑖  are the probabilities of the pure states 𝜌𝑖 in the ensemble. 

 

2.3 Entanglement in chaotic systems 

In the context of chaotic systems, the interaction between classical chaosandquantum entanglementis 

often modeled byaquantum maporquantum dynamical system that exhibits behavior analogous to classical 

chaos. A commonly studied system is the quantum kicked rotoror thequantum baker's map. These systems can 

be used to explore how quantum entanglement behaves when the underlying classical dynamics are chaotic. 

A chaotic quantum system can often be represented as a unitary operator U acting on the system’s state. 

The dynamics of a quantum system undergoing chaotic evolution can be described by: 
|ψ(t)⟩ = 𝑈(𝑡)|ψ(0)⟩                                                                                                                                                             (12) 

where |ψ(0)⟩is the initial state and 𝑈(𝑡) is the unitary time evolution operator. For two interacting subsystems 

A and B, the time evolution of the entangled state is governed by the product operator: 
|ψ(t)⟩ = 𝑈𝐴(𝑡)⨂𝑈𝐵(𝑡)|ψ(0)⟩                                                                                                                                            (13) 

where 𝑈𝐴(𝑡)and 𝑈𝐵(𝑡)are the unitary evolution operators for subsystems 𝐴 and 𝐵, respectively. 

In chaotic systems, understanding the behavior of quantum entanglement as the system evolves is a key area of 

inquiry. A central question is how entanglement behaves in the presence of chaotic dynamics, especially when 

considering the system's sensitivity to initial conditions and its mixing properties. These factors can significantly 

influence the way quantum entanglement manifests and evolves in such systems. 

One of the primary features of chaotic dynamics is sensitivity to initial conditions, a hallmark of 

classical chaos, where even small changes in the starting conditions can lead to exponentially diverging 

trajectories. This concept extends to quantum systems, where entanglement can exhibit an increased sensitivity 

to perturbations in chaotic regimes. In such systems, entanglement often grows rapidly, reaching a maximum 

before decaying due to decoherence. This fast-paced evolution suggests that entanglement behaves dynamically 

in response to the underlying chaotic dynamics, with its growth and eventual decay being crucial to 

understanding the system's quantum behavior. 

The role of decoherence is also significant in chaotic systems, as it leads to the loss of coherence over 

time. Decoherence arises from the interactions between the quantum system and its environment, resulting in a 

gradual decay of entanglement. In chaotic systems, the mixing properties of the classical phase space are 

essential for determining how entanglement behaves. As the system evolves, the entanglement may initially 

grow, but due to the pervasive effects of decoherence, it may eventually be lost, pushing the system toward a 

mixed state [16]. This loss of coherence and the resulting changes in entanglement are key features that 

differentiate chaotic quantum systems from more isolated or non-chaotic systems. 

Furthermore, chaotic systems often exhibit ergodic behavior, meaning that over time, the system 

explores all accessible states in phase space. In quantum systems, this characteristic is mirrored by quantum 

ergodicity, where entanglement becomes evenly distributed across different degrees of freedom. As a result, 

entanglement in chaotic quantum systems tends to stabilize, reaching a stationary state as the system progresses 

toward thermal equilibrium. In such cases, the entanglement entropy—an important measure of entanglement—



Quantum Entanglement in Chaotic Systems: The Role of the Quantum Baker’s Transformation 

| IJMER | ISSN: 2249–6645 |                               www.ijmer.com                 | Vol. 15 | Iss. 5 | Sep.-Oct.2025| 78 | 

becomes stabilized, signifying that the system has reached a form of equilibrium [17]. This progression toward a 

steady state underscores the interplay between chaos and quantum coherence in determining the long-term 

behavior of entanglement in these systems. 

 

III. RESULTS AND DISCUSSIONS 
Quantum entanglement is one of the most fascinating and perplexing phenomena in quantum 

mechanics. It's a fundamental feature that plays a key role in many quantum technologies, including quantum 

computing, quantum communication, and quantum cryptography. 

