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I. Introduction 
Polynomial regression extends classical linear regression by incorporating nonlinear relationships 

between predictors and the response variable. When polynomial terms are introduced, the resulting design 

matrix assumes a Vandermonde or truncated Vandermonde form. While this structure guarantees identifiability 

under distinct predictor values, it is also well known for numerical instability as the polynomial degree increases 

or predictor values cluster. 

Despite its widespread use, the algebraic foundations of polynomial regression are often overlooked in 

applied research (Golub & Van Loan, 2013; Montgomery et al., 2021).. In particular, the role of the 

Vandermonde determinant in ensuring full rank and its implications for numerical conditioning deserve explicit 

attention. This paper aims to bridge linear algebra and regression analysis by providing a clear exposition of the 

Vandermonde determinant and illustrating its impact on regression estimation through numerical examples. 

 

II. Vandermonde Matrix and Determinant 

2.1 Definition 

Given distinct nodes 𝑥1, 𝑥2, 𝑙𝑑𝑜𝑡𝑠, 𝑥𝑛, a Vandermonde matrix is defined as 

𝑉 =

(

 
 
 
 
 
 
 
 
 
 

1 𝑥1 𝑥1
2
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. 

Abstract 

Polynomial regression is a fundamental tool in statistics, econometrics, and machine learning, frequently 

implemented through a design matrix with a Vandermonde structure. This study examines the algebraic 

and numerical role of the Vandermonde determinant in polynomial regression analysis. We show that the 

determinant provides insight into model identifiability, while the associated condition number governs 

numerical stability and sensitivity to noise. Through real numerical examples implemented in R, the paper 

demonstrates how closely spaced predictor values and high polynomial degrees lead to multicollinearity 

and ill-conditioning. Practical remedies, including centering, orthogonal polynomial bases, and ridge 

regression, are discussed. The results highlight the importance of understanding Vandermonde structures 

when applying polynomial regression in empirical research. 
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2.2 Determinant 

The determinant of a Vandermonde matrix admits a closed-form expression: 

𝑑𝑒𝑡(𝑉) = 𝑝𝑟𝑜𝑑1𝑙𝑒𝑖<𝑗𝑙𝑒𝑛(𝑥𝑗 − 𝑥𝑖). 

 

This formula implies that the determinant is nonzero if and only if all (Turner, 1966; Gautschi, 1979), 𝑥𝑖values 

are distinct. In regression analysis, this condition ensures that the columns of the design matrix are linearly 

independent, guaranteeing parameter identifiability. 

 

III. Vandermonde Structure in Polynomial Regression 

 

3.1 Model Representation 

Consider a polynomial regression model of degree 𝑝: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 + 𝑐𝑑𝑜𝑡𝑠 + 𝛽𝑝𝑥𝑖

𝑝
+ 𝑣𝑎𝑟𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝑖 . 

 
In matrix notation, this model can be written as 

𝑚𝑎𝑡ℎ𝑏𝑓𝑦 = 𝑋𝑏𝑜𝑙𝑑𝑠𝑦𝑚𝑏𝑜𝑙𝑏𝑒𝑡𝑎 + 𝑏𝑜𝑙𝑑𝑠𝑦𝑚𝑏𝑜𝑙𝑣𝑎𝑟𝑒𝑝𝑠𝑖𝑙𝑜𝑛, 
where the design matrix 𝑋has a truncated Vandermonde structure. 

 

3.2 Identifiability and Rank 

When the number of observations equals 𝑝 + 1, the design matrix becomes square and coincides with a 

Vandermonde matrix. A nonzero determinant guarantees a unique solution, equivalent to polynomial 

interpolation. When the matrix is rectangular, identifiability depends on full column rank, which is closely 

related to the Vandermonde determinant concept. 

 

IV. Numerical Stability and Conditioning 
Although a nonzero determinant ensures identifiability, it does not guarantee numerical stability. Vandermonde 

matrices are notoriously ill-conditioned for large polynomial degrees or closely spaced predictor values (Björck, 

1996; Higham, 2002). The condition number 𝑘𝑎𝑝𝑝𝑎(𝑋)quantifies the sensitivity of estimated coefficients to 

perturbations in the data. 

High condition numbers indicate multicollinearity among polynomial terms, leading to unstable coefficient 

estimates (Harrell, 2015). This phenomenon explains why polynomial regression can behave poorly in practice 

despite being theoretically well-defined. 

Equation for the Ridge Estimator  

You may also include the following equation: 

𝜷̂ridge = (𝐗⊤𝐗 + 𝜆𝐈)−1𝐗⊤𝐲, 

 

which highlights the direct connection between ridge regression and the stabilization of the Vandermonde 

determinant. 

 

V. Numerical Example Using R 
5.1 Data Description 

We consider a small real dataset representing machine age and observed defect rates: 

𝑥 = (1,2,3,4,5,6), 𝑞𝑢𝑎𝑑𝑦 = (4.5,4.0,4.2,5.1,6.3,8.0). 
 

5.2 Polynomial Regression Estimation 

A second-degree polynomial regression model is estimated using ordinary least squares: 

x <- c(1,2,3,4,5,6) 

y <- c(4.5,4.0,4.2,5.1,6.3,8.0) 

data <- data.frame(x,y) 

 

model <- lm(y ~ x + I(x^2), data=data) 

summary(model) 

The resulting design matrix is a truncated Vandermonde matrix. The model captures the nonlinear trend 

effectively, with a high coefficient of determination. 

 

Mathematical Representation of the Model (Vandermonde Form) 

The estimated regression model can be written as a second-degree polynomial of the form 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2 + 𝜀, 
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where𝜀denotes the stochastic error term. In matrix notation, this specification corresponds to a 
Vandermonde design matrix given by 

𝐗 =

[
 
 
 
1 𝑥1 𝑥1

2

1 𝑥2 𝑥2
2

⋮ ⋮ ⋮
1 𝑥𝑛 𝑥𝑛

2]
 
 
 
. 

 
The ordinary least squares estimator is therefore expressed as 

𝜷̂ = (𝐗⊤𝐗)−1𝐗⊤𝐲. 
 

Since the determinant of 𝐗⊤𝐗depends directly on the determinant of the underlying Vandermonde matrix, the 

invertibility and numerical stability of the estimator are critically determined by the spacing and scaling of the 

predictor values 𝑥𝑖. When the regressors are powers of the same variable, as in polynomial regression, the 

resulting Vandermonde structure is known to be highly ill-conditioned, particularly for small samples or closely 

spaced 𝑥-values. 

 

Interpretation of the OLS Polynomial Regression Results 

Table 1 reports the ordinary least squares estimates for the quadratic polynomial regression model. 

 

Table 1. Quadratic polynomial regression model 

Term Estimate Std. Error t-value p-value 

Intercept 5.320 0.186 28.67 < 0.001 

𝑥 −1.152 0.121 −9.49 0.002 

𝑥2 0.268 0.017 15.78 < 0.001 

 
All estimated coefficients appear highly statistically significant, with large absolute t-statistics and very small p-

values. At first glance, these results suggest a strong and well-determined relationship between the dependent 

variable and the polynomial regressors. 

However, this apparent strength is partly an artifact of the Vandermonde structure of the design matrix. The 

polynomial terms 𝑥and 𝑥2are inherently highly correlated, which leads to near-multicollinearity. In such 

settings, the inverse of 𝐗⊤𝐗becomes numerically unstable, inflating the sensitivity of the coefficient estimates to 

small perturbations in the data. 

Moreover, the small sample size relative to the polynomial degree further amplifies this effect, resulting in 

underestimated standard errors and artificially large t-statistics. Consequently, statistical significance in this 

context should not be interpreted as evidence of numerical robustness or predictive reliability. 

Based on the ordinary least squares estimation, the fitted quadratic regression model is given by 

ŷ = 5.320 − 1.152x + 0.268x2. 
 

This estimated equation summarizes the relationship between the response variable and the polynomial 

regressors derived from the Vandermonde design matrix. 

Although the fitted model provides an excellent in-sample approximation, the magnitude and apparent statistical 

significance of the coefficients should be interpreted with caution due to the ill-conditioned nature of the 

Vandermonde matrix underlying the polynomial regression. 

In contrast, ridge regression produces a family of stabilized polynomial equations whose coefficients shrink 

smoothly as the regularization parameter increases, thereby improving numerical robustness at the cost of a 

small bias. 

The second-degree polynomial regression model was estimated using ordinary least squares based on a 

Vandermonde design matrix. The estimated coefficients indicate a strong quadratic relationship between the 

dependent variable 𝑦and the predictor 𝑥. All regression coefficients are statistically significant at conventional 

levels, with very large t-statistics and p-values well below 1%, suggesting an excellent in-sample fit. 

The model achieves an exceptionally high coefficient of determination (𝑅2 = 0.9973), which indicates that 

nearly all variation in the response variable is explained by the quadratic polynomial. However, this apparent 

goodness of fit should be interpreted with caution. Given the small sample size and the polynomial structure of 

the regressors, the model is prone to overfitting and numerical instability. 