In simple terms, quantum entanglement is a phenomenon in which the quantum states of two or more 

particles become interconnected in such a way that the state of one particle cannot be described independently of 

the others, no matter how far apart the particles are. Changes to one entangled particle will instantaneously 

affect the other, even if they are separated by large distances. This has often been described as "spooky action at 

a distance," a phrase famously coined by Albert Einstein, who initially resisted the concept. 

 

3.1 Quantum cryptography and secure communication 

QKD is a method of secure communication that uses quantum mechanics to enable two parties to 

generate a shared, secret random key, which can then be used for encrypting messages. The most significant 

advantage of QKD is that it is provably secure in a way that classical cryptographic methods cannot be, due to 

the unique properties of quantum mechanics, such as the no-cloning theorem and quantum measurement 

disturbance. 

QKD protocols leverage quantum entanglement and other quantum phenomena to detect eavesdropping 

and ensure that the communication remains private. The idea is that any attempt by an eavesdropper to intercept 

or measure the quantum bits (qubits) during the key exchange will disturb the quantum states, revealing their 

presence. 

 

3.1.1. Theoretical background of the B92 protocol 

The BB84 protocol employs four quantum states encoded using two non-orthogonal bases. In the 

rectilinear basis (𝕭𝒁), states |0⟩ and |1⟩ represent bit values 0 and 1, respectively. In the diagonal basis (𝕭𝑿), 

the states |+⟩ =
1

2
(|0⟩ + |1⟩) and |−⟩ =

1

2
(|0⟩ − |1⟩) encode the same. The protocol involves the following 

steps: 

Quantum State Preparation: In the initial stage of the QKD protocol, Alice begins by generating a 

random bit string and selecting a corresponding sequence of measurement bases, typically either rectilinear or 

diagonal. Each bit is then encoded into one of four possible polarization states of single photons, in accordance 

with the BB84 protocol. These polarized photons are subsequently transmitted through a quantum channel to 

Bob1[18], ensuring that the transmitted information remains encoded in quantum states, which is fundamental to 

the security of the protocol. 

Measurement: Upon receiving the photons, Bob independently selects a random basis for each 

incoming qubit, without knowledge of Alice's chosen basis. He then performs a measurement on the photon’s 

polarization state. This introduces quantum uncertainty, ensuring that any eavesdropping attempt would disturb 

the transmitted quantum states. Since Bob’s basis choice is random, he cannot always align with Alice's 

encoding, and this uncertainty plays a critical role in safeguarding the security of communication. 

Sifting: Once the quantum transmission is complete, Alice and Bob publicly announce the bases they 

used for each transmitted bit, without revealing the bit values themselves. They then compare their choices and 

retain only the bits where their basis selections matched. This process, known as sifting, results in a shared 

sequence known as the sifted key. Importantly, the bits discarded during this stage do not contribute to the final 

key, and only the matching bits are kept for further steps in the protocol. 

In QKD, error estimation plays a crucial role in detecting potential eavesdropping. Alice and Bob 

randomly select a subset of the sifted key and publicly compare these bits to estimate the Quantum Bit Error 

Rate (QBER), which indicates any interference or tampering. If the QBER exceeds a critical threshold—

 

 

1 In cryptographic protocols, Alice and Bob are traditionally the main characters used to represent the parties in 

secure communication scenarios. While the choice of these names is culturally arbitrary, they have become a 

widely accepted convention, serving as an educational and illustrative tool for explaining secure information 

exchange. This naming convention is particularly useful in the context of quantum cryptography, where the 

secure transmission of keys and the defense against eavesdropping (represented by 'Eve') are central concerns. 
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typically around 11%—the session is aborted to prevent compromising the key [19]. If the QBER is acceptable, 

classical error correction techniques are used to align both parties' keys, ensuring identical copies despite noise 

or interference. Subsequently, privacy amplification is applied through universal hashing to remove any partial 

information an eavesdropper may have gained during the process, resulting in a final, secure cryptographic key 

[20]. 