From a numerical linear algebra perspective, the regressors 𝑥and 𝑥2are highly correlated, which is a well-known 

property of polynomial regressions constructed using Vandermonde matrices. This near-collinearity leads to an 

ill-conditioned normal equation matrix 𝑋⊤𝑋, making the OLS estimator highly sensitive to small perturbations 
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in the data. As a result, the estimated coefficients, although statistically significant, may exhibit substantial 

variance and lack robustness. 

Consequently, while the OLS estimates provide an exact or near-exact interpolation of the observed data, they 

may not be reliable for extrapolation or predictive purposes. This issue motivates the use of regularization 

techniques, such as ridge regression, which stabilize the inversion of the Vandermonde-based normal matrix by 

introducing a penalty term that improves the conditioning of the estimation problem. 

 

5.3 Conditioning Analysis 

X <- model.matrix(model) 

kappa(X) 

The condition number indicates moderate numerical sensitivity. When predictor values are clustered, the 

condition number increases dramatically, illustrating the practical implications of Vandermonde ill-conditioning. 

 

Vandermonde Design Matrix and Moment Matrix 

The polynomial regression model is constructed using the following design matrix: 

𝐗 =

[
 
 
 
 
 
1 1 1
1 2 4
1 3 9
1 4 16
1 5 25
1 6 36]

 
 
 
 
 

, 

 

which is a classic Vandermonde matrix generated by the monomials {1, 𝑥, 𝑥2}. 
The corresponding moment (normal) matrix is given by 

𝐗⊤𝐗 = [
6 21 91
21 91 441
91 441 2275

] . 

 

This matrix summarizes all second-order moments of the regressors and directly determines the OLS estimator 

through its inverse. Due to the polynomial structure of the regressors, the off-diagonal elements are large 

relative to the diagonal terms, indicating strong dependence among the columns of 𝐗. 

 

Condition Number and Numerical Stability 

The condition number of the design matrix is 

𝜅(𝐗) = 157.34, 
which already indicates moderate numerical ill-conditioning, even though the predictor values are evenly 

spaced. This result highlights an important fact: Vandermonde matrices can be ill-conditioned even under ideal 

spacing when polynomial terms are used. 

A large condition number implies that small perturbations in the data or rounding errors can lead to 

disproportionately large changes in the estimated regression coefficients. 

 

Poorly Spaced Predictors: Catastrophic Ill-Conditioning 

When the predictor values are tightly clustered, 

𝑥 = {5.00,5.05,5.10,5.15,5.20,5.25}, 
 

the condition number of the corresponding design matrix increases dramatically to 

𝜅(𝐗bad) = 161,397.7. 
 

This represents severe ill-conditioning, rendering the ordinary least squares estimator numerically unreliable. In 

this setting, the Vandermonde determinant becomes extremely small, and the inversion of the normal matrix is 

dominated by numerical error rather than statistical information. 

This example clearly demonstrates that closely spaced predictor values amplify the inherent instability of 

Vandermonde-based polynomial regression. 

 

Centering as a Remedy 

After centering the predictor variable, 

𝑥𝑐 = 𝑥 − 𝑥̄, 
the condition number drops substantially to 

𝜅(𝐗centered) = 150.54. 
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This reduction by more than three orders of magnitude illustrates that simple reparameterization techniques, 

such as centering, can dramatically improve numerical stability without altering the fitted values of the model. 

 

Key Takeaway for the Regression–Vandermonde Relationship 

These results provide strong empirical evidence that: 

• Polynomial regression inherently induces a Vandermonde structure in the design matrix. 

• Vandermonde matrices are highly sensitive to spacing and scaling of the predictors. 

• Ill-conditioning can occur even with seemingly well-behaved data. 

• Centering (and regularization) effectively mitigates numerical instability. 

 

The numerical experiments reveal that the Vandermonde structure of polynomial regression design matrices 

leads to substantial ill-conditioning, particularly when predictor values are closely spaced. While evenly spaced 

predictors already produce moderate condition numbers, clustering results in catastrophic numerical instability, 

which can be effectively alleviated through simple centering transformations. 

 

Ridge Regression Results for a Vandermonde Polynomial Model 

Ridge regression was applied to the second-degree polynomial model in order to mitigate the numerical 

instability induced by the Vandermonde structure of the design matrix. The estimation was performed for a 

sequence of regularization parameters 𝜆 ∈ [0,1], with increments of 0.1. 

Table X reports the ridge coefficient estimates for the intercept, linear, and quadratic terms. 

As expected, the solution at 𝜆 = 0coincides exactly with the ordinary least squares estimates, confirming that 

ridge regression generalizes the classical OLS solution. As the regularization parameter increases, all 

coefficients exhibit smooth and monotonic shrinkage toward zero. 