 

3.1.2. B92 Protocol and Photon Polarization 

The B92 protocol, introduced by Charles Bennett in 1992, offers a simplified alternative to the BB84 

protocol, using only two non-orthogonal quantum states instead of four polarization states. In B92, Alice 

encodes information by transmitting individual photons that are randomly polarized in one of these two states, 

typically represented as |0⟩ and |1⟩. Because these states are non-orthogonal, they cannot be perfectly 

distinguished, ensuring that any measurement by a third party introduces inherent uncertainty. Bob, the receiver, 

measures the incoming photons using a fixed basis aligned with one of the two polarization states. If the photon 

matches the measurement basis, Bob records the corresponding bit; if not, the measurement outcome is 

discarded. Over multiple rounds of transmission, Bob’s measurements that align with Alice's original states 

contribute to the formation of a raw key, which is kept as part of the shared secret. Bits that are inconclusive or 

mismatched are discarded. The protocol’s security is guaranteed by the no-cloning theorem and the non-

orthogonality of the states, which means any eavesdropping attempt by an intercepting party (Eve) will 

inevitably disturb the photons and introduce detectable errors. Alice and Bob can identify these disturbances 

through statistical error-checking by comparing a subset of the sifted key, thereby detecting eavesdropping, and 

ensuring the security of their communication. 

 

3.1.3. Analytical development of the B92 protocol 

The B92 protocol is a streamlined QKD method that utilizes photons encoded in one of two non-

orthogonal quantum states to securely exchange cryptographic keys. Alice encodes classical bits by preparing 

photons in either horizontal polarization (|0⟩, 00) or vertical polarization (|1⟩, 900), with the non-orthogonality 

of these states ensuring that they cannot be perfectly distinguished by a third party. This property guarantees that 

any eavesdropping attempt will introduce detectable disturbances [21]. During transmission, Alice sends the 

photons over a quantum channel, which could be optical fiber or free space. Each photon is treated as a single-

use quantum carrier, meaning that no cloning or resending is possible without altering the encoded information. 

Bob then measures the incoming photons using a fixed polarization basis, which may be aligned with Alice's 

polarization states or offset, leading to probabilistic detection in the case of misalignment or noise [22]. Once a 

large number of photons have been exchanged, Alice and Bob publicly compare the measurement bases without 

revealing the outcomes. Bits corresponding to matching bases form a sifted key, improving the accuracy of the 

final key. The protocol's security is underpinned by the no-cloning theorem and the indistinguishability of the 

quantum states. Any eavesdropping attempt by Eve will inevitably alter the quantum states, leading to increased 

error rates, which Alice and Bob can detect by comparing a subset of their key. If the QBER exceeds a 

predetermined threshold, such as 10%, the session is aborted, and the key is discarded [20]. 

 

3.1.4. Numerical simulation: key generation and eavesdropping detection 

The B92 Protocol Simulation, figure 1 provides a detailed breakdown of the QKD process between 

Alice and Bob. In this scenario, Alice sends a total of 1100 photons, but due to a photon loss rate of 10%, 110 

photons are lost during transmission, leaving 990 photons successfully received by Bob. The simulation 

includes a measurement error rate of 5%, which means that there is a 5% chance that Bob will measure a photon 

incorrectly, resulting in either a misalignment or an incorrect detection. As a result, only 495 of the 990 received 

photons are detected with the correct polarization basis. These correct detections contribute to the key 

generation process. The error rate of 5% indicates the proportion of incorrect or inconclusive results among all 

measurements. The simulation also incorporates an abort threshold based on the QBER, set to 10%. Since the 

QBER remains within the acceptable limit, the session does not get aborted. After all measurements and error 

corrections are accounted for, the final secure key size generated by the protocol is 470 bits. This simulation 

shows how the B92 protocol accounts for photon losses, measurement errors, and the impact of the QBER to 

securely generate a cryptographic key. 

Should the error rate exceed the security threshold, Alice and Bob will infer possible eavesdropping or 

significant system noise and will discard the entire session to maintain confidentiality. This process ensures the 

integrity and privacy of the communication channel, even under the assumption of a powerful eavesdropper 

with quantum capabilities [22]. 

 

 

3.1.5. Interactive implementation of the b92 protocol using a shiny app in R 
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To make the B92 protocol more accessible, it has been implemented one app provides an intuitive 

interface for simulating key distribution, adjusting experimental parameters, and visualizing outcomes, see 

figure 1. 

Users can simulate photon transmission by varying parameters such as the photon loss rate, the number 

of transmitted photons, and the measurement error rate. The app dynamically generates the raw key and displays 

which bits are retained or discarded. It also visually highlights the impact of misalignment and quantum noise 

on key generation. 

Furthermore, the application includes an eavesdropping detection feature. When the simulated QBER 

exceeds the predefined threshold, the app generates alerts and discards the simulated key exchange. Users can 

test how increasing noise or introducing Eve affects the system. Interactive graphs display photon loss, error 

rates, and the final key length, providing a deeper understanding of QKD under real-world conditions. 

 

3.1.6. Final key size vs. error rate 

The relationship between the final key size and the QBER is a critical metric in evaluating the security 

and efficiency of QKD protocols such as B92. Figure 1 demonstrates that the final key size, defined as the 

number of secure bits retained after error correction, decreases linearly as the QBER increases. Each data point 

represents a simulation run at a specific error rate ranging from 0% to 20%. This inverse correlation arises 

because higher QBER values indicate greater noise or potential eavesdropping, which reduces the fraction of 

bits deemed secure for key generation [21],[22]. The red dashed line, marking the abort threshold at 10% 

QBER, highlights the practical security boundary: if the error rate surpasses this threshold, the key is discarded 

to prevent compromised communication [23]. Mathematically, the final key length is given by the product of 

correct basis detections and the complement of the error rate, reflecting the essential trade-off between noise 

tolerance and key throughput. This behavior emphasizes the necessity of maintaining low QBER to maximize 

the yield of usable key bits in practical implementations [24]. 

 

3.1.7. Eavesdropping Detection viaquantum bit error rate 

The monitoring of QBER serves as a fundamental mechanism for eavesdropping detection in quantum 

communication protocols. As shown in figure 2, the error rates are classified into "Valid" and "Invalid" regions 

based on whether they fall below or above the predefined abort threshold of 10%. Blue bars represent valid error 

rates where the protocol can safely proceed, while red bars indicate values that trigger protocol abortion due to 

security risks. This visual dichotomy reinforces the operational role of QBER as a quantitative indicator of 

intrusion or excessive noise [25]. By continuously comparing the observed error rate against the abort threshold, 

the B92 protocol effectively safeguards against man-in-the-middle attacks or channel disturbances, ensuring that 

compromised keys are discarded, and the integrity of the secret key is preserved [22]. This figure illustrates the 

fundamental principle that rigorous error monitoring is indispensable for maintaining unconditional security 

inQKD. 

 

3.1.8. Photon transmission and detection 

Photon transmission efficiency and detection fidelity are key determinants of the final key generation 

rate in the B92 protocol. Figure 3 presents a breakdown of photons at various stages: the total photons sent by 

Alice, those lost during transmission (e.g., due to channel attenuation or scattering), photons successfully 

detected by Bob, and the subset retained for key generation. Typically, only about half of the received photons 

contribute to the key since Bob’s measurement basis must match Alice’s photon preparation basis, highlighting 

the intrinsic probabilistic nature of quantum measurements [20]. The difference between photons sent and 

received also quantifies channel losses, which can significantly impact the protocol’s performance in realistic 

environments such as optical fibers or free space [24]. This figure succinctly conveys the interplay of photon 

loss, detection efficiency, and basis reconciliation, all of which are critical for optimizing the secure key rate in 

QKD systems. 
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Figure 1: 1(a), 1(b), 1(c), and1(d) of B92 Protocol simulation dashboard interface. 

 

The interface displays controls to adjust parameters such as photon loss rate, measurement error rate, 

and abort threshold (QBER), along with the simulation results: number of photons sent and received, correct 

basis detections, error rate, and final key size generated. 