Notably, the largest shrinkage occurs for the linear term 𝑥, whose OLS estimate is relatively large in magnitude 

due to multicollinearity with the quadratic term. In contrast, the quadratic coefficient 𝑥2decreases more 

gradually, indicating that ridge regression redistributes the explanatory power across polynomial terms while 

preserving the overall functional shape of the fitted curve. 

From a numerical linear algebra perspective, ridge regression replaces the unstable inversion of the normal 

matrix 𝐗⊤𝐗with the stabilized inverse (𝐗⊤𝐗+𝜆𝐈)−1. This modification effectively inflates the determinant of the 

moment matrix and substantially improves its conditioning, thereby reducing the variance of the coefficient 

estimates at the cost of a controlled bias. 

These results provide clear empirical evidence that ridge regularization is a natural and effective remedy for the 

ill-conditioning inherent in Vandermonde-based polynomial regression models. 

The ridge estimates demonstrate that regularization effectively counteracts the numerical pathologies of 

Vandermonde matrices, yielding stable polynomial coefficient trajectories even in small-sample settings. 

The relationship between λ and condition number is shown in Figure 1 and Table 2, and the comparison of OLS 

and Ridge fitted curves is shown in Figure 2. 

 

 
Figure 1. The relationship between λ and condition number 
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Figure 1 illustrates the relationship between the ridge penalty parameter 𝜆and the condition number of 

the regularized normal matrix. When 𝜆 = 0, corresponding to ordinary least squares, the condition number 

exceeds 10 000, indicating severe numerical ill-conditioning induced by the Vandermonde structure. As 

𝜆increases, the condition number decreases monotonically, demonstrating that ridge regularization substantially 

improves numerical stability by inflating the eigenvalues of the moment matrix. 

 

Table 2. Condition Number of the Regularized Moment Matrix 

λ Condition Number 

0.0 10547.01 

0.1 7293.83 

0.2 5574.53 

0.3 4511.24 

0.4 3788.65 

0.5 3265.62 

0.6 2869.51 

0.7 2559.12 

0.8 2309.35 

0.9 2104.01 

1.0 1932.22 

 

 

 
Figure 2. Comparison of OLS and Ridge fitted curves 

 

Figure 2 compares the fitted polynomial curves obtained from ordinary least squares and ridge 

regression. While the OLS fit closely interpolates the observed data, it exhibits sharper curvature as a result of 

coefficient instability. In contrast, the ridge fit produces a smoother polynomial curve, reflecting the shrinkage 

of the regression coefficients and improved numerical robustness. 

Ridge regression simultaneously improves the conditioning of the estimation problem and yields smoother fitted 

curves, thereby addressing both numerical and statistical deficiencies of ordinary least squares in polynomial 

regression. 

 

VI. Remedies for Ill-Conditioning 
Several strategies can mitigate the numerical issues associated with Vandermonde matrices: 

1. Centering and scaling predictors. 

2. Using orthogonal polynomial bases such as Legendre or Chebyshev polynomials. 

3. Applying regularization methods, including ridge regression. 

These techniques improve numerical stability without sacrificing model flexibility (Björck, 1996; Harrell, 

2015). 
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VII. Conclusion 
This study demonstrates that polynomial regression is fundamentally linked to the algebraic properties 

of Vandermonde matrices. While the Vandermonde determinant ensures identifiability, numerical stability 

depends critically on the spacing of predictor values and the degree of the polynomial. Understanding this 

relationship allows researchers to design more reliable regression models and avoid common pitfalls associated 

with polynomial fitting (Higham, 2002; Montgomery et al., 2021). 
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Appendix A: Full R Script 

# Data 

x <- c(1,2,3,4,5,6) 

y <- c(4.5,4.0,4.2,5.1,6.3,8.0) 

data <- data.frame(x,y) 

 

# Degree-2 model 

model2 <- lm(y ~ x + I(x^2), data=data) 

summary(model2) 

 

# Design matrix 

X <- model.matrix(model2) 

print(X) 

 

# Moment matrix 

print(t(X)%*%X) 

 

# Conditionnumber 

print(kappa(X)) 

 

# Poorlyspacedexample 

x_bad<- c(5.00,5.05,5.10,5.15,5.20,5.25) 

y_bad<- seq(4.5,5.9,length.out=6) 

model_bad<- lm(y_bad ~ x_bad + I(x_bad^2)) 

print(kappa(model.matrix(model_bad))) 

 

# Centeredregression 

x_c<- scale(x_bad, center=TRUE, scale=FALSE) 

print(kappa(model.matrix(lm(y_bad ~ x_c + I(x_c^2))))) 

 

# Ridge 

library(MASS) 

ridge<- lm.ridge(y ~ x + I(x^2), data=data, lambda = seq(0,1,by=0.1)) 

print(ridge) 
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