A concise summary panel (figure 1(a)) aggregates the key metrics of the simulation scenario, providing 

an overview of protocol performance under specified parameters. It reports the total photons sent, photon loss, 

photons successfully received, correct basis detections (approximately half of received photons, consistent with 

the random basis selection), the error rate, and the resulting final key size after accounting for noise and 

eavesdropping effects[21],[23]. Such summaries are essential for benchmarking protocol implementations and 

comparing different operating conditions or channel models. They enable researchers and engineers to quickly 

assess system viability and guide improvements in hardware and error correction strategies to enhance secure 

communication. 

 

3.2.1. Analytical foundations of quantum computing and quantum error correction 

Quantum computing offers a paradigm shift in information processing by exploiting the principles of 

quantum superposition and entanglement. However, quantum systems are inherently fragile due to decoherence 

and operational errors. QEC provides a robust framework to detect and correct such errors, thereby enabling 

fault-tolerant quantum computation [11]. 

 

3.2.2. Quantum information formalism 

A qubit, the fundamental unit of quantum information, is a unit vector in a two-dimensional Hilbert 

space ℋ2. Any pure qubit state can be written as (5). Measurement in the computational basis yields outcome 0 

with probability |𝛼|2 and 1 with probability |𝛽|2. Composite quantum systems are modeled by the tensor 

product of Hilbert spaces: 

ℋ2𝑛 = ℋ2
⊕𝑛                                                                                                                                                                           (14) 

Operations on qubits are described by unitary matrices 𝑈 ∈ 𝒰(2𝑛), satisfying 𝑈𝑈† = 𝐼. Errors are 

modeled as non-unitary evolutions due to interaction with the environment, commonly expressed as quantum 

channels using the operator-sum representation (Kraus decomposition): 

𝜌 → ℰ(𝜌)

= ∑ Ε𝑘𝜌Ε𝑘
†

𝑘

                                                                                                                                                         (15) 

∑ Ε𝑘
†𝜌Ε𝑘

𝑘

= 𝐼                                                                                                                                                                         (16) 
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3.2.3. Quantum noise and the need for error correction 

Quantum systems suffer from noise such as: 

Bit-flip: X = [
0 1
1 0

] 

Phase-flip: Z = [
1 0
0 −1

] 

Bit-and-phase flip: Y = 𝑖𝑋𝑍 

These Pauli operators form a basis for single-qubit errors. 

To protect quantum information, quantum error-correcting codes encode logical qubits into entangled 

states over multiple physical qubits. 

 

3.2.4. The quantum error correction conditions 

Let 𝐂 be a quantum code with codewords {ψ𝑖}, and let {E𝑎} denote error operators. The Knill–

Laflamme QECcondition [26] states that a code 𝐂 can correct errors {E𝑎}  if and only if: 

〈𝜓𝑖|Ε𝑎
†𝐸𝑏|𝜓𝑗〉 = 𝐶𝑎𝑏𝛿𝑖𝑗                                                                                                                                                          (17) 

That is, the error operators must preserve the orthogonality of codewords and act identically within the code 

subspace. 

 

3.2.5. The 3-qubit bit-flip code 

The simplest quantum error-correcting code corrects a single bit-flip error: 

Encoding: 
|0⟩𝐿 = |000⟩, |1⟩𝐿 = |111⟩ 

Error detection: 

The stabilizers are: 

𝑆1 = 𝑍1𝑍2, 𝑆2 = 𝑍2𝑍3                                                                                                                                                            (18) 

Each stabilizer has eigenvalues ±1. The error syndrome reveals which qubit was flipped. For instance, a 

bit-flip on the second qubit changes 

𝑆1 = −1, 𝑆2 = −1                                                                                                                                                                  (19) 
identifying the location. 

Quantum computation offers exponential speed-ups for certain problems by leveraging phenomena such as 

superposition and entanglement. Nevertheless, quantum systems are highly sensitive to environmental 

interactions that lead to errors. QEC is thus indispensable for the realization of fault-tolerant quantum computers 

[11]. This paper explores both the theoretical foundation and algorithmic implementation of QEC with a focus 

on simulation. 

Quantum computing leverages quantum-mechanical phenomena such as superposition and 

entanglement to process information, promising exponential advantages in certain problem domains [27]. 

However, practical realization is hindered by qubit fragility—errors from decoherence, gate imperfections, and 

environmental noise accumulate rapidly, limiting computation depth [28]. 

 

3.2.6. Theoretical foundations of quantum error correction 

QEC schemes aim to encode logical qubits into multiple physical qubits, enabling detection and 

correction of errors without collapsing the quantum state. The fundamental difference from classical repetition 

codes stems from the no-cloning theorem and continuous error spaces [28]. Stabilizer codes, especially surface 

codes, have emerged as leading candidates due to their locality and fault tolerance [28].Gottesman–Kitaev–

Preskill (GKP) [29] codes extend error protection by encoding logical qubits in continuous-variable systems. 

Rigorous density-matrix analyses demonstrate that small codes (e.g., 3-, 5-qubit bit-flip or surface-17 

codes) can suppress logical errors below physical if operations are below error thresholds (~10−3𝑡𝑜10−4), 

enabling exponential suppression as qubit count grows [30]. Experimentally, Google's “Willow” processor 

achieved below-threshold logical error rates using a scalable surface-code architecture across 3×3 to 7×7 qubit 

lattices [31] and demonstrated exponential bit/phase-flip suppression in multi-round repetition-code experiments 

[32]. 

 

3.2.7. Simulation of the 9-qubit Shor code under generalized quantum noise conditions 

To evaluate the error-correcting capabilities of the 9-qubit Shor code under various types of quantum 

decoherence, we developed a simulation framework interface. This simulator supports the application of three 

fundamental quantum noise channels: bit-flip, phase-flip, and depolarizing errors. 

The Shor code encodes one logical qubit into nine physical qubits by combining three-qubit repetition 

codes with Hadamard-transformed blocks [11]. Logical states are constructed as tensor products of GHZ-like 

entangled triplets. Specifically, the logical |0⟩𝐿 and |1⟩𝐿 are encoded as follows: 
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|0⟩𝐿 = ⨂𝑖=1
3

|000⟩ + |111⟩

√2
                                                                                                                                                (19) 

|1⟩𝐿

= ⨂𝑖=1
3

|000⟩ + |111⟩

√2
                                                                                                                                                         (20) 

To model noise, we apply quantum channels ℰ(𝜌) to individual qubits: 

The bit-flip channel: ℰ𝑋(𝜌) = (1 − 𝑝)𝜌 + 𝑝𝑋𝜌𝑋 

The phase-flip channel: ℰ𝑍(𝜌) = (1 − 𝑝)𝜌 + 𝑝𝑍𝜌𝑍 

The depolarizing channel: ℰ𝑑𝑒𝑝𝑜𝑙(𝜌) = (1 − 𝑝)𝜌 +
𝑝

3
(𝑋𝜌𝑋 + 𝑌𝜌𝑌 + 𝑍𝜌𝑍) 

Each channel was implemented via Kraus operators acting on one of the nine qubits. The resulting 

noisy state is calculated and represented as a density matrix, enabling the visualization of coherence degradation 

via heatmaps. 

This simulation is useful not only pedagogically but also for prototyping QEC schemes under varying 

noise assumptions. 

 

 
Figure 2: Simulation of the 9-Qubit Shor code under generalized quantum noise. 

 

This graph shows the error distribution across the qubits of the 9-qubit Shor code due to a Phase-Flip 

error with a simulated error rate of 0.33. The graph indicates that qubits 2, 5, and 8 are most affected by the 

noise, with an error magnitude close to 1, while the other qubits show lower error rates. 

This figure illustrates the behavior of the 9-qubit Shor code under generalized quantum noise, 

specifically focusing on a Phase-Flip error. The graph demonstrates how the error rate impacts the qubits in the 

Shor code, providing insight into the resilience of the code to noise in quantum computing systems. 

Thex-axis represents the individual qubits of the 9-qubit Shor code. The Shor code utilizes 9 qubits to 

encode a single logical qubit, and the graph shows how each qubit is affected by a simulated Phase-Flip error. 

The y-axis measures the magnitude of the error on each qubit, with values ranging from 0 to 1. A value of 1 

indicates a complete error, meaning the qubit is entirely flipped in phase, while 0 indicates no error at all. 

The data represented in the graph shows that the qubits indexed at positions 2, 5, and 8 exhibit the 

highest error rates. These qubits experience the Phase-Flip error with an approximate error rate of 0.33 (33%). 

This suggests that the noise introduced in the simulation has caused these qubits to flip phases from |0⟩ to |1⟩ or 

vice versa with a probability of 33%. The qubits in the middle of the lattice, especially those closer to the edges, 

are more prone to errors due to quantum noise affecting their states. 

From the graph, we observe that the error is distributed across multiple qubits, with qubits 2, 5, and 8 

showing higher levels of error. This can be interpreted as the localization of the noise. In more complex 

quantum systems, errors tend to spread across qubits due to entanglementand the interconnected nature of 

quantum states. However, in this case, the observed error rate (33%) suggests that the system is experiencing 
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significant decoherence, which impacts the qubits in a more localized manner (specifically on qubits 2, 5, and 

8). Despite the noise, the Shor code is designed to correct such errors, allowing for fault-tolerant quantum 

computation. 

This simulation provides valuable insights into the performance of the Shor code under moderate noise 

conditions. The fact that the error is relatively evenly distributed across specific qubits implies that the code may 

be able to correctthe errors effectively, as long as the error rate remains within a tolerable threshold. According 

to theoretical models of QEC, the Shor code can correct errors as long as fewer than one-third of the qubits 

involved in the encoding suffer from significant noise. This ensures that the logical qubit is still recoverable. 

In practical applications, the error thresholdfor thePhase-Flip error is crucial for determining the 

scalability of quantum computers using the Shor code. As quantum systems grow in size, error correction 

techniques such as the Shor code will play a critical role in maintaining the fidelity of quantum computations. 

This figure highlights thePhase-Flip noise impact on the Shor code and provides insight into how the 

error rate affects the quantum system. As quantum computers evolve, further simulations like this will help 

refine QEC techniques to ensure robust and reliable quantum computing. 

 

IV. CONCLUSIONS AND RECOMMENDATIONS 
The advancement of quantum computing toward practical applications critically depends on a deep and 

integrated understanding of both its theoretical foundations and experimental realizations. In this regard, the 

synergy between analytical threshold proofs and large-scale simulations has proven essential in clarifying the 

resource requirements for achieving fault-tolerant quantum computation. Recent progress in gate fidelities 

marks a significant milestone. However, the path from physical-layer improvements to logical error rates low 

enough for real-world applications remains a formidable challenge. 

Future developments must embrace integrative strategies that incorporate dynamic decoders—such as 

those powered by neural networks (e.g., Alpha Qubit)—and explore more hardware-efficient error-correcting 

codes, including Low-Density Parity-Check (LDPC) and continuous-variable codes [33]. These approaches 

promise not only enhanced computational efficiency but also a more scalable and feasible route toward large-

scale quantum systems. 

At the same time, applications like QKD and QEC exemplify the diverse and foundational role of 

quantum entanglement in driving quantum technological progress. QKD, already a deployable technology, 

secures communication channels, while QEC addresses the more intricate challenge of maintaining 

computational integrity at scale. Both applications demonstrate how entanglement enables solutions to problems 

that lie beyond the reach of classical systems, underscoring its central role as a resource in quantum information 

science. 

In conclusion, the convergence of robust theoretical models, continual experimental breakthroughs, and 

strategically varied applications is laying the groundwork for a new technological era fueled by the disruptive 

potential of quantum entanglement. Sustained progress will depend on interdisciplinary and collaborative efforts 

that integrate physics, engineering, data science, and quantum information theory to overcome the remaining 

barriers to practical, scalable quantum technologies. 
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